US3725027A - Apparatus for monitoring the configuration of a ribbon of material - Google Patents

Apparatus for monitoring the configuration of a ribbon of material Download PDF

Info

Publication number
US3725027A
US3725027A US00071029A US3725027DA US3725027A US 3725027 A US3725027 A US 3725027A US 00071029 A US00071029 A US 00071029A US 3725027D A US3725027D A US 3725027DA US 3725027 A US3725027 A US 3725027A
Authority
US
United States
Prior art keywords
ribbon
glass
components
arrangement
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00071029A
Inventor
R Toussaint
E Mulder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Glass Europe SA
Original Assignee
Glaverbel Belgium SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glaverbel Belgium SA filed Critical Glaverbel Belgium SA
Application granted granted Critical
Publication of US3725027A publication Critical patent/US3725027A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B15/00Drawing glass upwardly from the melt
    • C03B15/02Drawing glass sheets

Definitions

  • ABSTRACT In the processing of sheet material by drawing a ribbon of the material upwardly, a method and apparatus for monitoring deflections experienced by the material out of the vertical plane along which it is normally drawn by providing sensing components near, and normally out of contact with, opposite faces of the ribbon and by arranging the components to produce an output indication in response to a change in a physical condition of the region adjacent the component due to such deflection.
  • Sheet glass is customarily produced by drawing molten glass in a continuous ribbon from a bath of molten glass contained in a tank and by then allowing the drawn glass to cool as it travels away from such bath.
  • the ribbon is drawn at a constant speed so as to subject the still molten glass of the ribbon in the drawing chamber to uniform drawing tension. This is necessary because any change in the dynamic equilibrium of the upwardly moving ribbon of molten glass in the drawing chamber may have very serious adverse effects on the quality of the resulting glass product so that the ribbon must be kept under virtually constant observation. If
  • Another object of the invention is to provide an automatic indication that such a situation is occurring, or is about to occur.
  • a further object of the invention is to utilize such indication for automatically gripping the ribbon in order to prevent it from falling back into the bath.
  • a glass ribbon is drawn from a bath of molten glass upwardly between components which are located near to, but out of contact with, opposite faces of the ribbon, and form part of an indicator system which yields a signal in the event that the portion of the ribbon between the components moves by at least a certain minimum distance out of a predetermined plane.
  • the indicator system components located adjacent opposite faces of the ribbon form part of an electric indicator circuit which produces signals that can be instantly effective, with or without amplification, to initiate warning and/or control operations.
  • the indicator system may yield a signal in the event of actual contact of the glass ribbon with the one or more indicator system components located to one side of the drawn glass ribbon.
  • This arrangement is conducive -to a very postivie operation of the indicator system.
  • the indicator system components locatedon oppmite sides of the drawn glass ribbon may, e.g., be electrodes or switch arms forming part of an electric indicator circuit which produces a signal in the event that an electric current path is established due to the glass ribbon contacting an electrode or displacing a switch arm, as the case may be. If switches are employed, they may be extremely sensitive microswitches which respond to the slightest contact.
  • the components located near to opposite faces of the ribbon are preferably located at a level near to the surface of the molten glass bath since buckling of the glass ribbon usually first becomes noticeable in this regron.
  • the indicator system components located near to the opposite faces of the ribbon may be connected to a common indicator device or they may be connected to individual indicator devices.
  • buckling of the ribbon may not always be due to ribbon breakage. Buckling also may occur due to a fault resulting in reduction of the glass drawing speed, and the actuation of a warning device is useful for drawing immediate attention to this fault and enabling corrective action to be taken before a more serious situation develops.
  • the invention can be used in the drawing of glass upwardly through a vertical drawing tower, as in the case of the Pittsburgh process.
  • one roller of each pair is a fixed roller, the other being a floating roller which can be moved into contact with the glass ribbon in the event of a warning signal being given by the man on duty at the observation window of the drawing machine.
  • the indicator system employed in accordance with the invention may operate automatically to displace the floating rollers in such a Pittsburgh type machine.
  • the invention also includes glass drawing apparatus including means for holding a bath of molten glass and means for drawing a ribbon of glass upwardly from such bath, and provided with an indicator system including components spaced from, and on opposite sides of, the correct vertical drawing path of the ribbon, the system containing means which register when the portion of the ribbon passing between the components is displaced by at least a certain minimum distance from its correct path in a direction towards at least one component and which causes emission of a signal indicative of that situation.
  • the indicator system contains an electric indicator circuit giving an instant response in the form of an output current or voltage which may be amplified to give the required signal.
  • the sensing components adjacent the correct vertical drawing path of the ribbon are advantageously in the form of electrodes connected to a voltage source.
  • a predetermined deflection of the portion of the ribbon passing between the electrodes is registered by means which detects the passage of an electric current from at least one electrode to ground via the glass ribbon. The flow of such a current indicates that the glass ribbon has moved into contact with one of the electrodes.
  • a predetermined displacement of the portion of the ribbon passing between the electrodes is registered by means which detects variations in the capacitance of at least one capacitor constituted jointly by one electrode, the glass ribbon and the gas therebetween, the gas forming the dielectric of the capacitor.
  • the signal indicative of the fault is emitted before any contact of the glass with an electrode and responsive action can take place so that in fact no such contact ever occurs.
  • the system When using a capacitance type indicator system it is advantageous for the system to include means which registers differences between variations in the capacitances of the capacitors at opposite sides of the ribbon path so that incidental capacitance variations due to factors other than displacement of the ribbon from its correct path are of no consequence.
  • the sensing components are switch arms which are displaced when contacted by the glass, causing flow of an electric indicating current.
  • a further type of indicator system includes means for directing streams of air or other fluid against opposite faces of the glass ribbon through discharge components located on opposite sides of the ribbon path, and means which respond, e.g. by measuring fluid pressure, to variations in fluid flow through a component due to displacement of the glass ribbon towards or away from such component.
  • the system may include an instrument which yields an electrical signal responsive to any such registered variation. Again, it is advantageous for the instrument to register differences in variations in the fluid flow through opposed components so that differences common to the fluid discharges on opposite sides of the ribbon and due to factors other than displacement of the ribbon from its correct path are of no consequence.
  • the indicator system components on opposite sides of the ribbon path are located at a level near to the level reached by the molten glass bath when the apparatus is in use.
  • the indicator system includes ribbon gripping means actuated by the signals indicative of buckling of the glass ribbon and serving to grip the ribbon and prevent it from falling into the molten glass bath in the event that the buckling is due to breakage of the ribbon.
  • the gripping means consist of one or more gripping rollers which can be displaced to come into contact with the glass ribbon and which are constructed to support the ribbon when brought into engagement therewith.
  • FIG. 1 is a cross-sectional elevational view of part of a sheet glass production plant provided with one embodiment of the invention.
  • FIG. 2 is a detail plan view, on a larger scale, showing the mounting of certain components of the control system shown in FIG. 1.
  • FIG. 3 is a cross-sectional elevational view of an electrode assembly used in the plant of FIG. 1.
  • FIG. 4 is a circuit diagram of one embodiment of an indicator and control system according to the inventlon.
  • FIG. 5 is a circuit diagram of another embodiment of an indicator system according to the invention.
  • FIG. 6 is a cross-sectional plan view of part of the drawing chamber of another glass drawing plant incorporating another type of indicator and control system according to the invention.
  • FIG. 7 is a cross-sectional view, on a larger scale, of an electrode assembly used in the plant of FIG. 6.
  • FIG. 8 is a circuit diagram of part of the indicator and control circuitry used in the system of FIG. 6.
  • FIG. 9 is a cross-sectional plan view of part of the drawing chamber of another glass drawing plant incorporating a further type of indicator and control system according to the invention.
  • FIG. is a diagrammatic cross-sectional elevational view of part of another sheet glass production plant provided with one embodiment according to the invention.
  • FIG. 1 shows part of a Pittsburgh type glass drawing machine and FIGS. 2 and 3 show further details of the control system according to the invention used in this particular machine.
  • the glass is drawn upwardly as a ribbon 1 from a bath 2 of molten glass, the bottom of the ribbon being stabilized by a draw bar 3.
  • the ribbon of glass is drawn upwardly by a drawing machine 4 which includes a succession of pairs of drawing rollers.
  • FIG. 1 shows only the bottom pair of drawing rollers, 5 and 5'. The other pairs of drawing rollers are located higher up in the drawing tower.
  • rollers 6 and 6', 7 and 7' Beneath the rollers and 5 there are further pairs of rollers 6 and 6', 7 and 7'.
  • these further rollers serve, as will be explained hereafter in more detail, to hold the lower part of the drawn glass ribbon and thereby prevent it from falling to the bottom of the drawing chamber, where it would cause serious disturbances and even require stopping of the drawing machine.
  • the drawing chamber 8 Under the drawing machine 4 is the drawing chamber 8 which is made as gas-tight as possible so as to create a zone in which temperature conditions suitable for the formation of the glass ribbon can be maintained.
  • the drawing chamber 8 is bounded transversely by L blocks 9 and 9' which are located very near to the surface of the molten glass bath 2, and by walls 10 and 10 which connect the upper part of the L blocks with the base of the drawing machine 4.
  • catch pans 12 and 12' which constitute the bottom of the drawing machine 4.
  • the tank is formed of a bottom 13, wall 14 remote from the glass melting furnace, and crown 15.
  • coolers 16 and 16' In order to ensure rapid cooling of the faces of the freshly drawn glass ribbon, coolers 16 and 16', through which a fluid coolant such as water is circulated, are normally provided, one on each side of the glass ribbon.
  • edge rolls 17 and 17 In proximity to the meniscus, where the glass ribbon is drawn from the molten glass bath, there are provided edge rolls, as commonly employed in the Pittsburgh process, for gripping the margins of the drawn glass ribbon.
  • One part of edge rolls 17 and 17 is shown in each of FIGS. 1 and 2.
  • the edge rolls are driven by a drive mechanism 17a (FIG. 2) located externally of I the drawing chamber.
  • a pair of electrodes 18 and 18 is installed, with the electrode extremities close to opposed faces of one margin of the glass ribbon. Another pair of electrodes is installed at the other side of the chamber in a similar position with respect to the opposite margin of the ribbon. Each pair of electrodes is installed close to a respective pair of edge rolls. However, while this is the preferred position, it is not critical. Each pair of electrodes is connected by conductor 19 to an amplifier 20 powered by a voltage source 21.
  • the glass ribbon should buckle, the glass will come into contact with one of the electrodes and electric current will flow from the electrode to ground via the glass itself and the edge roll mechanism situated just below the contacted electrode.
  • the signal constituted by this current flow is amplified and is transmitted via a conductor 22 to a central monitor 23, which can be of a known type and comprises, for example, an audible warning device 24 and indicator lamps 25.
  • the amplifier 20 is also connected, via a conductor 26, to an automatic control device, which includes the rollers 6 and 6' and 7 and 7', for gripping the lower part of the glass ribbon and preventing it from falling to the bottom of the drawing chamber.
  • the rollers 6 and 7' are mounted for movement either toward or away from the glass ribbon 1.
  • the rollers are carried by crank levers 27 and 27', respectively, which are pivotable about respective parallel horizontal axes 28 and 23'.
  • the levers are interconnected by a bar 29 so as to move in unison.
  • crank levers 27 and 27' The movement of the pair of crank levers 27 and 27' is effected by a hydraulic or pneumatic piston and cylinder unit 30 installed outside the drawing machine, e.g. on a bracket secured to the wall of the drawing chamber or drawing tower, as shown.
  • the longer arm of crank lever 27 extends through an opening 31 in the wall of the drawing machine and is connected to the piston of the piston and cylinder unit 31).
  • counterweights 32 are provided on the actuating arms of the crank levers.
  • the amplified output signal passing through conductor 26 operates a control unit 33 which, via lines 34 and 34, actuates valves 35 and 35' in fluid flow lines 36 and 36' connecting one side or the other of the piston and cylinder unit 30 with a pressurized fluid supply source 37.
  • the amplifier output signal actuates the valves so that the pressurized fluid flows in the direction indicated by the arrows, causing downward movement of the piston and clockwise pivotal motion of the crank levers 27 and 27 so that the rollers 6 and 7 become firmly pressed against the glass ribbon.
  • Each pair of electrodes i.e. the electrodes 18 and 18' and the pair of electrodes (not shown) located at the other side of the drawing chamber 8 is mounted to extend through the adjacent wall of the drawing chamber in such a way that the electrodes can be positioned after the drawing machine has been set in operation.
  • the electrode mountings include an adjustment mechanism (not shown) such as a simple screw mechanism, permitting the spacing of the electrodes from the vertical drawing plane to be varied, which may be desirable when the thickness of the drawn glass is intentionally varied.
  • Each of the electrodes forms part of an assembly as shown in FIG. 3 for the assembly incorporating electrode 18'.
  • the electrode is there shown to be in the form of a cylindrical rod of a nickel steel alloy. This rod is formed with an axial socket 38 at one end for the reception of a conductor lead.
  • the electrode is enveloped over the greater part of its length by an oxidation resistant steel tube 39 which is insulated from the electrode by a porcelain insulating sleeve 40.
  • the root end portions of the electrode and the tube 39 are accommodated in a nylon clamping block 41 and held therein by respective screws (not shown) in threaded engagement with radial holes 41 in the block.
  • the porcelain sleeve is positively held against axial displacement with respect to the tube 39 by a locating ring 42 which abuts the outer end of the sleeve and is soldered to the electrode.
  • FIG. 4 shows indicator and control circuitry which may be used in the indicator and control system of the machine which has been described with reference to FIGS. 1 to 3.
  • the system comprises a transistorized amplifier 43 incorporating two npn-type silicon transistors T, and T and resistors R R R and R
  • the amplifier is connected via a bridge 44 to an alternating voltage source 45.
  • the source 45 supplies a 24 Volt output while the direct voltage output from the bridge is Volts and is smoothed by a capacitor C.
  • Electrodes 46 and 46 are connected to amplifier 43 through resistance R
  • a second pair of electrodes 49 and 49' is similarly connected to a second amplifier (not shown) identical with the one illustrated.
  • the glass ribbon 47 should buckle, the glass will come into contact with one or more of the electrodes. If the glass contacts either of the electrodes 46 and 46', the amplifier input will be connected to ground via the glass itself and the edge roll mechanism situated a little below these electrodes, as previously described with reference to FIG. 1.
  • the resistors R and R the latter of which is variable, form a voltage divider which applies a required voltage to the base of transistor T
  • the emitter of transistor T is connected to the base of transistor T and the collector of that transistor is connected to the coil of a relay 50.
  • T becomes conductive, a closed circuit is formed between the relay coil and the output of bridge 44 to deliver current to the coil.
  • a switch 51 closes and switches on a warning and control mechanism indicated generally at 52.
  • the warning mechanism includes an audio and visual alarm and corresponds to the monitor 23 of FIG. 1.
  • the control mechanism is similar to that of FIG. 1 and includes a movable roller which moves under solenoid control into gripping contact with the glass ribbon at the bottom end of the tower section of the drawing machine.
  • the relay may additionally actuate holding relays in the warning and control circuits, the purpose of these holding relays being to keep the circuits closed after opening of the contact between the electrode and the glass.
  • the holding relays can be reset manually.
  • FIG. 5 shows another amplifier circuit embodiment including a thyristor T as the active element designed to give greater thermal stability and to avoid disturbance by parasitic electrical impulses.
  • the triggering circuit of thyristor T is grounded via the glass itself and the edge roll mechanism situated a little below these electrodes.
  • This circuit incorporates a Zener diode 53. Current is transmitted through this diode only when the potential at point 54, determined by the time constant R C reaches the threshold value of the Zener diode such that any induced parasitic electrical impulses are rendered ineffective.
  • the potential applied to the gate of the thyristor, as determined by the capacitor C and resistor R is increased by the current supplied via the Zener diode 53 to the point at which the thyristor fires and causes energization of relay 50 with results similar to those described with reference to FIG. 4.
  • the thyristor serves to hold the relay 50 energized and when the cause of the buckling of the glass ribbon has been determined and the drawing of the glass is resumed, the circuit can be reset by depressing the contact breaking button 55.
  • FIGS. 6, 7 and 8 illustrate a further embodiment in which the glass ribbon 56 is drawn upwards through the drawing chamber 57 of a drawing machine. Only part of the drawing chamber, formed by transverse walls 58 and 59 and side wall 60, appears in FIG. 6.
  • Pairs of edge rollers are provided, as in the machine described with reference to FIGS. 1 and 2, for retaining the margins of the drawn glass ribbon near the meniscus, where the ribbon is drawn from the bath, of molten glass.
  • One pair of such rollers, 61 and 61, is shown, together with their drive mechanism 62.
  • a pair of electrodes 63 and 63' in the form of plates disposed parallel to the opposed faces of the ribbon.
  • a similar pair of electrodes is similarly located adjacent the opposite edge of the ribbon. The electrodes of each pair are located quite close to the glass ribbon path, but with a sufficient spacing to avoid contact of the glass with either electrode in the event that the ribbon begins to buckle.
  • the plates 63 and 63' which may be formed of refractory steel, are carried by respective heavy section stems 64 and 64', which may be made of the same material. These stems are in turn supported by respective tubes 65 and 65' extending through the wall of the drawing chamber. Those tubes also support smaller diameter tubes 66 and 66, respectively, which extend axially along the interiors of the respective tubes and 65 and are connected to respective flexible pipes 67 through which cooling air is supplied.
  • the inner tubes 66 and 66' are sealed into the wider tubes 65 and 65' by end plugs 67 and the cooling air flows through the inner tubes 66 and 66 into the interior of the outer tubes 65 and 65' via holes 68 and 68' in the inner tubes, and then to the atmosphere via openings 69 and 69' in the outer tubes.
  • This circulation of air keeps the inner and outer tubes at a sufficiently low temperature to ensure that they do not become deformed.
  • the plate electrodes 63 and 63' are not however appreciably cooled by the air circulation.
  • the electrodes are connected to control circuitry, as will hereafter be described, by conductors 70 and 70'.
  • the plate electrodes and carrying stems with protective layers 71 and 72, respectively, as shown in FIG. 7 so as to protect these components from oxidation and corrosion.
  • the components can be formed from very high melting glass, or from a carbide, nitride or silicide.
  • the parts of the glass ribbon 56 which face the plate electrodes 63 and 63 are at a temperature such that the glass is electrically conductive and by reason of the large mass of the bath of molten glass from which the glass ribbon is drawn, the glass ribbon can be considered as a grounded conductor.
  • the plate electrodes 63 and 63' and the glass ribbon 56 thus together form two electrical capacitors, one capacitor being formed by electrode 63 and the glass ribbon, and the other capacitor being formed by the glass ribbon and the electrode 63.
  • the gaseous medium forming part of the atmosphere in the drawing chamber 57 and occupying the spaces between the glass ribbon and the electrodes constitutes the dielectric for these capacitors.
  • the capacitance variations can be measured by an instrument 73 to which the electrodes are connected by the conductososososors 70 and 70 as shown in FIG. 8 strument 73 emits a signal when some va'riation, preferably a variation above a predetermined value order to avoid improper functioning occurs on either side of the ribbon.
  • the signal may, for example, be proportional to merely a function of the difference between the variations of the capacities of the two capacitors. Circuitry for producing such a signal is abundantly well known in the electronic art.
  • the output signal is conducted by line 74 to the input side of an amplifier of the type shown in FIG. and the output side of the amplifier is connected to a monitor device like the device 23 of FIG. 1 and also to a control device which actuates rollers, for example the rollers 6' and 7' of FIG. 1, for gripping the lower part of the glass ribbon and preventing it from falling.
  • the instrument 73 is fed, on the one hand, via conductors 75 by a voltage from a main supply network 76, and, on the other hand, via conductors 77 a high frequency alternating voltage produced by a generator 78 which is itself fed from the said supply network.
  • the capacitance of the said capacitors are measured by submitting the capacitors to a high frequency alternating voltage because any increasing of the frequence causes a decreasing of the impedance just as it occurs in the case of an increasing of the capacitance. Since the capacitance or, more precisely, the impedance of this capacitance is measured by measuring the intensity of the current traversing the capacitance or the fall in the electrical voltage caused by this impedance, the precision of the measure is thus increased because higher intensities or falls in electrical voltage are measured when using high frequency alternating voltage.
  • the instrument 73 comprises a preamplifier element which is fed by conductors 75 in order to amplify the signal emitted by the measuring element of the instrument 73.
  • FIG. 9 Another embodiment is shown in FIG. 9 where the glass ribbon 79 is being drawn upwardly through a drawing chamber defined in part by walls 80, 81 and 82. If the ribbon should buckle, this induces variations in the gas pressure in a tube from which gas continuously discharges at a point located near to the correct path of the ribbon.
  • a pair of tubes 83 and 83' is provided for discharging gas against opposed faces of the glass ribbon at positions just above the conventional edge rolls 84 and 84'.
  • a similar pair of tubes (not shown) is provided in the same way at the opposite margin of the glass ribbon.
  • the discharge end portions 85 and 85' of the tubes 83 and 83' are located at a sufficient distance from the opposed faces of the glass ribbon to ensure that when a buckle or wave commences to form,this phenomenon will be detected and the ribbon will be gripped before the glass ribbon actually comes into contact with the discharge ends 85 and 85 of the tubes. In this way fouling of the tubes is avoided.
  • the gas discharge tubes 83 and 83 are supported by outer coaxial tubes 86 and 86', respectively, extending through wall 82 of the drawing chamber.
  • the inner ends of the outer supporting tubes 86 and 86' are sealed to the respective gas discharge tubes 83 and 83' while the outer ends of such supporting tubes are sealed by respective plugs 87 and 87' to pipes 88, 89 and 88 and 89', respectively through which a fluid coolant, e.g. water or air, is fed for cooling the air or other gas which is supplied through tubes 83 and 83.
  • a fluid coolant e.g. water or air
  • the tubes 83 and 83' there are respective local flow restrictors 90 and 90' which cause a pressure drop so that the gas in the portions of the tubes 83 and STlbEitEl downstream of the tlowrestr iciirs are at the lower pressure.
  • the tubes 83 and 83 are later 92 which maintains a constant gas feed pressure.
  • the tubes 83 and 83' are connected by respective tubes 93 and 93 to a measuring instrument 94 which advantageously is situated outside the dr awing chamber.
  • the ribbon approaches the gas discharge end of one of the tubes 83 and 83' and moves away from the gas discharge end of the other of such tubes.
  • the gas pressure in the portion of the one tube which is located downstream of its flow restrictor 90 or 90' increases, whereas the pressure in the corresponding portion of the other tube decreases.
  • the measuring instrument 94 which may be of a known type, which emits a signal, for example a voltage, which may be proportional to, or a function of the difference between the pressure variations.
  • This signal is transmitted via a conductor (not shown) to the input side of an amplifier, similar to the amplifier shown in FIG.
  • the occurrence of a wave in the drawn glass ribbon is detected by detecting variations in the rate of discharge of fluid rather than variations in the pressure of the discharged fluid.
  • FIG. 10 shows part of a Libbey-Owens type glass drawing machine provided with one embodiment according to the invention.
  • a sheet 95 is continuously drawn from a mass of molten glass 96 contained in a commonly called draw pot 97; this draw pot being continuously replenished with molten glass coming from a tank furnace (not shown).
  • the temperature of the mass of molten glass 96 contained in the draw pot 97 is controlled, at least partially, by means of burners (not shown) located below the draw pot 97 and hot gases, generally issuing from the furnace and passing upwardly through the passageway 98.
  • the sheet 95 is drawn preferably in a vertical plane initially and subsequently deflected horizontally over a bending roller 99 and further carried through an annealing lehr 101 which is partially shown in FIG. 10.
  • Arranged above the draw pot 97 are cover or lip tiles 102 and 102' which tend to force any heat currents present at that point downwardly toward the surface of the molten glass 96.
  • Coolers 103 and 103' are disposed relatively close to the surface of the molten glass from which the sheet is drawn and absorb sufiicient heat to permit the drawing of a good sheet of glass.
  • Edge treating means in the form of knurled rollers 104 and 104' are also provided adjacent the surface of molten glass 96 to maintain the sheet to width.
  • a pair of electrodes 105 and 105' e.g. similar to the electrodes shown in FIG. 3, is installed with the electrode extremities close to opposed faces of one margin of the glass sheet 95.
  • Another pair of electrodes is installed at the other side of the chamber in a similar position with respect to the opposite margin of the said glass sheet. In a preferred position, each pair of the said electrodes is installed close to the said respective knurled rollers 104 and 104'.
  • Each pair of electrodes as already shown in the FIG. 1, is connected by conductor 106 to an amplifier 107 powered by a voltage source 108.
  • the amplifier 107 is connected, via a conductor 110 to a central monitor 111, which may be similar to the monitor shown in FIG.
  • the amplifier 107 is also connected, via a conductor 109 to an automatic control device, which includes, close to opposed faces of each margin of the glass sheet 95, edge rollers 114 and 114 which do not extend on the entire width of the glass sheet 95 and serve, when a break of the glass sheet occurs, to grip the glass sheet and to prevent it from falling toward the bottom of the drawing machine.
  • an automatic control device which includes, close to opposed faces of each margin of the glass sheet 95, edge rollers 114 and 114 which do not extend on the entire width of the glass sheet 95 and serve, when a break of the glass sheet occurs, to grip the glass sheet and to prevent it from falling toward the bottom of the drawing machine.
  • a roller of each pair e. g. the roller 1 14'
  • the said movable roller 114 may be carried by a crank lever, one arm 115 of which, located in the drawing chamber, is connected to the roller 1 14' while the other arm 116,
  • a jack 118 permitting to move the said roller and which may be installed on a bracket 119 secured on the side wall 120 of the drawing chamber.
  • the said crank lever is pivotable about an horizontal axle 117 which may be fixed, for example, by means of a bearing located in the side wall 120.
  • An embodiment according to the invention e.g. similar to that shown in FIG. 10, may also be used in drawing machines nearly similar to the Libbey-Owens drawing machines, however comprising a deep draw pot, as it is the case in other known processes.
  • FIG. 11 shows another type of indicator and its assembly.
  • the glass ribbon 121 is drawn from a bath of molten glass through a drawing chamber 122, shown only partially and laterally closed by side walls 123, 124 and 125.
  • a pair of switch arms 126 and 126' is installed so that the switch arm extremities which are located in the drawing chamber 122, are close to opposed faces of one margin of the glass ribbon 121.
  • Another pair of switch arms is installed at the other side of the chamber in a similar position with respect to the opposite margin of the ribbon.
  • pivots 127 and 127' fixed on plates 128 and 128', e.g. made of metal; these plates being fixed on a steel section 129 which may be fastened on the outer face of the drawing chamber wall 124 by fixing means 130 and 130 as gudgeons and screw-nuts.
  • holes 131 and 131' are provided in the wall 124 of the drawing chamber. The dimensions of these holes are such that they enable adequate movement of the switch arms around their respective pivot.
  • the extremities of the switch arms 126 and 126 which are located out of the drawing chamber actuate respectively, by means of rod 138, 138' and spring 139, 139, the switches 132 and 132', fixed on the steel section 129, which, e.g. close or open an electrical circuit comprising respectively, for example, a conductor 133, 133' connected to the earth and another conductor 134-, 134' connected to an amplifier, as already shown in FIG. 4.
  • the said switches 132 and 132 are fixed by sliding means 135 and 135' and adjusting screws 136 and 136'.
  • the holes 131 and 131' are filled with material 137 as e.g. glass wool, this material must be compressible enough to permit a rotating movement of the switch arms 126 and 126.
  • the glass ribbon 121 should buckle, the glass will come in contact with one of the switch arms 126 and 126 and will displace it. By its displacement, the switch arm will actuate one of the switches 132, 132 and an electric current will flow to ground via conductors 133, 134 or 133, 134; this current constituting a signal which will be amplified in order to actuate an automatic control device or an indicator system as already herein described.
  • the switch arm which has been displaced, will retum into its starting position under the effet of the spring 139 or 139'.
  • said system comprises: means for directing streams of fluid against opposite faces of the ribbon through said components located on opposite sides of the ribbon; and means for producing an indication of variations in fluid flow through each said component due to deflections of the ribbon.
  • An arrangement as defined in claim 9 further comprising ribbon gripping means actuated by said signal, which is indicative of buckling of the glass ribbon, for gripping the ribbon to prevent it falling into the molten glass bath in the event that the buckling is due to breakage of the ribbon.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Impression-Transfer Materials And Handling Thereof (AREA)
  • Rotary Presses (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

In the processing of sheet material by drawing a ribbon of the material upwardly, a method and apparatus for monitoring deflections experienced by the material out of the vertical plane along which it is normally drawn by providing sensing components near, and normally out of contact with, opposite faces of the ribbon and by arranging the components to produce an output indication in response to a change in a physical condition of the region adjacent the component due to such deflection.

Description

United States Patent Toussaint et al.
3,725,27 Apr. 3, 1973 APPARATUS FOR MONITORING THE CONFIGURATION OF A RIBBON OF MATERIAL Inventors: Robert Toussaint; Elzo Mulder, both of Tiel, Netherlands Assignee: Glaverbel S.A., Brussels, Belgium Filed: Sept. 10, 1970 Appl. No.: 71,029
Foreign Application Priority Data Sept. 10, 1969 Great Britain "44,650/69 July 29, 1970 Great Britain .Q.....36,764/70 US. Cl. ..65/l58,,65/l59, 65/160 Int. Cl. ..C03b 15/02 Field of Search... ..65/158, 159, 160, 161, 162
References Cited UNITED STATES PATENTS 11/1970 Terakado et al. ..65/158 2,814,487 11/1957 Medkeff "214/57 3,419,374 12/1968 Offenbacher et al ..65/ 160 Primary Examiner-Arthur D. Kellogg Attorney-Spencer & Kaye [57] ABSTRACT In the processing of sheet material by drawing a ribbon of the material upwardly, a method and apparatus for monitoring deflections experienced by the material out of the vertical plane along which it is normally drawn by providing sensing components near, and normally out of contact with, opposite faces of the ribbon and by arranging the components to produce an output indication in response to a change in a physical condition of the region adjacent the component due to such deflection.
11 Claims, 11 Drawing Figures ebb 11 \i 20 253% PATENTFUAPRB 197s SHEET 2 0F 7 Fig.3.
INVENTORS Russaint EIJO Muldc'r ATTORNEYS 4 I ll III Fig4,
INVENTORS Rabid ousaivlt PATENTEUAPR3 I575 3125,02?
SHEET 5 UF 7 III-" 1 INVENTORS Robm Taussaml' I ELZO Hulda-r" BY W 5 244.1
ATTORNEYS PATENTEDAPR3 197s 3,725,027,
INVENTOR5 Robe vi Toussaint ELzo M ulde'r BY wejzy ATTORNEYS APPARATUS FOR MONITORING THE CONFIGURATION OF A RIBBON OF MATERIAL BACKGROUND OF THE INVENTION This invention relates to processes and apparatus for the manufacture of sheet glass.
Sheet glass is customarily produced by drawing molten glass in a continuous ribbon from a bath of molten glass contained in a tank and by then allowing the drawn glass to cool as it travels away from such bath.
The ribbon is drawn at a constant speed so as to subject the still molten glass of the ribbon in the drawing chamber to uniform drawing tension. This is necessary because any change in the dynamic equilibrium of the upwardly moving ribbon of molten glass in the drawing chamber may have very serious adverse effects on the quality of the resulting glass product so that the ribbon must be kept under virtually constant observation. If
the ribbon of glass should break while cooling, the glass SUMMARY OF THE INVENTION It is a primary object of the invention to prevent such a situation from occurring.
Another object of the invention is to provide an automatic indication that such a situation is occurring, or is about to occur.
A further object of the invention is to utilize such indication for automatically gripping the ribbon in order to prevent it from falling back into the bath.
It has been observed that a change in the dynamic equilibrium conditions, due to some fault either in the drawing machine or the glass, is usually immediately followed by buckling of the glass ribbon in a region where the glass is in molten state. This buckling occurs in the event of breakage of the cooling ribbon, as above referred to, and in the event of a sudden decrease in the drawing rate. The present invention makes use of this phenomenon to provide an automatic indication of the occurrence of the fault.
According to the invention, a glass ribbon is drawn from a bath of molten glass upwardly between components which are located near to, but out of contact with, opposite faces of the ribbon, and form part of an indicator system which yields a signal in the event that the portion of the ribbon between the components moves by at least a certain minimum distance out of a predetermined plane.
Preferably the indicator system components located adjacent opposite faces of the ribbon form part of an electric indicator circuit which produces signals that can be instantly effective, with or without amplification, to initiate warning and/or control operations.
The indicator system may yield a signal in the event of actual contact of the glass ribbon with the one or more indicator system components located to one side of the drawn glass ribbon. This arrangement is conducive -to a very postivie operation of the indicator system. For realizing this advantage, the indicator system components locatedon oppmite sides of the drawn glass ribbon may, e.g., be electrodes or switch arms forming part of an electric indicator circuit which produces a signal in the event that an electric current path is established due to the glass ribbon contacting an electrode or displacing a switch arm, as the case may be. If switches are employed, they may be extremely sensitive microswitches which respond to the slightest contact.
As an alternative, the indicator system may produce a signal in the event that the spacing of the glass ribbon from one or more indicator system components located on either side of the glass ribbon path becomes reduced or increased by more than a predetermined value, which can be minimal and merely dependent on the sensitivity of the system. The advantage of this arrangement is that contact of the indicator system components by the glass ribbon can be avoided so that fouling of such components by molten glass can be prevented, thus eliminating one cause of impairment of the functioning of the system. This advantage can be realized in an electrical indicator system by making use of components in the form of electrodes which form capacitors with the glass ribbon and by detecting changes in the capacitances of such capacitors, or by providing components in the form of fluid discharge devices which continuously discharge streams of fluid, e. g. air, against opposite sides of the glass ribbon and by detecting changes in the fluid flow conditions, e.g. changes in fluid pressure, which occur in the devices on' respectively opposite sides of the ribbon in consequence of the ribbon buckling and therefore moving nearer to the fluid discharge device or devices on one side of the ribbon and further away from the other discharge device or devices.
The components located near to opposite faces of the ribbon are preferably located at a level near to the surface of the molten glass bath since buckling of the glass ribbon usually first becomes noticeable in this regron.
The indicator system components located near to the opposite faces of the ribbon may be connected to a common indicator device or they may be connected to individual indicator devices.
Preferably the signal yielded by the indicator system in the event of buckling of the glass ribbon is used to actuate a device for gripping the ribbon of glass to prevent it from falling in the event that the buckling is due to breakage of the ribbon. This feature affords the important advantage of preventing the serious disturbances which occur to the plant if the ribbon falls.
By way of example, the output signal may be used for causing actuation of a mechanism whereby one or more gripping rollers are displaced into contact with the glass ribbon. The expression indicator system therefore includes a system in which the signal produced in the event of buckling of the glass ribbon is, for example, a mechanical movement or an electric current or voltage which exerts some form of automatic control on the machine. However, irrespective of whether such a control is exercised, it is preferable for the indicator system to include a visual or audible warning device which immediately alerts the operating personnel to the occurrence of the fault.
As has already been mentioned, buckling of the ribbon may not always be due to ribbon breakage. Buckling also may occur due to a fault resulting in reduction of the glass drawing speed, and the actuation of a warning device is useful for drawing immediate attention to this fault and enabling corrective action to be taken before a more serious situation develops.
The invention can be used in the drawing of glass upwardly through a vertical drawing tower, as in the case of the Pittsburgh process. In such process it is customary to provide, at the bottom end of the tower section, at least one pair of rollers which do not grip the glass n'bbon during normal production but by which the glass ribbon can be gripped in the event the ribbon should break at a higher point in the tower section. Normally one roller of each pair is a fixed roller, the other being a floating roller which can be moved into contact with the glass ribbon in the event of a warning signal being given by the man on duty at the observation window of the drawing machine. The indicator system employed in accordance with the invention may operate automatically to displace the floating rollers in such a Pittsburgh type machine.
The invention is useful not only with systems for drawing glass upwardly through a vertical drawing tower, but can also be used with systems drawing glass by the Colbum type drawing process in which the ribbon of glass is drawn upwardly from the bath of molten glass and passes over a bending roller from which the ribbon continues its movement in a substantially horizontal direction. In such a process, the signal yielded in the event of buckling of the ribbon can also operate a roller or rollers or some other form of device or devices for gripping the ribbon at a position between the molten glass bath and the place at which the breakage responsible for the buckling of the ribbon normally occurs.
The invention also includes glass drawing apparatus including means for holding a bath of molten glass and means for drawing a ribbon of glass upwardly from such bath, and provided with an indicator system including components spaced from, and on opposite sides of, the correct vertical drawing path of the ribbon, the system containing means which register when the portion of the ribbon passing between the components is displaced by at least a certain minimum distance from its correct path in a direction towards at least one component and which causes emission of a signal indicative of that situation.
Preferably the indicator system contains an electric indicator circuit giving an instant response in the form of an output current or voltage which may be amplified to give the required signal.
The sensing components adjacent the correct vertical drawing path of the ribbon are advantageously in the form of electrodes connected to a voltage source.
According to one type of indicator system employing sensing electrodes as the sensing components, a predetermined deflection of the portion of the ribbon passing between the electrodes is registered by means which detects the passage of an electric current from at least one electrode to ground via the glass ribbon. The flow of such a current indicates that the glass ribbon has moved into contact with one of the electrodes.
According to another type of system employing sensing electrodes as the components adjacent the correct drawing path, a predetermined displacement of the portion of the ribbon passing between the electrodes is registered by means which detects variations in the capacitance of at least one capacitor constituted jointly by one electrode, the glass ribbon and the gas therebetween, the gas forming the dielectric of the capacitor. In this case the signal indicative of the fault is emitted before any contact of the glass with an electrode and responsive action can take place so that in fact no such contact ever occurs.
When using a capacitance type indicator system it is advantageous for the system to include means which registers differences between variations in the capacitances of the capacitors at opposite sides of the ribbon path so that incidental capacitance variations due to factors other than displacement of the ribbon from its correct path are of no consequence.
In yet a further type of indicator system, the sensing components are switch arms which are displaced when contacted by the glass, causing flow of an electric indicating current.
Yet a further type of indicator system includes means for directing streams of air or other fluid against opposite faces of the glass ribbon through discharge components located on opposite sides of the ribbon path, and means which respond, e.g. by measuring fluid pressure, to variations in fluid flow through a component due to displacement of the glass ribbon towards or away from such component. The system may include an instrument which yields an electrical signal responsive to any such registered variation. Again, it is advantageous for the instrument to register differences in variations in the fluid flow through opposed components so that differences common to the fluid discharges on opposite sides of the ribbon and due to factors other than displacement of the ribbon from its correct path are of no consequence.
Preferably the indicator system components on opposite sides of the ribbon path are located at a level near to the level reached by the molten glass bath when the apparatus is in use.
According to a preferred feature of the invention, the indicator system includes ribbon gripping means actuated by the signals indicative of buckling of the glass ribbon and serving to grip the ribbon and prevent it from falling into the molten glass bath in the event that the buckling is due to breakage of the ribbon. Preferably the gripping means consist of one or more gripping rollers which can be displaced to come into contact with the glass ribbon and which are constructed to support the ribbon when brought into engagement therewith.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional elevational view of part of a sheet glass production plant provided with one embodiment of the invention.
FIG. 2 is a detail plan view, on a larger scale, showing the mounting of certain components of the control system shown in FIG. 1.
FIG. 3 is a cross-sectional elevational view of an electrode assembly used in the plant of FIG. 1.
FIG. 4 is a circuit diagram of one embodiment of an indicator and control system according to the inventlon.
FIG. 5 is a circuit diagram of another embodiment of an indicator system according to the invention.
FIG. 6 is a cross-sectional plan view of part of the drawing chamber of another glass drawing plant incorporating another type of indicator and control system according to the invention.
FIG. 7 is a cross-sectional view, on a larger scale, of an electrode assembly used in the plant of FIG. 6.
FIG. 8 is a circuit diagram of part of the indicator and control circuitry used in the system of FIG. 6.
FIG. 9 is a cross-sectional plan view of part of the drawing chamber of another glass drawing plant incorporating a further type of indicator and control system according to the invention.
FIG. is a diagrammatic cross-sectional elevational view of part of another sheet glass production plant provided with one embodiment according to the invention.
FIG. 11 is a diagrammatic cross-sectional plan view of another type of indicator and its assembly according to the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows part of a Pittsburgh type glass drawing machine and FIGS. 2 and 3 show further details of the control system according to the invention used in this particular machine. In the illustrated machine, the glass is drawn upwardly as a ribbon 1 from a bath 2 of molten glass, the bottom of the ribbon being stabilized by a draw bar 3. The ribbon of glass is drawn upwardly by a drawing machine 4 which includes a succession of pairs of drawing rollers. FIG. 1 shows only the bottom pair of drawing rollers, 5 and 5'. The other pairs of drawing rollers are located higher up in the drawing tower.
Beneath the rollers and 5 there are further pairs of rollers 6 and 6', 7 and 7'. In the event of the glass ribbon breaking, these further rollers serve, as will be explained hereafter in more detail, to hold the lower part of the drawn glass ribbon and thereby prevent it from falling to the bottom of the drawing chamber, where it would cause serious disturbances and even require stopping of the drawing machine.
Under the drawing machine 4 is the drawing chamber 8 which is made as gas-tight as possible so as to create a zone in which temperature conditions suitable for the formation of the glass ribbon can be maintained. The drawing chamber 8 is bounded transversely by L blocks 9 and 9' which are located very near to the surface of the molten glass bath 2, and by walls 10 and 10 which connect the upper part of the L blocks with the base of the drawing machine 4. At the top of the drawing chamber 8 there are catch pans 12 and 12' which constitute the bottom of the drawing machine 4.
The molten glass bath 2 is held in a tank into which the molten glass feeds from a glass melting furnace (not shown).
The tank is formed of a bottom 13, wall 14 remote from the glass melting furnace, and crown 15.
In order to ensure rapid cooling of the faces of the freshly drawn glass ribbon, coolers 16 and 16', through which a fluid coolant such as water is circulated, are normally provided, one on each side of the glass ribbon.
In proximity to the meniscus, where the glass ribbon is drawn from the molten glass bath, there are provided edge rolls, as commonly employed in the Pittsburgh process, for gripping the margins of the drawn glass ribbon. One part of edge rolls 17 and 17 is shown in each of FIGS. 1 and 2. The edge rolls are driven by a drive mechanism 17a (FIG. 2) located externally of I the drawing chamber.
A pair of electrodes 18 and 18 is installed, with the electrode extremities close to opposed faces of one margin of the glass ribbon. Another pair of electrodes is installed at the other side of the chamber in a similar position with respect to the opposite margin of the ribbon. Each pair of electrodes is installed close to a respective pair of edge rolls. However, while this is the preferred position, it is not critical. Each pair of electrodes is connected by conductor 19 to an amplifier 20 powered by a voltage source 21.
If the glass ribbon should buckle, the glass will come into contact with one of the electrodes and electric current will flow from the electrode to ground via the glass itself and the edge roll mechanism situated just below the contacted electrode. When a current flows through one of the electrodes due to contact of such electrode by the glass, the signal constituted by this current flow is amplified and is transmitted via a conductor 22 to a central monitor 23, which can be of a known type and comprises, for example, an audible warning device 24 and indicator lamps 25.
The amplifier 20 is also connected, via a conductor 26, to an automatic control device, which includes the rollers 6 and 6' and 7 and 7', for gripping the lower part of the glass ribbon and preventing it from falling to the bottom of the drawing chamber. The rollers 6 and 7' are mounted for movement either toward or away from the glass ribbon 1. The rollers are carried by crank levers 27 and 27', respectively, which are pivotable about respective parallel horizontal axes 28 and 23'. The levers are interconnected by a bar 29 so as to move in unison.
The movement of the pair of crank levers 27 and 27' is effected by a hydraulic or pneumatic piston and cylinder unit 30 installed outside the drawing machine, e.g. on a bracket secured to the wall of the drawing chamber or drawing tower, as shown. The longer arm of crank lever 27 extends through an opening 31 in the wall of the drawing machine and is connected to the piston of the piston and cylinder unit 31). In order to reduce the force required to displace the rollers 6' and 7', counterweights 32 are provided on the actuating arms of the crank levers.
When a signal is applied to the amplifier 20, from one of the electrodes 18 and 18', the amplified output signal passing through conductor 26 operates a control unit 33 which, via lines 34 and 34, actuates valves 35 and 35' in fluid flow lines 36 and 36' connecting one side or the other of the piston and cylinder unit 30 with a pressurized fluid supply source 37. The amplifier output signal actuates the valves so that the pressurized fluid flows in the direction indicated by the arrows, causing downward movement of the piston and clockwise pivotal motion of the crank levers 27 and 27 so that the rollers 6 and 7 become firmly pressed against the glass ribbon.
Each pair of electrodes, i.e. the electrodes 18 and 18' and the pair of electrodes (not shown) located at the other side of the drawing chamber 8 is mounted to extend through the adjacent wall of the drawing chamber in such a way that the electrodes can be positioned after the drawing machine has been set in operation. The electrode mountings include an adjustment mechanism (not shown) such as a simple screw mechanism, permitting the spacing of the electrodes from the vertical drawing plane to be varied, which may be desirable when the thickness of the drawn glass is intentionally varied.
Each of the electrodes forms part of an assembly as shown in FIG. 3 for the assembly incorporating electrode 18'. The electrode is there shown to be in the form of a cylindrical rod of a nickel steel alloy. This rod is formed with an axial socket 38 at one end for the reception of a conductor lead. The electrode is enveloped over the greater part of its length by an oxidation resistant steel tube 39 which is insulated from the electrode by a porcelain insulating sleeve 40. The root end portions of the electrode and the tube 39 are accommodated in a nylon clamping block 41 and held therein by respective screws (not shown) in threaded engagement with radial holes 41 in the block. The porcelain sleeve is positively held against axial displacement with respect to the tube 39 by a locating ring 42 which abuts the outer end of the sleeve and is soldered to the electrode.
Reference is now made to FIG. 4 which shows indicator and control circuitry which may be used in the indicator and control system of the machine which has been described with reference to FIGS. 1 to 3. The system comprises a transistorized amplifier 43 incorporating two npn-type silicon transistors T, and T and resistors R R R and R The amplifier is connected via a bridge 44 to an alternating voltage source 45. The source 45 supplies a 24 Volt output while the direct voltage output from the bridge is Volts and is smoothed by a capacitor C.
Electrodes 46 and 46, the extremities of which are located close to the opposite faces of, and adjacent one edge of, glass ribbon 47 in a drawing chamber 48, are connected to amplifier 43 through resistance R A second pair of electrodes 49 and 49' is similarly connected to a second amplifier (not shown) identical with the one illustrated.
If the glass ribbon 47 should buckle, the glass will come into contact with one or more of the electrodes. If the glass contacts either of the electrodes 46 and 46', the amplifier input will be connected to ground via the glass itself and the edge roll mechanism situated a little below these electrodes, as previously described with reference to FIG. 1.
The resistors R and R the latter of which is variable, form a voltage divider which applies a required voltage to the base of transistor T The emitter of transistor T, is connected to the base of transistor T and the collector of that transistor is connected to the coil of a relay 50. When T becomes conductive, a closed circuit is formed between the relay coil and the output of bridge 44 to deliver current to the coil. When the relay 50 is energized, a switch 51 closes and switches on a warning and control mechanism indicated generally at 52. The warning mechanism includes an audio and visual alarm and corresponds to the monitor 23 of FIG. 1. The control mechanism is similar to that of FIG. 1 and includes a movable roller which moves under solenoid control into gripping contact with the glass ribbon at the bottom end of the tower section of the drawing machine.
The relay may additionally actuate holding relays in the warning and control circuits, the purpose of these holding relays being to keep the circuits closed after opening of the contact between the electrode and the glass. The holding relays can be reset manually.
FIG. 5 shows another amplifier circuit embodiment including a thyristor T as the active element designed to give greater thermal stability and to avoid disturbance by parasitic electrical impulses.
If the glass ribbon comes into contact with either of the electrodes 46 and 46, the triggering circuit of thyristor T is grounded via the glass itself and the edge roll mechanism situated a little below these electrodes. This circuit incorporates a Zener diode 53. Current is transmitted through this diode only when the potential at point 54, determined by the time constant R C reaches the threshold value of the Zener diode such that any induced parasitic electrical impulses are rendered ineffective. The potential applied to the gate of the thyristor, as determined by the capacitor C and resistor R is increased by the current supplied via the Zener diode 53 to the point at which the thyristor fires and causes energization of relay 50 with results similar to those described with reference to FIG. 4. The thyristor serves to hold the relay 50 energized and when the cause of the buckling of the glass ribbon has been determined and the drawing of the glass is resumed, the circuit can be reset by depressing the contact breaking button 55.
FIGS. 6, 7 and 8 illustrate a further embodiment in which the glass ribbon 56 is drawn upwards through the drawing chamber 57 of a drawing machine. Only part of the drawing chamber, formed by transverse walls 58 and 59 and side wall 60, appears in FIG. 6.
Pairs of edge rollers are provided, as in the machine described with reference to FIGS. 1 and 2, for retaining the margins of the drawn glass ribbon near the meniscus, where the ribbon is drawn from the bath, of molten glass. One pair of such rollers, 61 and 61, is shown, together with their drive mechanism 62.
Slightly above the edge rolls 61 and 61, and in proximity to respectively opposite faces of the same edge of the glass ribbon, there is disposed a pair of electrodes 63 and 63' in the form of plates disposed parallel to the opposed faces of the ribbon. A similar pair of electrodes is similarly located adjacent the opposite edge of the ribbon. The electrodes of each pair are located quite close to the glass ribbon path, but with a suficient spacing to avoid contact of the glass with either electrode in the event that the ribbon begins to buckle.
The plates 63 and 63', which may be formed of refractory steel, are carried by respective heavy section stems 64 and 64', which may be made of the same material. These stems are in turn supported by respective tubes 65 and 65' extending through the wall of the drawing chamber. Those tubes also support smaller diameter tubes 66 and 66, respectively, which extend axially along the interiors of the respective tubes and 65 and are connected to respective flexible pipes 67 through which cooling air is supplied. The inner tubes 66 and 66' are sealed into the wider tubes 65 and 65' by end plugs 67 and the cooling air flows through the inner tubes 66 and 66 into the interior of the outer tubes 65 and 65' via holes 68 and 68' in the inner tubes, and then to the atmosphere via openings 69 and 69' in the outer tubes. This circulation of air keeps the inner and outer tubes at a sufficiently low temperature to ensure that they do not become deformed. The plate electrodes 63 and 63' are not however appreciably cooled by the air circulation. The electrodes are connected to control circuitry, as will hereafter be described, by conductors 70 and 70'.
It is advantageous to provide the plate electrodes and carrying stems with protective layers 71 and 72, respectively, as shown in FIG. 7 so as to protect these components from oxidation and corrosion. Alternatively the components can be formed from very high melting glass, or from a carbide, nitride or silicide.
The parts of the glass ribbon 56 which face the plate electrodes 63 and 63 are at a temperature such that the glass is electrically conductive and by reason of the large mass of the bath of molten glass from which the glass ribbon is drawn, the glass ribbon can be considered as a grounded conductor. The plate electrodes 63 and 63' and the glass ribbon 56 thus together form two electrical capacitors, one capacitor being formed by electrode 63 and the glass ribbon, and the other capacitor being formed by the glass ribbon and the electrode 63. The gaseous medium forming part of the atmosphere in the drawing chamber 57 and occupying the spaces between the glass ribbon and the electrodes constitutes the dielectric for these capacitors.
Consequently the occurrence of a buckle or wave in the glass ribbon can be detected by detecting changes in'the capacitances of the said capacitors. Thus, when a wave forms in the glass ribbon 56, the glass approaches one electrode and moves away from the other electrode and in consequence the capacitance of the capacitor fonned by the glass ribbon and the said one electrode increases and the capacitance of the other capacitor decreases.
The capacitance variations can be measured by an instrument 73 to which the electrodes are connected by the conductososososors 70 and 70 as shown in FIG. 8 strument 73 emits a signal when some va'riation, preferably a variation above a predetermined value order to avoid improper functioning occurs on either side of the ribbon. The signal may, for example, be proportional to merely a function of the difference between the variations of the capacities of the two capacitors. Circuitry for producing such a signal is abundantly well known in the electronic art.
The output signal is conducted by line 74 to the input side of an amplifier of the type shown in FIG. and the output side of the amplifier is connected to a monitor device like the device 23 of FIG. 1 and also to a control device which actuates rollers, for example the rollers 6' and 7' of FIG. 1, for gripping the lower part of the glass ribbon and preventing it from falling. The instrument 73 is fed, on the one hand, via conductors 75 by a voltage from a main supply network 76, and, on the other hand, via conductors 77 a high frequency alternating voltage produced by a generator 78 which is itself fed from the said supply network. Advantageously, the capacitance of the said capacitors are measured by submitting the capacitors to a high frequency alternating voltage because any increasing of the frequence causes a decreasing of the impedance just as it occurs in the case of an increasing of the capacitance. Since the capacitance or, more precisely, the impedance of this capacitance is measured by measuring the intensity of the current traversing the capacitance or the fall in the electrical voltage caused by this impedance, the precision of the measure is thus increased because higher intensities or falls in electrical voltage are measured when using high frequency alternating voltage.
Advantageously, the instrument 73 comprises a preamplifier element which is fed by conductors 75 in order to amplify the signal emitted by the measuring element of the instrument 73.
Another embodiment is shown in FIG. 9 where the glass ribbon 79 is being drawn upwardly through a drawing chamber defined in part by walls 80, 81 and 82. If the ribbon should buckle, this induces variations in the gas pressure in a tube from which gas continuously discharges at a point located near to the correct path of the ribbon. To this end, a pair of tubes 83 and 83' is provided for discharging gas against opposed faces of the glass ribbon at positions just above the conventional edge rolls 84 and 84'. A similar pair of tubes (not shown) is provided in the same way at the opposite margin of the glass ribbon. v
The discharge end portions 85 and 85' of the tubes 83 and 83' are located at a sufficient distance from the opposed faces of the glass ribbon to ensure that when a buckle or wave commences to form,this phenomenon will be detected and the ribbon will be gripped before the glass ribbon actually comes into contact with the discharge ends 85 and 85 of the tubes. In this way fouling of the tubes is avoided. The gas discharge tubes 83 and 83 are supported by outer coaxial tubes 86 and 86', respectively, extending through wall 82 of the drawing chamber. The inner ends of the outer supporting tubes 86 and 86' are sealed to the respective gas discharge tubes 83 and 83' while the outer ends of such supporting tubes are sealed by respective plugs 87 and 87' to pipes 88, 89 and 88 and 89', respectively through which a fluid coolant, e.g. water or air, is fed for cooling the air or other gas which is supplied through tubes 83 and 83.
Within the tubes 83 and 83' there are respective local flow restrictors 90 and 90' which cause a pressure drop so that the gas in the portions of the tubes 83 and STlbEitEl downstream of the tlowrestr iciirs are at the lower pressure. The tubes 83 and 83 are later 92 which maintains a constant gas feed pressure. On the low pressure side of the flow restrictors, the tubes 83 and 83' are connected by respective tubes 93 and 93 to a measuring instrument 94 which advantageously is situated outside the dr awing chamber.
If the glass ribbon begins to buckle, the ribbon approaches the gas discharge end of one of the tubes 83 and 83' and moves away from the gas discharge end of the other of such tubes. In consequence, the gas pressure in the portion of the one tube which is located downstream of its flow restrictor 90 or 90' increases, whereas the pressure in the corresponding portion of the other tube decreases. These variations of pressure are communicated via tubes 93 and 93' to the measuring instrument 94, which may be of a known type, which emits a signal, for example a voltage, which may be proportional to, or a function of the difference between the pressure variations. This signal is transmitted via a conductor (not shown) to the input side of an amplifier, similar to the amplifier shown in FIG.
5,and that amplifier is connected to a warning device and to a device for actuating the gripping rollers, such as rollers 6 and 7' shown in FIG. 1.
In another embodiment (not shown) of the invention, very similar to the embodiment shown in FIG. 9, the occurrence of a wave in the drawn glass ribbon is detected by detecting variations in the rate of discharge of fluid rather than variations in the pressure of the discharged fluid.
Reference is now made to FIG. 10 which shows part of a Libbey-Owens type glass drawing machine provided with one embodiment according to the invention. In the type of glass drawing machine referred to hereabove, a sheet 95 is continuously drawn from a mass of molten glass 96 contained in a commonly called draw pot 97; this draw pot being continuously replenished with molten glass coming from a tank furnace (not shown). As it is well known, the temperature of the mass of molten glass 96 contained in the draw pot 97 is controlled, at least partially, by means of burners (not shown) located below the draw pot 97 and hot gases, generally issuing from the furnace and passing upwardly through the passageway 98. The sheet 95 is drawn preferably in a vertical plane initially and subsequently deflected horizontally over a bending roller 99 and further carried through an annealing lehr 101 which is partially shown in FIG. 10. Arranged above the draw pot 97 are cover or lip tiles 102 and 102' which tend to force any heat currents present at that point downwardly toward the surface of the molten glass 96. Coolers 103 and 103' are disposed relatively close to the surface of the molten glass from which the sheet is drawn and absorb sufiicient heat to permit the drawing of a good sheet of glass. Edge treating means in the form of knurled rollers 104 and 104' are also provided adjacent the surface of molten glass 96 to maintain the sheet to width. A pair of electrodes 105 and 105', e.g. similar to the electrodes shown in FIG. 3, is installed with the electrode extremities close to opposed faces of one margin of the glass sheet 95. Another pair of electrodes is installed at the other side of the chamber in a similar position with respect to the opposite margin of the said glass sheet. In a preferred position, each pair of the said electrodes is installed close to the said respective knurled rollers 104 and 104'. Each pair of electrodes, as already shown in the FIG. 1, is connected by conductor 106 to an amplifier 107 powered by a voltage source 108. The amplifier 107 is connected, via a conductor 110 to a central monitor 111, which may be similar to the monitor shown in FIG. 1 and comprise, for example, an audible warning device 113 and indicator lamps 112. The amplifier 107 is also connected, via a conductor 109 to an automatic control device, which includes, close to opposed faces of each margin of the glass sheet 95, edge rollers 114 and 114 which do not extend on the entire width of the glass sheet 95 and serve, when a break of the glass sheet occurs, to grip the glass sheet and to prevent it from falling toward the bottom of the drawing machine. For this purpose, a roller of each pair, e. g. the roller 1 14', is mounted for movement either toward or away from the glass sheet 95. For example, the said movable roller 114 may be carried by a crank lever, one arm 115 of which, located in the drawing chamber, is connected to the roller 1 14' while the other arm 116,
located outside of the drawing chamber, is connected to, e.g. a jack 118 permitting to move the said roller and which may be installed on a bracket 119 secured on the side wall 120 of the drawing chamber. The said crank lever is pivotable about an horizontal axle 117 which may be fixed, for example, by means of a bearing located in the side wall 120. An embodiment according to the invention, e.g. similar to that shown in FIG. 10, may also be used in drawing machines nearly similar to the Libbey-Owens drawing machines, however comprising a deep draw pot, as it is the case in other known processes.
Reference is now made to FIG. 11 which shows another type of indicator and its assembly. The glass ribbon 121 is drawn from a bath of molten glass through a drawing chamber 122, shown only partially and laterally closed by side walls 123, 124 and 125. A little above the edge rolls (not shown), e.g. similar to the edge rolls 17 and 17 illustrated in FIG. 1, a pair of switch arms 126 and 126' is installed so that the switch arm extremities which are located in the drawing chamber 122, are close to opposed faces of one margin of the glass ribbon 121. Another pair of switch arms is installed at the other side of the chamber in a similar position with respect to the opposite margin of the ribbon. These switch arms, e.g. made of a refractory material as quartz or pure alumina, are pivotably mounted by means of pivots 127 and 127' fixed on plates 128 and 128', e.g. made of metal; these plates being fixed on a steel section 129 which may be fastened on the outer face of the drawing chamber wall 124 by fixing means 130 and 130 as gudgeons and screw-nuts. In order to make it possible to locate the said pivots 127 and 127' out of the drawing chamber for preventing them from being submitted to a high temperature, holes 131 and 131', through which the switch arms are passing, are provided in the wall 124 of the drawing chamber. The dimensions of these holes are such that they enable adequate movement of the switch arms around their respective pivot. The extremities of the switch arms 126 and 126 which are located out of the drawing chamber actuate respectively, by means of rod 138, 138' and spring 139, 139, the switches 132 and 132', fixed on the steel section 129, which, e.g. close or open an electrical circuit comprising respectively, for example, a conductor 133, 133' connected to the earth and another conductor 134-, 134' connected to an amplifier, as already shown in FIG. 4. Advantageoulsy, in order to adjust accurately the position of the switch arms in relation to the faces of the glass ribbon 121, the said switches 132 and 132 are fixed by sliding means 135 and 135' and adjusting screws 136 and 136'. Moreover, in order to avoid the entry of cold air in the drawing chamber, the holes 131 and 131' are filled with material 137 as e.g. glass wool, this material must be compressible enough to permit a rotating movement of the switch arms 126 and 126.
If the glass ribbon 121 should buckle, the glass will come in contact with one of the switch arms 126 and 126 and will displace it. By its displacement, the switch arm will actuate one of the switches 132, 132 and an electric current will flow to ground via conductors 133, 134 or 133, 134; this current constituting a signal which will be amplified in order to actuate an automatic control device or an indicator system as already herein described. When the glass ribbon will return in a correct position, the switch arm which has been displaced, will retum into its starting position under the effet of the spring 139 or 139'.
It will be understood that the above description of the present invention is susceptible to various modifications, changes and adaptations, and the same are intended to be comprehended within the meaning and range of equivalents of the appended claims.
We claim:
1. For use with apparatus for drawing a ribbon of material upwardly along a nominal drawing plane, an indicator system for monitoring deflections of the ribbon out of such plane, said system comprising: sensing components disposed near, and normally out of contact with, opposite faces of the ribbon and opposite one another with respect to such nominal plane for producing an indication of a change in a physical condition of the region adjacent the components due to such deflection; and means connected to said components for producing a signal when the indication reaches a value corresponding to a predetermined degree of deflection.
2. An arrangement as defined in claim 1 wherein said means comprise an electric indicator circuit.
3. An arrangement as defined in claim 1 wherein said components on opposite sides of the nominal vertical drawing plane of the ribbon are in the form of electrodes connected to a voltage source.
4. An arrangement as defined in claim 3 wherein said means detects the passage of an electric current from an electrode to ground via the glass ribbon.
5. An arrangement as defined in claim 3 wherein said means detects variations in the capacitance of a capacitor constituted by one said electrode, the ribbon and gas which occupies the intervening space and forms the dielectric for the capacitor.
6. An arrangement as defined in claim 5 wherein said means registers differences between variations in the capacitances of capacitors at opposite sides of the ribbon path.
7. An arrangement as defined in claim 1 wherein said system comprises: means for directing streams of fluid against opposite faces of the ribbon through said components located on opposite sides of the ribbon; and means for producing an indication of variations in fluid flow through each said component due to deflections of the ribbon.
8. An arrangement as defined in claim 7 wherein the indication produced by said means for producing an indication is a function of the difference in the variations in the fluid flow through components at opposite sides of the ribbon.
9. An arrangement as defined in claim 1 wherein the ribbon is of glass and is drawn from a bath of molten glass, and said components at opposite sides of the nominal drawing path of the glass ribbon are located just above the level reached by the molten glass bath when the apparatus is in use.
10. An arrangement as defined in claim 9 further comprising ribbon gripping means actuated by said signal, which is indicative of buckling of the glass ribbon, for gripping the ribbon to prevent it falling into the molten glass bath in the event that the buckling is due to breakage of the ribbon.
11. An arrangement as defined in claim 1 wherein said components are constituted by electric switch contacts disposed to be actuated if the ribbon is deflected to such predetermined degree.

Claims (11)

1. For use with apparatus for drawing a ribbon of material upwardly along a nominal drawing plane, an indicator system for monitoring deflections of the ribbon out of such plane, said system comprising: sensing components disposed near, and normally out of contact with, opposite faces of the ribbon and opposite one another with respect to such nominal plane for producing an indication of a change in a physical condition of the region adjacent the components due to such deflection; and means connected to said components for producing a signal when the indication reaches a value corresponding to a predetermined degree of deflection.
2. An arrangement as defined in claim 1 wherein said means comprise an electric indicator circuit.
3. An arrangement as defined in claim 1 wherein said components on opposite sides of the nominal vertical drawing plane of the ribbon are in the form of electrodes connected to a voltage source.
4. An arrangement as defined in claim 3 wherein said means detects the passage of an electric current from an electrode to ground via the glass ribbon.
5. An arrangement as defined in claim 3 wherein said means detects variations in the capacitance of a capacitor constituted by one said electrode, the ribbon and gas which occupies the intervening space and forms the dielectric for the capacitor.
6. An arrangement as defined in claim 5 wherein said means registers differences between variations in the capacitances of capacitors at opposite sides of the ribbon path.
7. An arrangement as defined in claim 1 wherein said System comprises: means for directing streams of fluid against opposite faces of the ribbon through said components located on opposite sides of the ribbon; and means for producing an indication of variations in fluid flow through each said component due to deflections of the ribbon.
8. An arrangement as defined in claim 7 wherein the indication produced by said means for producing an indication is a function of the difference in the variations in the fluid flow through components at opposite sides of the ribbon.
9. An arrangement as defined in claim 1 wherein the ribbon is of glass and is drawn from a bath of molten glass, and said components at opposite sides of the nominal drawing path of the glass ribbon are located just above the level reached by the molten glass bath when the apparatus is in use.
10. An arrangement as defined in claim 9 further comprising ribbon gripping means actuated by said signal, which is indicative of buckling of the glass ribbon, for gripping the ribbon to prevent it falling into the molten glass bath in the event that the buckling is due to breakage of the ribbon.
11. An arrangement as defined in claim 1 wherein said components are constituted by electric switch contacts disposed to be actuated if the ribbon is deflected to such predetermined degree.
US00071029A 1969-09-10 1970-09-10 Apparatus for monitoring the configuration of a ribbon of material Expired - Lifetime US3725027A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB4465069 1969-09-10
GB3676470 1970-07-29

Publications (1)

Publication Number Publication Date
US3725027A true US3725027A (en) 1973-04-03

Family

ID=26263236

Family Applications (2)

Application Number Title Priority Date Filing Date
US00071029A Expired - Lifetime US3725027A (en) 1969-09-10 1970-09-10 Apparatus for monitoring the configuration of a ribbon of material
US00281485A Expired - Lifetime US3773486A (en) 1969-09-10 1972-08-17 Method for monitoring the configuration of an upwardly drawn ribbon of glass

Family Applications After (1)

Application Number Title Priority Date Filing Date
US00281485A Expired - Lifetime US3773486A (en) 1969-09-10 1972-08-17 Method for monitoring the configuration of an upwardly drawn ribbon of glass

Country Status (17)

Country Link
US (2) US3725027A (en)
AT (1) AT309714B (en)
BE (1) BE755351A (en)
BG (1) BG17744A3 (en)
CH (1) CH529698A (en)
CS (1) CS177054B2 (en)
DE (1) DE2044855B2 (en)
ES (2) ES383462A1 (en)
FI (1) FI51167C (en)
FR (1) FR2061625B1 (en)
HU (1) HU163697B (en)
IL (1) IL35245A (en)
NL (1) NL7013285A (en)
NO (1) NO126948B (en)
PL (1) PL80983B1 (en)
RO (1) RO57129A (en)
SE (1) SE373349B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070140311A1 (en) * 2005-12-20 2007-06-21 House Keith L Method and apparatus for characterizing a glass ribbon

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4228170C2 (en) * 1992-08-25 1995-06-29 Freudenberg Carl Fa camp
DE4229613C2 (en) * 1992-09-04 1995-08-10 Freudenberg Carl Fa Support bearing
KR101436651B1 (en) * 2006-06-30 2014-09-01 코닝 인코포레이티드 Methods and apparatus for reducing stress variations in glass sheets produced from a glass ribbon
US8627684B2 (en) * 2007-10-29 2014-01-14 Corning Incorporated Pull roll apparatus and method for controlling glass sheet tension
US8146388B2 (en) * 2009-10-29 2012-04-03 Corning Incorporated Low friction edge roll to minimize force cycling
US9315409B2 (en) 2011-11-29 2016-04-19 Corning Incorporated Glass manufacturing apparatus and methods
TWI561481B (en) 2012-02-29 2016-12-11 Corning Inc Glass manufacturing apparatus and methods
US9593033B2 (en) 2013-10-04 2017-03-14 Corning Incorporated Glass manufacturing apparatus and method for manufacturing glass sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2814487A (en) * 1954-03-04 1957-11-26 Askania Regulator Co Pneumatic web guide
US3419374A (en) * 1963-11-07 1968-12-31 Pittsburgh Plate Glass Co Detecting ribbon formation abnormalities in drawing glass sheets
US3539324A (en) * 1966-02-07 1970-11-10 Asahi Glass Co Ltd Apparatus for continuously drawing a glass sheet upwardly with sensing means

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE555000A (en) * 1957-02-14
CA748370A (en) * 1961-08-22 1966-12-13 R. Ward Cecil Manufacture of glass
US3222151A (en) * 1961-10-16 1965-12-07 Owens Corning Fiberglass Corp Flake glass breakout detector and method of controlling glass breakout
FR1368824A (en) * 1962-06-20 1964-08-07 Saint Gobain Corp Position control device
CA783869A (en) * 1963-02-28 1968-04-30 Pittsburgh Plate Glass Company Thickness measuring system
FR1438470A (en) * 1965-03-25 1966-05-13 Transformat Mat Plastiques Improvements to machines for plastic injection
GB1136262A (en) * 1965-06-15 1968-12-11 Pilkington Brothers Ltd Improvements in or relating to the manufacture of sheet material in ribbon form

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2814487A (en) * 1954-03-04 1957-11-26 Askania Regulator Co Pneumatic web guide
US3419374A (en) * 1963-11-07 1968-12-31 Pittsburgh Plate Glass Co Detecting ribbon formation abnormalities in drawing glass sheets
US3539324A (en) * 1966-02-07 1970-11-10 Asahi Glass Co Ltd Apparatus for continuously drawing a glass sheet upwardly with sensing means

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070140311A1 (en) * 2005-12-20 2007-06-21 House Keith L Method and apparatus for characterizing a glass ribbon

Also Published As

Publication number Publication date
IL35245A0 (en) 1970-11-30
ES383462A1 (en) 1973-07-01
FI51167B (en) 1976-08-02
HU163697B (en) 1973-10-27
DE2044855A1 (en) 1971-03-18
RO57129A (en) 1975-01-15
DE2044855C3 (en) 1979-11-08
AT309714B (en) 1973-08-27
BG17744A3 (en) 1973-12-25
NO126948B (en) 1973-04-16
SE373349B (en) 1975-02-03
FR2061625A1 (en) 1971-06-25
CS177054B2 (en) 1977-07-29
IL35245A (en) 1974-10-22
US3773486A (en) 1973-11-20
DE2044855B2 (en) 1979-03-08
FR2061625B1 (en) 1974-08-23
FI51167C (en) 1976-11-10
BE755351A (en) 1971-03-01
ES413111A1 (en) 1976-01-16
PL80983B1 (en) 1975-08-30
NL7013285A (en) 1971-03-12
CH529698A (en) 1972-10-31

Similar Documents

Publication Publication Date Title
US3725027A (en) Apparatus for monitoring the configuration of a ribbon of material
US4185982A (en) Method of measuring temperature of a sheet with a noncontacting-type pyrometer
US8820118B2 (en) Apparatus and methods for producing a glass ribbon
US3002226A (en) Method and apparatus for controlling formation of fibers by calorimetry
US2986924A (en) Device for location of surfaces
US3438518A (en) Measuring method and apparatus
US3419374A (en) Detecting ribbon formation abnormalities in drawing glass sheets
US3764285A (en) Manufacture of float glass having controlled width
US3649237A (en) Float glass apparatus with adjustable cooling means
US3535096A (en) Differential pressure control in manufacture of fiber glass fibers
US3444737A (en) Liquid level indicating device
US2368937A (en) Measuring and control instrument
US2737807A (en) Apparatus for measuring the level of the molten glass in tank furnaces
US1901192A (en) Apparatus for measuring temperatures of moving bodies
US3607175A (en) Control system for modifying the surface of float glass
US4440559A (en) Apparatus for sensing a glass ribbon edge and method of use
US4157039A (en) Detection of the temperature of sheet or strip material
US2636952A (en) Irregularity detecting apparatus for web and strand material
US2958160A (en) Apparatus for controlling dimensions of linear drawn bodies
US4712602A (en) Pool-level sensing probe and automatic level control for twin-belt continuous metal casting machines
US3607193A (en) Float glass apparatus with heat exchange control
US4337076A (en) Ribbon edge detector and system for metering flow of molten glass
US3348936A (en) Automatic molten glass level control apparatus
US2309993A (en) Drier control
US2322418A (en) Automatic temperature compensation for pressure indicators of continuous rolling mills