US3716947A - Abrasive blast cleaning system - Google Patents
Abrasive blast cleaning system Download PDFInfo
- Publication number
- US3716947A US3716947A US00108417A US3716947DA US3716947A US 3716947 A US3716947 A US 3716947A US 00108417 A US00108417 A US 00108417A US 3716947D A US3716947D A US 3716947DA US 3716947 A US3716947 A US 3716947A
- Authority
- US
- United States
- Prior art keywords
- blast
- set forth
- granular material
- abrasive
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C13/00—Disintegrating by mills having rotary beater elements ; Hammer mills
- B02C13/02—Disintegrating by mills having rotary beater elements ; Hammer mills with horizontal rotor shaft
- B02C13/06—Disintegrating by mills having rotary beater elements ; Hammer mills with horizontal rotor shaft with beaters rigidly connected to the rotor
- B02C13/09—Disintegrating by mills having rotary beater elements ; Hammer mills with horizontal rotor shaft with beaters rigidly connected to the rotor and throwing the material against an anvil or impact plate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C17/00—Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
- B02C17/18—Details
- B02C17/183—Feeding or discharging devices
- B02C17/1835—Discharging devices combined with sorting or separating of material
- B02C17/184—Discharging devices combined with sorting or separating of material with separator arranged in discharge path of crushing zone
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C5/00—Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose
- B22C5/18—Plants for preparing mould materials
Definitions
- An abrasive blast cleaning system includes blast means for granulating and scouring the sand removed from a nobake mold whereby the sand is reconditioned for reuse in a subsequent no-bake molding operation.
- the base binder used in no-bake molding is either an acid base such as a chemical binder with phosphoric acid as the activator or is an oil base.
- the nobake mold pattern is disposed in a topless frame on, for example a support table with the no-bake ingredients being added to form a cavity corresponding to one portion of the casting and rigidifying rods added thereto. The mold is then inverted and the complementary portion of the no-bake mold is formed thereon so that the resultant composite cavity corresponds to the casting. Suitable gating is of course also provided.
- the no-bake molding process potentially represents a significant advancement in the foundry art since it offers a number of distinct advantages.
- the molds are easier to make without requiring a. skilled molder. There is a cleaner environment with less dust and spillage than with green sand molding.
- the nobake technique is quicker since jolt mechanisms are not required. Simple form boxes or topless frames are merely necessary to shape the mold rather than the conventional heavy flasks.
- the molds can be handled without breaking apart by providing a grid plate or strapping and thereby the mold with its casting can be moved to a shaker or cleaning process without breaking apart.
- the mold shell or sand can be removed by blasting and in such case the mold shell and core can be handled to the interior of a blast machine where the sand and dust can be contained and shakeout noise eliminated.
- the casting finish is thereby improved and casting tolerances can be tightened with the castings matching the pattern.
- the castings can go directly to numerically controlled machines, thereby obviating the need for rough cuts or manual machines.
- reclaimed sands with the present systems are not uniform in qualities. In this respect the build-up of fines and/or organics seriously affects the molds using reclaimed sands. Moreover, proposed reclaiming systems require shakers, crushers or Muller type units which are noisy and dusty and also require rather large floor space and head room with high maintenance and capital costs.
- An object of this invention is to provide an abrasive blasting system which granulates and scours sand obtained from a no-bake molding operation.
- a further object of this invention is to provide such a system which in a broader form may utilize the concepts herein for functioning as a granulating means, per se.
- a still further object of this invention is to provide various alternatives for effectively granulating and/or scouring sand or other lump granular material.
- an abrasive blast cleaning system includes blast means for granulating and scouring the sand removed from a no-bake mold whereby the sand is reconditioned for reuse in a subsequent no-bake molding operation.
- the sand itself may be initially obtained by blasting abrasive particles against a no-bake mold wherein the sand in lumpy and granular form is conveyed along with spent abrasive, rods, fines and other contaminants toward the granulating and scouring station.
- the finer materials may undergo a separation operation to remove the finer granular sand from the remainder of the mixture and this granular sand may be dropped ad jacent and impact plate where the grains are struck by abrasive particles to prevent a build-up binder on the sand by removing binder from the grains.
- the same blast means which prevent a binder build-up is also used to break the lumps into fine granular form and simultaneously to clean the rods in the mixture.
- the rods also are put into condition for reuse simultanew ously with the granulating and scouring of the sand.
- FIG. 1 is a side elevation view schematically showing one embodiment of this invention
- FIG. 2 is a plan view of the embodiment of the invention shown in FIG. 1;
- FIG. 3 is a cross-sectional view taken through FIG. 2 along the line 3-3;
- FIG. 3A is a view similar to FIG. 3 showing an alternative conveyor structure
- FIG. 4 is an elevation view of a portion of a modified blast chamber
- FIGS. 5 and 6 are views similar to FIG. 3 on an enlarged scale of alternative arrangements of this invention.
- FIGS. 7-8 are side and end elevation views of yet another embodiment of this invention.
- FIGS. 9-10 are cross-sectional views in elevation schematically illustrating another embodiment of this invention.
- FIG. 11 is a plan view in section illustrating a portion of the embodiment shown in FIG. 10;
- FIG. 12 is a plan view in section similar to FIG. 11 showing still another embodiment of this invention.
- FIG. 13 is a cross-sectional view in elevation of yet another embodiment of this invention.
- FIG. 14 is a cross-sectional view taken through FIG. 13 along the line l4-14;
- FIG. 15 is a cross-sectional view in elevation of still yet another embodiment of this invention.
- FIG. 16 is a plan view in section of a portion of the embodiment shown in FIG. 15;
- FIG. 17 is an elevation view partly in section of yet another embodiment of this invention.
- FIG. 1 shows the abrasive cleaning system 10 in ac cordance with this invention.
- a nobake mold 1 2 is held in an open frame 14 and conveyed on monorail 16 into blast chamber 18.
- rigidifying rods 20 as well as a casting 22 are embedded in the sand 24.
- Means 26 are provided to suspend the casting when the sand is later removed.
- Blast chamber 18 is provided with a plurality of centrifugal throwing wheels 28 which project abrasive particles against the mold to remove the sand and rods therefrom and thereby clean the then exposed casting in one operation.
- abrasive particles against the mold to remove the sand and rods therefrom and thereby clean the then exposed casting in one operation.
- the falling sand, rods, spent abrasive, fines and other contaminants fall through the bottom 30 of chamber 18 and are received on oscillating conveyor 32.
- the floor of the chamber is made with maximal open area. Ideally chamber 18 would be completely floorless.
- FIG. 1 spaced I-beams 34 are provided so that the mixture 36 can be received on the oscillating conveyor 32 by falling through the large open area between l-beams 34.
- FIG. 4' shows an alternative arrangement wherein the floor is made of louvered members 38 thereby advantageously providing a support area which can be walked on but facilitating the discharge of the mixture through the floor.
- the entire mixture 36 is conveyed on oscillating conveyor 32 until the mixture reaches a portion of the conveyor which includes a screen 40 of appropriate mesh size to permit the fine grain abrasives, fines, and other contaminants to fall into hopper 42 and thence to screw conveyor 44 where it is received by elevator 46 for separation as later described.
- the remaining portion of mixture 36 which includes lumps, rods, and any other elements which may be carried with the mixture is conveyed to the end of oscillator 32 and drops onto generally perpendicular oscillating conveyor 48 until it reaches the second blast station 50 (FIG. 2).
- separators 54 are of the air wash type such as described and illustrated in U.S. Pat. No. 3,368,677 the details of which are incorporated herein by reference thereto.
- the air wash separator 54 subjects the falling mixture to an air curtain supplied for example at inlet 56.
- a number of skimmer plates 58 are provided in the separating chamber 60 to facilitate a separation of the mixture into individual streams in accordance with their weight.
- the abrasive particles are heavier than the sand which in turn is heavier than the fines.
- the abrasive particles fall generally directly downward into discharge conduit 62 while the fine grained sand is slightly diverted and received in discharged conduit 64.
- Other discharge conduits (not shown) are provided for the fines and other contaminants.
- the sand in the mixture fed to separators 54 is not always of the desired size of fineness but frequently is in smaller lumps which may be termed pea size.
- pea size Generally such pea sized lumps are about 3/16 1/4 inch in diameter. Since this pea size sand is heavier than the fine grain size, the pea size sand will also go into conduit 62 with the abrasive particles which are large size metal shot. Accordingly, it is necessary that this sand be separated from the abrasive particles if the sand recovered is to be maximized not only for reuse of the sand but also for reuse of the abrasive particles. Accordingly, the mixture of pea size sand and abrasive particles undergoes a second separation process.
- This second separation process includes feeding the mixture of abrasive particles and pea size sand through pairs of rollers 66 which may be made of wear resistant polyurethane.
- rollers 66 which may be made of wear resistant polyurethane.
- the closely positioned rotating rollers crush the pea size sand into its fine granular form whilev of course permitting the abrasive particles to retain their normal size.
- This mixture of crushed sand and abrasive particles is then fed into separators 68 which are of the air wash type similar to separators 54 except that only one skimmer plate 70 is necessary since the mixture will be divided into only two streams. It is to be understood, however, that a separator using a plurality of skimmer plates may also be used.
- the substantially pure abrasive particles are received in spout 72 for reuse by blast wheels 28 by conveyance through pipes 74.
- the fine grain sand is received in hopper 76 where it mixes with the fine grain flowing from conduits 64 and is conveyed through conduit 78 to the blast station 50.
- a particular advantage of this invention is the inclusion of blast station 50 which in effect both granulates and scours the sand as is essential for the sand reclamation that would be necessary to render the no-bake molding process economically feasible.
- about 25 percent of the sand in mixture 36 is in lump size which could for example vary from 1 inch to 10 inches in general diameter.
- the lumps and core rods are handled through the blast station without damage to any mechanism.
- the same blast station 50 which granulates and reconditions the sand also simultaneously cleans the rods so that the rods are free of any residual material and thus are in condition for reuse.
- the arrangement provides these advantages with minimum floor space requirements and is both noise free and dust free within acceptable limits.
- a conventional centrifugal throwing wheel 80 which uses generally large size metal shot projected at a high flow rate at for example 1200 to 1700 rpm or lower.
- the metal shot strikes the lumps to granulate them while also knocking the organics off the grains of sand.
- the sand which had been separated by the separators 54 and 68 is also passed into the blast stream from wheel 80 so that the organic binder is removed from this sand. As shown for example in FIG. 3 the falling sand from conduit 78 drops between the blast stream 82 and a strike plate 84.
- the mixture of granulated reconditioned sand and abrasive particles are fed to elevator 92 and then to separator 94 which also is of the air wash type previously described including air curtain inlet 96 and skimmer plate 100 in separation chamber 98.
- the mixture is thereby divided into one stream of abrasive particles which is received in spout 102 and conveyed back to abrasive blast wheel 80 while the stream of reconditioned sand is received in spout 104 and discharged from outlet 106 and into any suitable receptacle (not shown) for reuse.
- the sand Prior to discharge from outlet 106 the sand may pass through magnetic drum separator 107 to remove the small quantity of metal abrasive that may be mixed in with the otherwise substantially pure sand.
- FIG. 5 shows an alternative arrangement similar to FIG. 3 wherein the mixture of lumps and rods, etc., is fed from conveyor 108 to oscillating conveyor 110 in a manner similar to the arrangement of FIG. 3.
- blast wheel 112 uses as its blast particles not only metal shot supplied from conduit 1 14 but also the fine grained sand which is fed by conduit 116 as would be supplied for example from conduit 78.
- the fine grain sand not only functions to break the lumps 118 but also the impact from the sand helps remove the binder therefrom.
- Such an arrangement would also permit a simplier separation system since it would not be as critical to completely separate the fine grain sand from the abrasive particles in the mixture received from blast chamber 18.
- FIG. 3 and various other Figures illustrate the conveying means for the lumpy material to be an oscillating conveyor
- conveying means for the lumpy material to be an oscillating conveyor
- FIG. 3 and various other Figures illustrate the conveying means for the lumpy material to be an oscillating conveyor
- FIG. 3 and various other Figures illustrate the conveying means for the lumpy material to be an oscillating conveyor
- FIG. 3 and various other Figures illustrate the conveying means for the lumpy material to be an oscillating conveyor
- the lumpy material 86 is conveyed on a belt which is made of mesh form so as to permit the passage of abrasive particles and crushed lumpy material to pass therethrough onto incline 87 and thence into hopper 89 to screw conveyor 90.
- the conveying means need not have a flat surface such as illustrated in FIGS. 3 and 3A but may take any other suitable form such as for example being in the form of a drum conveyor in accordance with the particular results desired.
- abrasive blast means may be used in accordance with this invention.
- One particularly efl'ective blast means is the centrifugal throwing wheel shown and described in U.S. Pat. No. 3,348,339 which includes flared and tilted vanes. Additionally, it is also possible to use multiple throwing wheels at each blast station. Metal shot may advantageously be used as the abrasive particles.
- FIG. 6 shows another alternative arrangement which maximizes the lump breaking ability of blast wheel 120.
- the osciallating conveyor 122 is of a particular design in that its upper surface includes steps thereby providing shoulders 124, 126.
- This arrangement is advantageous since the affect of the left hand portion of blast stream 128 is to drive the lumps back toward the left against the direction of flow imparted by oscillator 122.
- Shoulder 124 for example, however, acts as a stop to prevent this backward flow and to hold a lump 130 until it is effectively granulated. so that it may fall through the mesh screen 132.
- the various oscillating conveyors used in the lump breaking stations are trough shaped and are of such a dimension as to confine the moving stream of lumpy sand into an area which has a width no greater than the width of the particularly arranged centrifugal throwing wheel blast stream so that the centrifugal throwing wheel can thoroughly function as a lump breaking means.
- FIGS. 7-8 show a simplified form of this invention similar to the arrangement shown in FIG. 1.
- the fine granular sand removed from the no-bake mold in blast chamber 18 does not have a substantial binder build up, it is then possible to convey this fine sand into elevator 134 and thence to separating system 136 without subjecting the fine sand to a scouring operation.
- the lumps from blast chamber 18 would be crushed at blast station 138 and the crushed lumps would then be conveyed to the same elevator 134 and separating system 136.
- the arrangement of FIGS. 7-8 eliminates the need for a pair of elevators and separating systems such as shown in FIG. 1.
- FIG. 9 illustrates another aspect of this invention which maximizes the scouring efficiency thereof.
- mixture 140 which includes lumps 142 is fed into hopper 144 from any suitable source such as a blast chamber which cleans a casting from a no-bake mold as previously described, or from any other source.
- the sand may, for example, be supplied from a batch barrel or may be continuously fed.
- the mixture is fed into blasting station 146 whereby blast wheel 148 breaks the lumps and also subjects the sand in the mixture to a scouring treatment.
- the embodiment of FIG. 9 differs from previous embodiments in that means are provided to subject the granular sand to a further scouring operation.
- the bottom of blasting station 146 includes a collecting hopper 150 having an outlet which feeds the granular sand and abrasives into blast wheel 152.
- Blast wheel 152 is designed to project the thusly fed sand and abrasive particles in a 360 pattern against impact plate 154 mounted on the inner wall of chamber 156.
- the chamber wall itself may act as the impact plate. It is desirable with such scouring operations to maximize the turbulence of the sand grains which in turn adds to the scouring efficiency.
- blast wheel 152 would operate at a reduced speed such as 1200 rpm rather than the conventional speed of 2250 rpm.
- FIGS. -11 show an arrangement similar to FIG. 9 in the inclusion of a-further scouring abrasive blast station 156.
- the mixture of sand and abrasive particles is discharged onto a flow distribution cone 158 so as to fall between impact plate I 154 and blast wheel 160.
- Blast wheel 160 which has 360 blast coverage is supplied with abrasive particles through conduit 162 from separator 164 so that the falling stream distributed by cone 158 is struck by the blast particles centrifugal throwing wheel 160, and caused to ricochet against impact plate 154.
- FIG. 12 illustrates an alternative shape for the flow distribution means.
- the flow distribution means is in the shape of a pair of inverted plates 159 which are inclined toward each other and meet at their apex to form an inverted V above blast wheel 161. Since the flow distribution plates 159 will merely have two streams flowing therefrom, blast wheel 161 includes an impeller case having two slots so that the blast wheel will thereby project a pair of diametrically opposed blast streams.
- FIGS. 13-14 show an advantageous arrangement for scouring the sand such as received from the previously described lump breaking station and discharged through spout 166.
- the discharged particles are fed into centrifugal throwing wheel 168 at blast station 170.
- an impact or ricochet plate 174 inclined toward the blast wheel.
- the lower end of plate 174 is joined to a further impact plate 176 in such a manner that the particles are thrown off vanes 172 against plate 174 and ricochet off plate 174 downwardly against plate 176 and back toward the center of the blast station.
- an additional ricochet plate 178 may be provided to further increase the turbulence.
- the drive 180 for blast wheel 168 is enclosed in a shielded housing 182 which incorporates suitable power line conduit 184 and vent line 186.
- FIGS. 15-16 show still another manner of obtaining a high degree of turbulence. As indicated therein the particles are discharged through spout 188 into centrifugal throwing wheel 190.
- the drive 189 for wheel 190 is housed in casing 191 with a suitable vent line 193 being provided.
- the impact plates are a plurality of plates or vanes 192 projecting from the interior wall 194 of blast chamber 196.
- FIG. 17 illustrates yet another ramification of this invention wherein a plurality of blast wheels 198, 200, 202 are stacked atop each other in such a manner that, for example, the particles projected from blast wheel 198 are fed through spout 204 into subsequent blast wheel 200 and then fed through spout 206 into blast wheel 202.
- Any number of vertically arranged blast wheels may be provided in accordance with the desired degree of scouring.
- the stacked arrangements may also include suitable vent line 208 and other features with respect to the individual wheels previously described.
- An abrasive blast treating system for producing granular material from lumpy material created from a mold used to make castings comprising means for removing a casting from a mold and creating a mixture from the mold including granular material and lumpy material, an abrasive blasting station, conveying means for conveying the lumpy material to said abrasive blasting station, abrasive blast means in said blasting station for directing abrasive particles against the lumpy material to break up the material into granular material, and receiving means for receiving the thus produced granular material.
- a system as set forth in claim 1 including separating means for removing the granular material from said mixture before said blasting station.
- a system as set forth in claim 2 wherein said casting removing means includes a blast chamber for receiving the mold and further abrasive blast means for directing abrasive particles against the mold.
- said conveying means includes an oscillating conveyor disposed under said blast chamber, said separating means including a screen deck on said oscillating conveyor to permit the granular material to fall therethrough, collecting means under said screen deck, and a first separating system communicating with said collecting means.
- said first separating system includes means for removing the granular material from the mixture passed therethrough, an impact plate in said abrasive blasting station, and transporting means for feeding the granular material from said first separating system to said blasting station between said impact plate and said abrasive blast means whereby the abrasive particles from said blast means cause at least some of the granular material to strike against said impact plate.
- said first separating system includes at least one set of separators comprising a pair of vertically arranged air wash separators, the uppermost of said vertically arranged separators including a spout for discharging a stream of abrasive particles and pea sized lumps of granular material, a pair of crushing rollers between said pair of separators, said spout on said uppermost separator discharging said stream between said rollers whereby the pea size sand may be crushed by said rollers and the resultant mixture of granular material and abrasive particles may be fed to the lowermost of said separators, and means for discharging individual streams of granular material and abrasive particles from said lowermost separator.
- a system as set forth in claim 9 including means for transporting at least some of the sand discharged from said lowermost separator to said abrasive blast means in said blasting station.
- said second oscillating conveyor has a top surface with a screen deck to permit the fine granular material to pass therethrough, and at least one step on said top surface of said second oscillating conveyor disposed in the path of the abrasive particles projected from said blast means whereby said step acts as a stop for lumps of material which might otherwise have a tendency to be pushed by said abrasive particles back against the direction of flow imparted by said second oscillating conveyor.
- a system as set forth in claim 13 wherein said second separating system includes an air wash separator for separating the materials fed thereto into individual streams of granular material and abrasive particles, and a magnetic drum receiving the stream of granular material for removing any abrasive particles which might be therein.
- a system as set forth in claim 1 including a second blasting station having second blast means therein, said receiving means feeding the granular material to said second blasting station for scouring the sand in the fine granular material.
- a system as set forth in claim 17 including impact plate means in said second blasting station in the path of flow of the particles projected from said second blast means, and said receiving means feeding the granular material to said second blast means for projection against said impact plate means.
- said impact plate means comprises a first plate inclined toward said second blast means and disposed in the path of mo tion of the particles projected from said second blast means, and a second plate inclined toward and disposed under said first plate to provide a ricochet surface for the projected particles.
- a system as set forth in claim 18 wherein said second blast means comprises a plurality of centrifugal wheels vertically arranged atop each other, and feed means between pairs of wheels for feeding the granular material discharged from an upper wheel into its ad-,
- a system as set forth in claim 17 including impact plate means in said second blasting station in the path of flow of the particles projected from said second blast means, flow distribution means above said second blast means, and said receiving means feeding the granular material to said flow distribution means for discharging the granular material between said impact plate means and said second blast means.
- An abrasive,blast treating system for producing granular material from lumpy material, said system comprising an abrasive blasting station, conveying means passing through said abrasive blasting station for carrying lumpy material into said blasting station, abrasive blast means in said blasting station for projecting abrasive particles against the lumpy material to break the material into granular material, said conveying means confining the lumpy material in an area having a predetermined width, said abrasive blast means projecting abrasive particles toward said conveying means over an area which completely covers said predetermined width, and collecting means for receiving the granulated material and abrasive particles from said conveying means, an air.wash separator, second conveying means for feeding the granulated material and abrasive particles from said collecting means to said separator, and said separator dividing the granulated material and abrasive particles into individual streams.
- a system as set forth in claim 25 wherein said conveying means. is an oscillating conveyor having a screen deck.
- a system as set forth in claim 25 including a second blasting station having second blast means therein, said collecting means feeding the granular material to said second blasting station for scouring the granular material.
- a system as set forth in claim 28 including impact plate means in said second blasting station in the path of flow of the particles projected from said second blast means, and said receiving means feeding the granular material to said second blast means for projection against said impact plate means.
- said impact plate means comprises a first plate inclined toward said second blast means and disposed in the path of motion of the particles projected from said second blast means, and a second plate inclined toward and disposed under said first plate to provide a ricochet surface for the projected particles.
- said second blast means comprises a plurality of centrifugal wheels vertically arranged atop each other, and feed means between pairs of wheels for feeding the granular material discharged from an upper wheel into its adjacent lower wheel.
- a system as set forth in claim 28 including impact plate means in said second blasting station in the path of flow of the particles projected from said second blast means, flow distribution means above said second blast means, and said collecting means feeding the granular material to said flow distribution means for discharging the fine granular material between said impact plate means and said second blast means.
- said second blast means include a centrifugal throwing wheel capable of progecting particles over a .360? arc, ution means belng a comcally and said flow distn shaped member disposed over and above said throwing wheel.
Landscapes
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Mechanical Engineering (AREA)
- Combined Means For Separation Of Solids (AREA)
- Cleaning In General (AREA)
- Crushing And Pulverization Processes (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10841771A | 1971-01-21 | 1971-01-21 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3716947A true US3716947A (en) | 1973-02-20 |
Family
ID=22322065
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00108417A Expired - Lifetime US3716947A (en) | 1971-01-21 | 1971-01-21 | Abrasive blast cleaning system |
Country Status (13)
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3769752A (en) * | 1970-11-11 | 1973-11-06 | Blastmaster Co Tekology Ltd | Apparatus for shot blasting work members |
| US3848815A (en) * | 1972-05-17 | 1974-11-19 | Carborundum Co | Granulating apparatus |
| US4092942A (en) * | 1977-07-05 | 1978-06-06 | Magster Company | Mobile shot blasting apparatus for shot blasting the bottom of a ship or the like |
| US4138067A (en) * | 1976-04-07 | 1979-02-06 | Rene Planiol | Centrifugal vacuum impact pulverizing mills |
| US4164103A (en) * | 1976-11-02 | 1979-08-14 | Messer Griesheim Gmbh | Device for deburring workpieces |
| US4523988A (en) * | 1983-08-18 | 1985-06-18 | Apache Equipment, Inc. | Apparatus and method for producing virgin and/or reclaiming used abrasives |
| US4941295A (en) * | 1989-04-12 | 1990-07-17 | Pangborn Corporation | Abrasive elevating apparatus for blast machines and method of using |
| US5386668A (en) * | 1992-05-15 | 1995-02-07 | Bmd Badische Maschinenfabrik Durlach Gmbh | Blasting plant having blast wheels above and below for blasting elongated workpieces |
| US20030143929A1 (en) * | 2000-05-26 | 2003-07-31 | Schmidt Thomas Tygesen | Method and system for cleaning workpieces by wet blasting |
| US20120108147A1 (en) * | 2010-11-02 | 2012-05-03 | Ronald Benson | Removable airwash cartridge or cassette for grit drying system |
| US20150107030A1 (en) * | 2013-10-22 | 2015-04-23 | Nike, Inc. | Buffing Expanded Foam Items |
| CN106670981A (zh) * | 2017-03-01 | 2017-05-17 | 中国石油集团济柴动力总厂再制造中心 | 用于发动机零部件再制造的喷砂喷丸一体设备 |
| US9884404B2 (en) | 2013-10-22 | 2018-02-06 | Nike, Inc. | Buffing expanded foam items |
| US10420275B2 (en) * | 2013-10-08 | 2019-09-24 | Syngenta Participations Ag | Planter exhaust air removing apparatus and method of use thereof |
| CN113118422A (zh) * | 2021-04-25 | 2021-07-16 | 象山县共青铸造厂 | 一种砂型铸造自动落砂设备 |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3881664A (en) * | 1973-01-31 | 1975-05-06 | Carborundum Co | Wear plate in an apparatus for conditioning a granular material |
| NZ198307A (en) * | 1981-09-08 | 1986-04-11 | Barmac Ass Ltd | Vertical impact pulveriser:secondary mineral feed stream surrounds thrown primary feed |
| DE4109993A1 (de) * | 1991-03-27 | 1992-10-01 | Klein Alb Gmbh Co Kg | Verfahren zum regenerieren von haufwerk aus beschichteten koernern, insbesondere von giessereialtsanden |
| CN112252720B (zh) * | 2020-10-28 | 2021-12-10 | 安徽东乔市政建设有限公司 | 一种建筑模板冲洗装置 |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US554473A (en) * | 1896-02-11 | Hans beeg | ||
| US1954111A (en) * | 1932-04-29 | 1934-04-10 | Wilks Joe | Machine for abrading concrete surfaces |
| US2225482A (en) * | 1937-03-24 | 1940-12-17 | Harry A Mulvany | Cleaning machine |
| US2239714A (en) * | 1937-01-29 | 1941-04-29 | American Foundry Equip Co | Apparatus for abrasively treating metal objects |
| US2261947A (en) * | 1940-07-27 | 1941-11-11 | August J Barnebl | Foundry practice |
| US2478461A (en) * | 1946-03-16 | 1949-08-09 | Nichols Eng & Res Corp | Apparatus and method for treating foundry sand |
| CA539527A (en) * | 1957-04-16 | Allis-Chalmers Manufacturing Company | Method of burning carbon from sand in fluid solids suspension | |
| US3055150A (en) * | 1959-07-20 | 1962-09-25 | Elmer H Greenberg | Metal-plate-treating method and apparatus |
| US3097450A (en) * | 1963-07-16 | Rough cleaning and finish cleaning machine and method | ||
| US3097451A (en) * | 1963-07-16 | Blast machine system and method | ||
| US3368677A (en) * | 1964-09-08 | 1968-02-13 | Pangborn Corp | Abrasive separator |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| NL102398C (enrdf_load_stackoverflow) * | 1900-01-01 | |||
| US2887826A (en) * | 1957-10-30 | 1959-05-26 | Auto Specialties Mfg Co | Shot blast machine |
| US3087451A (en) * | 1960-03-01 | 1963-04-30 | Edward F Chandler | Reaction automotor |
| US3445966A (en) * | 1966-06-30 | 1969-05-27 | Pangborn Corp | Abrasive blasting apparatus |
| FR1535793A (fr) * | 1966-07-20 | 1968-08-09 | Badische Maschf Gmbh | Machine d'ébarbage de fonte comportant des turbines à jet |
| US3540156A (en) * | 1967-12-13 | 1970-11-17 | Wheelabrator Corp | Machine for cleaning sand castings and recovery of components |
-
1971
- 1971-01-21 US US00108417A patent/US3716947A/en not_active Expired - Lifetime
-
1972
- 1972-01-06 CA CA131,772A patent/CA943767A/en not_active Expired
- 1972-01-11 GB GB114672A patent/GB1385721A/en not_active Expired
- 1972-01-11 GB GB4235274A patent/GB1385722A/en not_active Expired
- 1972-01-19 IT IT47814/72A patent/IT948256B/it active
- 1972-01-19 BR BR302/72A patent/BR7200302D0/pt unknown
- 1972-01-19 AU AU38046/72A patent/AU464058B2/en not_active Expired
- 1972-01-19 DE DE2202311A patent/DE2202311C2/de not_active Expired
- 1972-01-20 FR FR7201963A patent/FR2122568B1/fr not_active Expired
- 1972-01-20 CH CH83572A patent/CH552421A/fr not_active IP Right Cessation
- 1972-01-20 SE SE7200624A patent/SE400206B/xx unknown
- 1972-01-20 ZA ZA720404A patent/ZA72404B/xx unknown
- 1972-01-21 ES ES399092A patent/ES399092A1/es not_active Expired
-
1979
- 1979-12-26 JP JP54168424A patent/JPS583781B2/ja not_active Expired
-
1981
- 1981-09-16 JP JP1981136390U patent/JPS5782437U/ja active Pending
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US554473A (en) * | 1896-02-11 | Hans beeg | ||
| CA539527A (en) * | 1957-04-16 | Allis-Chalmers Manufacturing Company | Method of burning carbon from sand in fluid solids suspension | |
| US3097450A (en) * | 1963-07-16 | Rough cleaning and finish cleaning machine and method | ||
| US3097451A (en) * | 1963-07-16 | Blast machine system and method | ||
| US1954111A (en) * | 1932-04-29 | 1934-04-10 | Wilks Joe | Machine for abrading concrete surfaces |
| US2239714A (en) * | 1937-01-29 | 1941-04-29 | American Foundry Equip Co | Apparatus for abrasively treating metal objects |
| US2225482A (en) * | 1937-03-24 | 1940-12-17 | Harry A Mulvany | Cleaning machine |
| US2261947A (en) * | 1940-07-27 | 1941-11-11 | August J Barnebl | Foundry practice |
| US2478461A (en) * | 1946-03-16 | 1949-08-09 | Nichols Eng & Res Corp | Apparatus and method for treating foundry sand |
| US3055150A (en) * | 1959-07-20 | 1962-09-25 | Elmer H Greenberg | Metal-plate-treating method and apparatus |
| US3368677A (en) * | 1964-09-08 | 1968-02-13 | Pangborn Corp | Abrasive separator |
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3769752A (en) * | 1970-11-11 | 1973-11-06 | Blastmaster Co Tekology Ltd | Apparatus for shot blasting work members |
| US3848815A (en) * | 1972-05-17 | 1974-11-19 | Carborundum Co | Granulating apparatus |
| US4138067A (en) * | 1976-04-07 | 1979-02-06 | Rene Planiol | Centrifugal vacuum impact pulverizing mills |
| US4164103A (en) * | 1976-11-02 | 1979-08-14 | Messer Griesheim Gmbh | Device for deburring workpieces |
| US4092942A (en) * | 1977-07-05 | 1978-06-06 | Magster Company | Mobile shot blasting apparatus for shot blasting the bottom of a ship or the like |
| US4523988A (en) * | 1983-08-18 | 1985-06-18 | Apache Equipment, Inc. | Apparatus and method for producing virgin and/or reclaiming used abrasives |
| US4941295A (en) * | 1989-04-12 | 1990-07-17 | Pangborn Corporation | Abrasive elevating apparatus for blast machines and method of using |
| US5386668A (en) * | 1992-05-15 | 1995-02-07 | Bmd Badische Maschinenfabrik Durlach Gmbh | Blasting plant having blast wheels above and below for blasting elongated workpieces |
| US20030143929A1 (en) * | 2000-05-26 | 2003-07-31 | Schmidt Thomas Tygesen | Method and system for cleaning workpieces by wet blasting |
| US6688946B2 (en) * | 2000-05-26 | 2004-02-10 | Thomas Tygesen Schmidt | Method and system for cleaning workpieces by wet blasting |
| US20120108147A1 (en) * | 2010-11-02 | 2012-05-03 | Ronald Benson | Removable airwash cartridge or cassette for grit drying system |
| US10420275B2 (en) * | 2013-10-08 | 2019-09-24 | Syngenta Participations Ag | Planter exhaust air removing apparatus and method of use thereof |
| US20150107030A1 (en) * | 2013-10-22 | 2015-04-23 | Nike, Inc. | Buffing Expanded Foam Items |
| US9789584B2 (en) * | 2013-10-22 | 2017-10-17 | Nike, Inc. | Buffing expanded foam items |
| US9884404B2 (en) | 2013-10-22 | 2018-02-06 | Nike, Inc. | Buffing expanded foam items |
| CN106670981A (zh) * | 2017-03-01 | 2017-05-17 | 中国石油集团济柴动力总厂再制造中心 | 用于发动机零部件再制造的喷砂喷丸一体设备 |
| CN113118422A (zh) * | 2021-04-25 | 2021-07-16 | 象山县共青铸造厂 | 一种砂型铸造自动落砂设备 |
| CN113118422B (zh) * | 2021-04-25 | 2022-07-19 | 象山县共青铸造厂 | 一种砂型铸造自动落砂设备 |
Also Published As
| Publication number | Publication date |
|---|---|
| ES399092A1 (es) | 1975-06-16 |
| FR2122568A1 (enrdf_load_stackoverflow) | 1972-09-01 |
| FR2122568B1 (enrdf_load_stackoverflow) | 1976-10-29 |
| AU3804672A (en) | 1973-07-26 |
| JPS583781B2 (ja) | 1983-01-22 |
| ZA72404B (en) | 1972-12-27 |
| GB1385721A (en) | 1975-02-26 |
| DE2202311C2 (de) | 1982-07-29 |
| CH552421A (fr) | 1974-08-15 |
| DE2202311A1 (de) | 1972-08-03 |
| SE400206B (sv) | 1978-03-20 |
| BR7200302D0 (pt) | 1973-05-03 |
| AU464058B2 (en) | 1975-08-14 |
| IT948256B (it) | 1973-05-30 |
| CA943767A (en) | 1974-03-19 |
| GB1385722A (en) | 1975-02-26 |
| JPS5782437U (enrdf_load_stackoverflow) | 1982-05-21 |
| JPS55100845A (en) | 1980-08-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3716947A (en) | Abrasive blast cleaning system | |
| KR101875970B1 (ko) | 회전 텀블러 및 금속 리클레이머 | |
| US2707314A (en) | Method of reclaiming granular material | |
| US3934374A (en) | Sand reclamation system | |
| US6691765B2 (en) | Products for the manufacture of molds and cores used in metal casting and a method for their manufacture and recycle from crushed rock | |
| JP3991179B2 (ja) | 鋳物砂再生装置 | |
| US3694964A (en) | Abrasive blast cleaning system | |
| US3782643A (en) | Apparatus for conditioning a granular material | |
| CN110586855A (zh) | 一种砂模铸造废砂回收再利用的方法 | |
| US3848815A (en) | Granulating apparatus | |
| US3829029A (en) | Abrasive blast cleaning system | |
| US3881664A (en) | Wear plate in an apparatus for conditioning a granular material | |
| US3312403A (en) | Machine and process for reclaiming foundry sand | |
| US3542299A (en) | Foundry sand recovery methods | |
| US3081954A (en) | Method and apparatus for recovering reusable metallics from steel making slag and refuse | |
| WO2011064930A1 (ja) | 磨鉱装置及び再生骨材の生産方法 | |
| US3690066A (en) | Abrasive blast cleaning system | |
| US4449566A (en) | Foundry sand reclamation | |
| JP3314315B2 (ja) | 鋳物砂精磨分級装置 | |
| US3958764A (en) | Granulating apparatus | |
| US3764078A (en) | Apparatus for regenerating foundry sand | |
| US2922585A (en) | Treating used submerged arc welding flux | |
| CN212882869U (zh) | 一种石英石制砂生产线 | |
| US5217170A (en) | Method for both cooling and pneumatically scrubbing a calcined, particulate material | |
| RU1582447C (ru) | Способ регенерации отработанных формовочных смесей и установка для его осуществления |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: KENNECOTT CORPORATION Free format text: MERGER;ASSIGNORS:BEAR CREEK MINING COMPANY;BEAR TOOTH MINING COMPANY;CARBORUNDUM COMPANY THE;AND OTHERS;REEL/FRAME:003961/0672 Effective date: 19801230 |
|
| AS | Assignment |
Owner name: NATIONAL WESTMINSTER BANK USA, 592 FIFTH AVENUE, N Free format text: SECURITY INTEREST;ASSIGNOR:PANGBORN CORPORATION, A CORP. OF DE.;REEL/FRAME:004576/0188 Effective date: 19860724 |
|
| AS | Assignment |
Owner name: PANGBORN CORPORATION, PANGBORN BLVD., HAGERSTOWN, Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:KENNECOTT CORPORATION;REEL/FRAME:004614/0421 Effective date: 19860725 |
|
| AS | Assignment |
Owner name: MERRILL LYNCH INTERFUNDING INC., NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:PANGBORN CORPORATION;REEL/FRAME:005237/0297 Effective date: 19891211 |