US3715500A - Unidirectional microphones - Google Patents
Unidirectional microphones Download PDFInfo
- Publication number
- US3715500A US3715500A US00164507A US3715500DA US3715500A US 3715500 A US3715500 A US 3715500A US 00164507 A US00164507 A US 00164507A US 3715500D A US3715500D A US 3715500DA US 3715500 A US3715500 A US 3715500A
- Authority
- US
- United States
- Prior art keywords
- tubes
- acoustic
- straight line
- cavities
- sampling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005070 sampling Methods 0.000 claims description 31
- 238000013016 damping Methods 0.000 claims description 2
- 230000035945 sensitivity Effects 0.000 description 9
- 230000003111 delayed effect Effects 0.000 description 5
- 239000011888 foil Substances 0.000 description 5
- 238000000926 separation method Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 230000005236 sound signal Effects 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 241000211181 Manta Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229920006356 Teflon™ FEP Polymers 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- -1 fluoroethylenepropylene Chemical group 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- NFGXHKASABOEEW-LDRANXPESA-N methoprene Chemical compound COC(C)(C)CCCC(C)C\C=C\C(\C)=C\C(=O)OC(C)C NFGXHKASABOEEW-LDRANXPESA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R1/00—Details of transducers, loudspeakers or microphones
- H04R1/20—Arrangements for obtaining desired frequency or directional characteristics
- H04R1/32—Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
- H04R1/34—Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
- H04R1/38—Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means in which sound waves act upon both sides of a diaphragm and incorporating acoustic phase-shifting means, e.g. pressure-gradient microphone
Definitions
- ABSTRACT A second-order unidirectional microphone is constructed with two pairs of acoustic tubes arranged to sample a sound field at four different points on a 5 s CL "179/1 BM 179/121 D, 79/111 E straight line. Acoustic signals from two diametrically [51] Int. Cl. ..H04r 1/32 opposed tubes one short and one long are summed m [58] me at Sam. 179/12 D lDM 121R 1115 a first cavity and signals from two other opposed tubes, one short and one long, are summed in another cavity.
- Unidirectional microphones e.g., either first-order gradient (cardioid), or second-order gradient microphones, respond predominantly to sound incident from one direction.
- a first-order cardioid pattern is achieved by combining in phase opposition the output of a pressure-sensitive element with the delayed output of a second pressure-sensitive element separated from the first by a distance that is small compared to a wavelength.
- a second-order gradient pattern is achieved by combining in phase opposition the output of a pressure-gradient element with the delayed output of another pressure-gradient element separated from the first by a distance that is small compared to a wavelength.
- the delay is provided by an acoustical network integrally associated with the microphone structure, e.g., by' cavity arrangements exposed to a sound field at prescribed locations or by arrangements of acoustic tubes spaced to open at selected points in a sound field.
- electrical delay networks are interposed between the two transducer elements to achieve a desired directional pattern.
- a unidirectional microphone is constructed by combining two firstorder gradient microphones. Directionality is achieved by adding the output of a first-order gradient microphone to the delayed output of another, spatially displaced, but in-line, gradient microphone-of opposite polarity.
- the requisite delay is produced by means of two pairs of sensing tubes of different lengths. The tubes are arranged to sample a sound field at four different points on a straight line.
- FIG. 1 depicts a unidirectional microphone constructed in accordance with the invention
- FIG. 2 is a schematic cross section of the unidirectional electret microphone shown in FIG. 1;
- FIG. 3 is a schematic representation of the design principle of the invention which illustrates the combination of two first-order gradient microphones to achieve a directional characteristic
- FIG. 4 is the directivity pattern of a unidirectional microphone in accordance with the invention for different physical dimensions.
- FIG. 1 A microphone which embodies the principles of the invention in a compact, durable configuration suitable for use in numerous applications is illustrated in FIG. 1.
- the microphone of FIG. 1 comprises a structure which includes two first-order gradient transducers of opposite polarities spaced apart from one another, a delay system, and an arrangement for adding the output of one of the gradient transducers to the delayed output of the other. It will be recognized that the addition of signals from twogradient microphone systems in this manner gives rise, in accordance with the well-known gradient principle, to a unidirectional sensitivity response pattern. Both signal delay and signal addition, however, is accomplished, in accordance with this invention by virtue of the structural arrangement employed; no additional electrical components are needed.
- a sound field is sampled at four selected points in a straight line by means of two pairs of acoustic tubes, 10 and 12, and 11 and 13, which feed acoustic signals into cylindrical casing 14.
- Tubes 10 and 12 are of equal length and feed sound from two separated points on a straight line passing through a diameter of cylindrically shaped casing 14.
- Signals from tubes 10 and 12 are brought, respectively, into upper and lower cavities in' casing 14, and serve differentially to excite opposite sides of transducer 20 placed within cavity 14 in a plane perpendicular to its axis.
- Transducer 20 in fact divides the easing into two separate cavities.
- the system of tubes 10 and 12, the two cavities, and transducer 20 together constitute a first-order gradient microphone.
- Tubes 11 and 13 are likewise of equal length but the length of the pair of tubes 11 and 13 is different from the length of the pair of tubes and 12. Tubes 11 and 13 sample a sound field at two points on the same straight line, passing through a diameter of casing 14'. Signals from the tubes are brought respectively into the upper and lower cavity portion of the casing and serve differentially to excite opposite sides of transducer 20.
- the system of tubes 11 and 13, the two cavities, and the transducer constitute another first-order gradient microphone.
- FIG. 2 The internal construction of the transducer of FIG. 1 is illustrated in FIG. 2. It will be observed that the easing 14 is divided into two internal cavities l5 and 16 by a transducer arrangement supported perpendicular to the axis of casing 14.
- the transducer is formed of a perforated backplate l7 and a foil electret 18 held in close proximity to perforated backplate 14.
- Foil electret l8 seals the two cylindrical cavities from each other. Cavity receives acoustic energy from tube 10, a longer tube, and from tube 11, a shorter tube, both arranged to sample a sound field on a straight line, e.g., on a diameter of the cylinder.
- Tubes 10 and 11 form parts of two different gradient microphone systems; their sound signals are effectively added together in cavity 15.
- Lower cavity 16 is fed by tube 12, a longer'tube, and tube 13, a shorter tube, both arranged to sample the field at points on the same straight line as the sampling points of tubes 10 and 11.
- Tubes 12 and 13 form parts of two different gradient microphone systems; their sound signals are added together in cavity 16.
- d represents the separation of the open outer ends of acoustic tubes 10 and 12, which together form one first-order gradient microphone, and also represents the separation of the open outer ends of acoustic tubes 11 and 13, which together form another first-order gradient microphone.
- Distance d indicates the separation between the tubes of the two gradient systems.
- the short tubes 11 and 13 belong to a gradient with a small delay whereas the long tubes 10 and 12 belong to a gradient with a greater delay.
- d le the delay 1- between the two gradient transducers
- c is the velocity of sound.
- the required delay r for the directional transducer is established entirely by the system of acoustic tubes. It is represented in FIG. 3 as element 30 solely to illustrate the relationships involved.
- signals from two gradient microphones are individually summed, signals from one are delayed, e.g., in delay system 30, and the two resultant signals are then added, e.g., in adder 31.
- addition of pairs of signals takes place directly in the respective cavities, and the necessary delay is achieved directly through the selection, dimensioning, and placement of the system of acoustic tubes.
- a backplate 17 was constructed from a brass disc 4 cm in diameter with holes 0.08 cm in diameter, and with four circular ridges on one surface, each 25.4p.m high.
- Electret foil 18 consisted of a 25.4p.m layer of fluoroethylenepropylene, marketed commercially under the trademark Teflon FEP, which was metalized on one side and charged preferably using an electron beam method.
- Teflon FEP fluoroethylenepropylene
- one of the two chambers is adjustable in volume, e.g., using a screw plunger or the like to permit tuning of the acoustic (Helmholtz) resonances of the tube cavity system.
- Electrostatic transducers employing perforated backplates and foil electret diaphragm members are known to those skilled in the art and described, for example, in Sessler-West U.'S. Pat. No. 3,118,022, granted Jan. 14, 1964. Details of backplate preparation, ridge structure, and the like are similarly known and described in the art, for example in Sessler-West U. S. Pat. No. 3,118,979, granted Jan. 21, 1964.
- tubes 10 and 12 were 5 cm long and tubes 11 and 13 were each 3.5 cm long.
- the two sets of tubes had inner and outer diameters of 0.22 and 0.32 cm, respectively. All tubes were open at their ends and were filled with approximately 60 mg. of steel wool to damp acoustic resonances.
- Each cavity and its associated tubes thus form a Helmholz resonator or an acoustic low-pass filter.
- a compensation of the m dependence, discussed below, of the sensitivity of the system is achieved.
- Frequency response measurements on the transducer constructed in practice and described above indicate that sensitivity for 0 0 is within 2 db from 250 Hz to 3 kHz.
- the response for 0 90 and 180 is -20 db lower than the response for 0 0 over most of the telephone band.
- the Helmholz resonance of the system aids materially in compensating and equalizing the system.
- the measured directivity index for the microphone described in detail above is about 8 db as compared with a calculated value of 8.7 db.
- the exact sensitivity and directivity patterns for the transducer may be altered by varying the overall size of the unit, the relative sizes of the cavities and the lengths of the tubes. With such modifications, however, the relationships among the various elements must, of course, be maintained to achieve the results described herein. Moreover, it will be recognized that the unidirectional characteristic of the microphone of the invention reduces to a cardioid 'pattern if only two of the tubes are used to supply signal samples to the system, one short tube to feed one cavity and one long tube to feed the other cavity.
- a unidirectional microphone which comprises,
- electroacoustic means positioned to separate said chambers for differentially converting acoustic signals in said chambers into electrical signals
- first and second acoustic tubes of first and second lengths respectively, mated into said first chamber and extending outward therefrom to sample a sound field at first and second points on a straight line
- third and fourth acoustic tubes of said first and second lengths respectively, mated into said second chamber and extending outward therefrom to sample said sound field at third and fourth points on said straight line
- sampling end of said first tube and the sampling end of said fourth tube being spaced apart from one another on said straight line by the same distance as the sampling end of said second tube and the sampling end of said third tube are spaced apart on said straight line, and the sampling ends of said first and said second tubes being spaced farther apart from one another than the sampling ends of said third and said fourth tubes.
- said tubes of said first length are selected to be longer than the tubes of said second length by a length related to the spacing on said straight line between the sampling point of one of said first length tubes feeding said first chamber and one of said second length tubes feeding said second chamber.
- a directional electrostatic transducer which comprises,
- transducer means separating said cavities for differentially converting acoustic signals supplied to said cavities into electrical signals, two acoustic tubes of first and second lengths opening, respectively, into said first and second cavities and extending outward therefrom to sample a sound field at first points separated from one another by a selected distance on a straight line parallel to a diameter of said cavity, and two acoustic tubes of said first and second lengths opening, respectively, into said second and first cavities and extending outward therefrom to sample said sound field at second points separated from one another by said selected distance and diametrically opposed to said first points on said line, the sampling ends of said tubes opening into said first cavity being spaced farther from one another than the sampling ends of said tubes opening into said second cavity.
- said electrostatic transducer means comprises, a foilelectret transducer supported between said cavities in a plane perpendicular to an axis thereof.
- a unidirectional second-order gradient microphone which comprises,
- transducer means intermediate said differentially converting acoustic signals in said cavities into electrical signals, two acoustic tubes of first and second lengths opening, respectively, into said first and second cavities and extending outward therefrom in a first direction to sample a sound field at points on a straight line separated from one another by a selected distance, and two acoustic tubes of said first and second lengths opening, respectively, into said second and first cavities and extending outward therefrom in a second direction opposite to said first direction to sample said sound field at points on said straight line separated from one another by said selected distance.
- a second-order gradient microphone as defined in claim 7, wherein,
- a second-order gradient microphone as defined in claim 7, wherein,
- a second-order gradient microphone which comprises, in combination,
- said first and said second sampling points being spaced apart from one another by a greater distance than said third and said fourth sampling points, and the spacing between said first and said fourth sampling points being equal to the spacing between said second and said third sampling points.
Landscapes
- Health & Medical Sciences (AREA)
- Otolaryngology (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Circuit For Audible Band Transducer (AREA)
- Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16450771A | 1971-07-21 | 1971-07-21 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3715500A true US3715500A (en) | 1973-02-06 |
Family
ID=22594801
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00164507A Expired - Lifetime US3715500A (en) | 1971-07-21 | 1971-07-21 | Unidirectional microphones |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US3715500A (de) |
| JP (1) | JPS5219966B1 (de) |
| AT (1) | AT322650B (de) |
| CA (1) | CA948305A (de) |
| DE (1) | DE2235169C3 (de) |
| GB (1) | GB1407266A (de) |
Cited By (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4156800A (en) * | 1974-05-30 | 1979-05-29 | Plessey Handel Und Investments Ag | Piezoelectric transducer |
| US4555598A (en) * | 1983-09-21 | 1985-11-26 | At&T Bell Laboratories | Teleconferencing acoustic transducer |
| EP0186996A3 (en) * | 1984-12-20 | 1987-12-02 | American Telephone And Telegraph Company | Unidirectional second order gradient microphone |
| US5007091A (en) * | 1987-04-23 | 1991-04-09 | Utk Uuden Teknologian Keskus Oy | Procedure and device for facilitating audiovisual observation of a distant object |
| US5121426A (en) * | 1989-12-22 | 1992-06-09 | At&T Bell Laboratories | Loudspeaking telephone station including directional microphone |
| US5226076A (en) * | 1993-02-28 | 1993-07-06 | At&T Bell Laboratories | Directional microphone assembly |
| US5633935A (en) * | 1993-04-13 | 1997-05-27 | Matsushita Electric Industrial Co., Ltd. | Stereo ultradirectional microphone apparatus |
| US5692060A (en) * | 1995-05-01 | 1997-11-25 | Knowles Electronics, Inc. | Unidirectional microphone |
| US5745588A (en) * | 1996-05-31 | 1998-04-28 | Lucent Technologies Inc. | Differential microphone assembly with passive suppression of resonances |
| US5848172A (en) * | 1996-11-22 | 1998-12-08 | Lucent Technologies Inc. | Directional microphone |
| EP0711095A3 (de) * | 1994-11-03 | 2001-01-10 | AT&T Corp. | Mikrofonanordnung mit Schallwand |
| US20020131228A1 (en) * | 2001-03-13 | 2002-09-19 | Potter Michael D. | Micro-electro-mechanical switch and a method of using and making thereof |
| US20020182091A1 (en) * | 2001-05-31 | 2002-12-05 | Potter Michael D. | Micro fluidic valves, agitators, and pumps and methods thereof |
| US20030008676A1 (en) * | 2001-07-03 | 2003-01-09 | Baumhauer John Charles | Communication device having a microphone system with optimal acoustic transmission line design for improved frequency and directional response |
| WO2003023957A1 (en) * | 2001-09-13 | 2003-03-20 | Potter Michael D | A resonator and a method of making thereof |
| US20030201784A1 (en) * | 2001-09-13 | 2003-10-30 | Potter Michael D. | Biohazard sensing system and methods thereof |
| US20040145271A1 (en) * | 2001-10-26 | 2004-07-29 | Potter Michael D | Electrostatic based power source and methods thereof |
| US20050044955A1 (en) * | 2003-08-29 | 2005-03-03 | Potter Michael D. | Methods for distributed electrode injection and systems thereof |
| US20050205966A1 (en) * | 2004-02-19 | 2005-09-22 | Potter Michael D | High Temperature embedded charge devices and methods thereof |
| US7116792B1 (en) * | 2000-07-05 | 2006-10-03 | Gn Resound North America Corporation | Directional microphone system |
| US20070074731A1 (en) * | 2005-10-05 | 2007-04-05 | Nth Tech Corporation | Bio-implantable energy harvester systems and methods thereof |
| US7211923B2 (en) | 2001-10-26 | 2007-05-01 | Nth Tech Corporation | Rotational motion based, electrostatic power source and methods thereof |
| US7217582B2 (en) | 2003-08-29 | 2007-05-15 | Rochester Institute Of Technology | Method for non-damaging charge injection and a system thereof |
| US20090059724A1 (en) * | 2007-09-04 | 2009-03-05 | Scanlon Michael V | Systems and Methods for Analyzing Acoustic Waves |
| EP0985327B1 (de) * | 1998-01-20 | 2009-06-03 | Shure Acquisition Holdings, Inc. | Unidirektionales eingebautes mikrofon |
| US20090161900A1 (en) * | 2007-12-21 | 2009-06-25 | Tandberg Telecom As | Microphone assembly for minimizing acoustic feedback from a loudspeaker |
| US20130028440A1 (en) * | 2011-07-26 | 2013-01-31 | Akg Acoustics Gmbh | Noise reducing sound reproduction system |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2228886A (en) * | 1938-10-31 | 1941-01-14 | Rca Corp | Electroacoustical apparatus |
| US2301744A (en) * | 1941-05-31 | 1942-11-10 | Rca Corp | Electroacoustical signal translating apparatus |
| US2699473A (en) * | 1950-11-13 | 1955-01-11 | Rca Corp | Pressure gradient responsive microphone |
| US2793255A (en) * | 1950-11-13 | 1957-05-21 | Rca Corp | Third order, pressure gradient responsive microphone |
| US3573400A (en) * | 1968-08-14 | 1971-04-06 | Bell Telephone Labor Inc | Directional microphone |
-
1971
- 1971-07-21 US US00164507A patent/US3715500A/en not_active Expired - Lifetime
-
1972
- 1972-01-27 CA CA133,304A patent/CA948305A/en not_active Expired
- 1972-07-17 AT AT613872A patent/AT322650B/de not_active IP Right Cessation
- 1972-07-18 DE DE2235169A patent/DE2235169C3/de not_active Expired
- 1972-07-19 GB GB3370472A patent/GB1407266A/en not_active Expired
- 1972-07-21 JP JP47072659A patent/JPS5219966B1/ja active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2228886A (en) * | 1938-10-31 | 1941-01-14 | Rca Corp | Electroacoustical apparatus |
| US2301744A (en) * | 1941-05-31 | 1942-11-10 | Rca Corp | Electroacoustical signal translating apparatus |
| US2699473A (en) * | 1950-11-13 | 1955-01-11 | Rca Corp | Pressure gradient responsive microphone |
| US2793255A (en) * | 1950-11-13 | 1957-05-21 | Rca Corp | Third order, pressure gradient responsive microphone |
| US3573400A (en) * | 1968-08-14 | 1971-04-06 | Bell Telephone Labor Inc | Directional microphone |
Cited By (42)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4156800A (en) * | 1974-05-30 | 1979-05-29 | Plessey Handel Und Investments Ag | Piezoelectric transducer |
| US4555598A (en) * | 1983-09-21 | 1985-11-26 | At&T Bell Laboratories | Teleconferencing acoustic transducer |
| EP0186996A3 (en) * | 1984-12-20 | 1987-12-02 | American Telephone And Telegraph Company | Unidirectional second order gradient microphone |
| US4742548A (en) * | 1984-12-20 | 1988-05-03 | American Telephone And Telegraph Company | Unidirectional second order gradient microphone |
| US5007091A (en) * | 1987-04-23 | 1991-04-09 | Utk Uuden Teknologian Keskus Oy | Procedure and device for facilitating audiovisual observation of a distant object |
| US5121426A (en) * | 1989-12-22 | 1992-06-09 | At&T Bell Laboratories | Loudspeaking telephone station including directional microphone |
| US5226076A (en) * | 1993-02-28 | 1993-07-06 | At&T Bell Laboratories | Directional microphone assembly |
| US5633935A (en) * | 1993-04-13 | 1997-05-27 | Matsushita Electric Industrial Co., Ltd. | Stereo ultradirectional microphone apparatus |
| EP0711095A3 (de) * | 1994-11-03 | 2001-01-10 | AT&T Corp. | Mikrofonanordnung mit Schallwand |
| US5692060A (en) * | 1995-05-01 | 1997-11-25 | Knowles Electronics, Inc. | Unidirectional microphone |
| US5745588A (en) * | 1996-05-31 | 1998-04-28 | Lucent Technologies Inc. | Differential microphone assembly with passive suppression of resonances |
| US5848172A (en) * | 1996-11-22 | 1998-12-08 | Lucent Technologies Inc. | Directional microphone |
| EP0985327B1 (de) * | 1998-01-20 | 2009-06-03 | Shure Acquisition Holdings, Inc. | Unidirektionales eingebautes mikrofon |
| US7116792B1 (en) * | 2000-07-05 | 2006-10-03 | Gn Resound North America Corporation | Directional microphone system |
| US20020131228A1 (en) * | 2001-03-13 | 2002-09-19 | Potter Michael D. | Micro-electro-mechanical switch and a method of using and making thereof |
| US7280014B2 (en) | 2001-03-13 | 2007-10-09 | Rochester Institute Of Technology | Micro-electro-mechanical switch and a method of using and making thereof |
| US20020182091A1 (en) * | 2001-05-31 | 2002-12-05 | Potter Michael D. | Micro fluidic valves, agitators, and pumps and methods thereof |
| US7195393B2 (en) | 2001-05-31 | 2007-03-27 | Rochester Institute Of Technology | Micro fluidic valves, agitators, and pumps and methods thereof |
| US20030008676A1 (en) * | 2001-07-03 | 2003-01-09 | Baumhauer John Charles | Communication device having a microphone system with optimal acoustic transmission line design for improved frequency and directional response |
| US6842009B2 (en) | 2001-09-13 | 2005-01-11 | Nth Tech Corporation | Biohazard sensing system and methods thereof |
| US20030112096A1 (en) * | 2001-09-13 | 2003-06-19 | Potter Michael D. | Resonator and a method of making thereof |
| WO2003023957A1 (en) * | 2001-09-13 | 2003-03-20 | Potter Michael D | A resonator and a method of making thereof |
| US20030201784A1 (en) * | 2001-09-13 | 2003-10-30 | Potter Michael D. | Biohazard sensing system and methods thereof |
| US6717488B2 (en) | 2001-09-13 | 2004-04-06 | Nth Tech Corporation | Resonator with a member having an embedded charge and a method of making thereof |
| US20040145271A1 (en) * | 2001-10-26 | 2004-07-29 | Potter Michael D | Electrostatic based power source and methods thereof |
| US7211923B2 (en) | 2001-10-26 | 2007-05-01 | Nth Tech Corporation | Rotational motion based, electrostatic power source and methods thereof |
| US7378775B2 (en) | 2001-10-26 | 2008-05-27 | Nth Tech Corporation | Motion based, electrostatic power source and methods thereof |
| US7217582B2 (en) | 2003-08-29 | 2007-05-15 | Rochester Institute Of Technology | Method for non-damaging charge injection and a system thereof |
| US20070152776A1 (en) * | 2003-08-29 | 2007-07-05 | Nth Tech Corporation | Method for non-damaging charge injection and system thereof |
| US20050044955A1 (en) * | 2003-08-29 | 2005-03-03 | Potter Michael D. | Methods for distributed electrode injection and systems thereof |
| US7287328B2 (en) | 2003-08-29 | 2007-10-30 | Rochester Institute Of Technology | Methods for distributed electrode injection |
| US7408236B2 (en) | 2003-08-29 | 2008-08-05 | Nth Tech | Method for non-damaging charge injection and system thereof |
| US20050205966A1 (en) * | 2004-02-19 | 2005-09-22 | Potter Michael D | High Temperature embedded charge devices and methods thereof |
| US8581308B2 (en) | 2004-02-19 | 2013-11-12 | Rochester Institute Of Technology | High temperature embedded charge devices and methods thereof |
| US20070074731A1 (en) * | 2005-10-05 | 2007-04-05 | Nth Tech Corporation | Bio-implantable energy harvester systems and methods thereof |
| US7656749B2 (en) * | 2007-09-04 | 2010-02-02 | The United States Of America As Represented By The Secretary Of The Army | Systems and methods for analyzing acoustic waves |
| US20090059724A1 (en) * | 2007-09-04 | 2009-03-05 | Scanlon Michael V | Systems and Methods for Analyzing Acoustic Waves |
| US20090161900A1 (en) * | 2007-12-21 | 2009-06-25 | Tandberg Telecom As | Microphone assembly for minimizing acoustic feedback from a loudspeaker |
| WO2009082233A1 (en) * | 2007-12-21 | 2009-07-02 | Tandberg Telecom As | Microphone device |
| US8170256B2 (en) | 2007-12-21 | 2012-05-01 | Cisco Technology, Inc. | Microphone assembly for minimizing acoustic feedback from a loudspeaker |
| US20130028440A1 (en) * | 2011-07-26 | 2013-01-31 | Akg Acoustics Gmbh | Noise reducing sound reproduction system |
| US9613612B2 (en) * | 2011-07-26 | 2017-04-04 | Akg Acoustics Gmbh | Noise reducing sound reproduction system |
Also Published As
| Publication number | Publication date |
|---|---|
| CA948305A (en) | 1974-05-28 |
| DE2235169C3 (de) | 1974-02-21 |
| JPS5219966B1 (de) | 1977-05-31 |
| DE2235169B2 (de) | 1973-07-26 |
| AT322650B (de) | 1975-05-26 |
| GB1407266A (en) | 1975-09-24 |
| DE2235169A1 (de) | 1973-02-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3715500A (en) | Unidirectional microphones | |
| US3995124A (en) | Noise cancelling microphone | |
| US4156800A (en) | Piezoelectric transducer | |
| US3573400A (en) | Directional microphone | |
| EP0186388B1 (de) | Toroidmikrophon zweiter Ordnung | |
| Guicking et al. | Active impedance control for one-dimensional sound | |
| US5226076A (en) | Directional microphone assembly | |
| US3573399A (en) | Directional microphone | |
| US2463762A (en) | Electroacoustical transducer | |
| US5025885A (en) | Multiple chamber loudspeaker system | |
| US4742548A (en) | Unidirectional second order gradient microphone | |
| CA1282162C (en) | Electroacoustic device with broad frequency range directional response | |
| CA2032080C (en) | Directional microphone assembly | |
| GB2100551A (en) | End-fire microphone and loudspeaker structures | |
| US2773933A (en) | Third order pressure gradient responsive microphone | |
| JPS6163193A (ja) | 電気音響変換器 | |
| US3859477A (en) | Electrostatic transducer | |
| JP3299829B2 (ja) | 可変指向性コンデンサマイクロホン | |
| Leonard et al. | Akustik II/Acoustics II | |
| US3115207A (en) | Unidirectional microphone | |
| Sessler et al. | Second‐order gradient unidirectional microphones utilizing an electret transducer | |
| US3715713A (en) | Pressure gradient transducer | |
| US3146308A (en) | Capacitor microphones | |
| TW202322636A (zh) | 麥克風組件 | |
| Sessler et al. | Toroidal microphones |