US3712242A - Snow and ice track clearer for ground effect machines - Google Patents
Snow and ice track clearer for ground effect machines Download PDFInfo
- Publication number
- US3712242A US3712242A US00051263A US3712242DA US3712242A US 3712242 A US3712242 A US 3712242A US 00051263 A US00051263 A US 00051263A US 3712242D A US3712242D A US 3712242DA US 3712242 A US3712242 A US 3712242A
- Authority
- US
- United States
- Prior art keywords
- machine
- pressure fluid
- snow
- dihedral
- track
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000000694 effects Effects 0.000 title claims abstract description 25
- 239000012530 fluid Substances 0.000 claims abstract description 70
- 238000010079 rubber tapping Methods 0.000 claims abstract description 14
- 238000007790 scraping Methods 0.000 claims description 4
- 238000007599 discharging Methods 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01H—STREET CLEANING; CLEANING OF PERMANENT WAYS; CLEANING BEACHES; DISPERSING OR PREVENTING FOG IN GENERAL CLEANING STREET OR RAILWAY FURNITURE OR TUNNEL WALLS
- E01H8/00—Removing undesirable matter from the permanent way of railways; Removing undesirable matter from tramway rails
- E01H8/10—Removing undesirable matter from rails, flange grooves, or the like railway parts, e.g. removing ice from contact rails, removing mud from flange grooves
- E01H8/105—Pneumatically or hydraulically loosening, removing or dislodging undesirable matter, e.g. removing by blowing, flushing, suction; Application of melting liquids; Loosening or removing by means of heat, e.g. cleaning by plasma torches, drying by burners
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60V—AIR-CUSHION VEHICLES
- B60V3/00—Land vehicles, waterborne vessels, or aircraft, adapted or modified to travel on air cushions
- B60V3/02—Land vehicles, e.g. road vehicles
- B60V3/04—Land vehicles, e.g. road vehicles co-operating with rails or other guiding means, e.g. with air cushion between rail and vehicle
Definitions
- the machine carrying the clearing means is constituted actually as a ground effect machine and the supply of compressed fluid is constituted by the exhaust of a turbo-machine adapted to also drive other parts such for instance, as the fans feeding fluid to the machine-sustaining cushions.
- the pressure of the hot fluid passing out of the turbo-machine is in certain cases unsufficient so that it is sometimes necessary to compress it again before it is ejected at the front of the machine before it is blown onto the snow or ice.
- the present invention has for its object further embodiments of the apparatus disclosed in the abovementioned prior Specification in which embodiments the supply of compressed fluid provides a fluid under suitable pressure and temperature conditions while the fluid-projecting means match the shape of the track so as to exert a highly efficient clearing action.
- the clearing fluid is tapped off the output of the compressor of a turbomachine or from an intermediate stage of said compressor.
- the turbo-machine may as in said prior specification fulfil other purposes; for instance, it may propel .the machine or again in the case of a ground effect machine it may feed fluid into the machine-sustaining and guiding air cushions.
- the fluid projecting means are constituted by at least one hollow member positioned to the front of the machine, connected with the supply of compressed fluid and associated with at least one of said machine-guiding and sustaining surfaces, at least the front end of said member being located in the vicinity of said surfaces while it matches the shape of the latter and is provided with fluid ejecting ports.
- Two hollow fluid projecting members associated with corresponding sustaining and guiding surfaces forming a dihedral with each other may be pivotally secured to a shaft rigid with the machine while means are provided for elastically returning said hollow members towards said associated surfaces.
- a ground effect machine it is possible in the case of a ground effect machine to send the hot fluid escaping from the exhaust of the turbomachine or a fraction of the fluid tapped off the delivery end of the compressor feeding the turbomachine into the interval between the machine and the track in the vicinity of the walls confining the cushions of compressed fluid of the machine in order to cut out the detrimental effects of the frost formed on the track and on the walls confining the cushions.
- FIG. 1 is an elevational view, partly torn off, of a ground effect machine including track-clearing means executed in conformity with the invention.
- FIG. 2 is a plan view partly torn off of the same machine
- FIG. 3 is a diagrammatic sectional view illustrating the means for tapping the fluid off the delivery end of the compressor of a turbo-machine carried by the ground effect machine.
- FIG. 4 is a perspective view of the arrangement projecting the fluid onto the track and adapted to be secured to the front of the ground effect machine.
- FIG. 5 is a longitudinal sectional view along line V- V of FIG. 4
- FIG. 6 is a partial perspective view illustrating a modified embodiment of the fluid projecting arrangement.
- FIG. 7 is an elevational sectional view of a cushion of compressed fluid provided for the ground effect machine and associated with means adapted to project hot fluid between the machine and the track.
- the ground effect machine 1 cooperates through the agency of the compressed fluid cushion 3 with a track 2 which latter is in the shape of an inverted T and includes two carrier sections 2a and a medial upright guiding section 2b.
- the machine is propelled by a propeller 4 housed inside a fairing 4a and driven into rotation by two turbomachines 5 through the agency of the shafts 6a and of coupling and speed-reducing means 6.
- the ground effect machine 1 is provided with an input 7 for external fluid adapted to feed the turbo-machines 5 while the exhaust of the latter is ensured through two channels 8 opening to the rear of the machine in a direction opposed to the progression of the latter illustrated by the arrow F.
- the cushions 3 are fed with compressed fluid passing out of two channels 9 located to either side of the medial vertical longitudinal plane of the machine.
- Each channel 9 is provided at its front end with a dynamic input 9a for the external fluid, said input being associated with a fan 10.
- the fans 10 are driven by a turbo-machine 11 through the agency of coupling and speed-reducing means 12.
- the input of said turbo machine is connected with the dynamic inputs 9aby means of channels 13 while the exhaust of the turbo-machine opens into a channel 14.
- the compressed fluid may be tapped off an intermediate stage of the compressor or else in the case of a turbo-machine provided with a plurality of compressors operating in series or in parallel, it may be tapped off the delivery end of one of said compressors.
- FIGS. 4 and 5 show the clearing structure cooperating with one of the carrier sections 2a of the track and with the corresponding surface of the guiding upright section 2b.
- Said structure includes a frame 27 secured to the machine and carrying a shaft 29 held fast also by arms 28 forming an extension of said frame 27.
- the shaft 29 slopes towards the carrier section 2a and towards the guiding upright section 2b in a manner such that its end facing the machine lies at a distance from said carrier and guiding sections and registers substantially with the outer edges of said sections while its other end is located in the vicinity of the ridge of the dihedral defined by the carrier section 2a and the guiding upright section 2b.
- Two hollow fluid projecting members 31a and 31b of a generally flat substantially triangular shape cooperate respectively with the carrier section 2a and with the guiding upright section 2b of the track and are pivotally secured through their sides 31 1a and 31lb to the shaft 29 for instance by means of hinges 32.
- the front edges 310a, 31% of said members 31a, 31b forming the second sides of the triangles are located in the vicinity of the track surfaces 2a, 2b and are substantially parallel with the latter.
- the lateral edges 312a, 31'2b of said members forming the last sides of the triangles slope respectively with reference to the cooperating track surfaces 2a and 2b and their projections on said associated surfaces are adjacent the outer edges of the latter.
- the forward edges 310a, 31% of the hollow members are provided, facing the outer edges of the surfaces 2a, 2b with rollers 33a, 33b and facing the ridge of the dihedral formed by said surfaces with shoes 34a, 34b.
- the two hollow members 31a, 31b are urged towards the associated track surfaces 2a, 2b by elastic means 35a, 35b such as springs. Damping members may also be provided.
- a hood or cover 36 secured to the edge 3l2b of the member 31b extends above the member 31a in a direction substantially parallel with the track surface 2a.
- the hollow members 31a and 31b are fed with compressed fluid passing out of the channels 16a, 16b fed in parallel by the corresponding channel 16.
- the compressed fluid is ejected to the front of the members 31 towards the track surfaces 2a and 2b so as to form jets passing through slots 37 provided in the edges 310a, 3l0bof said members.
- a row of ports 38 formed in the surfaces of the members 31a, 31b which face away from the track surfaces 2a and 2b is also provided.
- the jets of hot compressed fluid delivered through the slot 37 undermine the ice or snow lying onthe track so as to release and blow away said snow and ice.
- the snow and ice are then urged away from the track by the deflectors constituted by said members 31a and 31b.
- the jets of fluid passing out of the ports 38 further the removal of the snow and ice towards the sides of the track.
- the hollow members 31 may be provided along their forward edges 310a, 3101) with a plurality of nozzles 40 of a substantially circular cross-section; on the other hand, the members are rigid on their surfaces facing away from the track section surfaces with which they cooperate with ribs 41 also provided with nozzles 42.
- the hinge 32 is protected by a yielding cover 43.
- Such an embodiment is particularly suitable for the cases where the amount of ice or snow lying on the track is large and compact.
- the nozzles in the ribs 41 allow the mass of ice or snow to be subdivided easily while the nozzles 40 release said mass and blow it away.
- the structures 15 are removable and suitable for incorporation with a ground effect machinev Of course, they may form an integral part of an actual ground effect machine.
- FIG. 7 shows a cushion 3 formed on a ground effect machine and cooperating with the track surface 2.
- Said cushion 3 is confined by walls extending up to a line in the vicinity of the carrier surface of the track 2 and secured to a terminal surface 1a forming part of the structure of the machine.
- the cushion 3 is fed with compressed fluid through the channel 55.
- a channel 52 associated with a slot 53 formed in the surface 1a and opening at a point in the vicinity of the walls 50 on the outside of the cushion 3 is fed with hot compressed fluid by a channel 51
- a shaped member 54 is provided so as to guide the jets of fluid passing out of said slot 53 towards the walls 50 and track 2.
- the channel 51 may also feed the actual cushion 3 with hot fluid through a channel 56 as illustrated in dot-and-dash lines in FIG. 7.
- the channel 51 is connected with the exhaust 14 of the turbo-machine 11 or with the exhaust ports or channels 8 of the turbomachines 5. It is also possibleto connect said channel 51 with the delivery end of the compressor of the turbo-machine 11 or 5 that is with the channels 22 or
- This arrangement provides for the constant presence, between the ground effect machine and the track of masses of hot fluid ensuring the proper operation of the parts of the machine which might otherwise be disturbed by the .frost. In particular when the machine has stopped for some time the formation of glazed frost on the track and on the machine may lead to a rigid joining of the confining wall 50 enclosing a fluid cushion with the track.
- the arrangement disclosed removes the glazed frost speedily off the track and the confining walls 50 Obviously, the invention is not limited to the embodiments disclosed with particular detail and it covers also all the embodiments incorporating equivalent technical means and falling within the scope of
- a snow and ice clearing system comprising a prime mover with a source of pressure fluid
- a pressuire fluid manifold structure connected with said tapping means and extending to the front of said machine with respect to the direction of motion thereof, said manifold structure comprising outer longitudinal ribs integral therewith and projecting from a side thereof facing away from said dihedral track surfaces, and further nozzle means formed in said ribs and opening at a front end thereof, said further nozzle means being supplied with pressure fluid from said manifold structure, and
- said manifold structure comprises bearing means fitted adjacent said front end thereof and engaging said dihedral track surfaces.
- a snow and ice clearing system comprising a prime mover with a source of pressure fluid
- a pressure fluid manifold structure connected with said tapping means and extending to the front of said machine with respect to the direction of motion thereof, said manifold structures comprising bearing means fitted adjacent the front end thereof and engaging said dihedral track surfaces, and
- said manifold structure comprises further nozzle means opening on a side thereof facing away from said dihedral track surfaces and supplied with pressure fluid from said manifold structure.
- said prime mover comprises a gas-turbine unit incorporating a gas turbine and an air compressor driven thereby, said source of pressure fluid being said compressor and said pressure fluid being tapped upstream of said gas turbine.
- a machine as claimed in claim 5, comprising pressure fluid cushions formed against said track, and a fan discharging pressure fluid into said cushions, said fan being separate from said compressor while emg likewise driven from said gas turbine.
- a machine as claimed in claim 6, further comprising piping means for tapping hot exhaust gas from said gas turbine and delivering the same in the region of said cushions.
- said manifold structure comprises two generally planar sections at an angle with each other and ending forwardly with leading edges along which said nozzle means extend, means for hinging said sections to each other, and resilient means for urging each of said hinged sections towards a respective track surface.
- said manifold structure comprises two generally planar sections at an angle with each other and ending forwardly with leading edges along which said nozzle means extend, namely a substantially horizontal section and a substantially vertical section ending with an upper edge, and a hood element integral with said vertical section and extending substantially horizontally from said upper edge over said-horizontal section.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR6922116A FR2050204A6 (es) | 1969-07-01 | 1969-07-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3712242A true US3712242A (en) | 1973-01-23 |
Family
ID=9036688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00051263A Expired - Lifetime US3712242A (en) | 1969-07-01 | 1970-06-30 | Snow and ice track clearer for ground effect machines |
Country Status (3)
Country | Link |
---|---|
US (1) | US3712242A (es) |
CA (1) | CA919995A (es) |
FR (1) | FR2050204A6 (es) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6148732A (en) * | 1998-09-30 | 2000-11-21 | Carolina Equipment & Supply Company, Inc. | Railcar track cleaning system |
WO2013101278A1 (en) * | 2011-04-15 | 2013-07-04 | Lta Corporation | Transportation system including a hovering vehicle |
US20140138190A1 (en) * | 2011-11-19 | 2014-05-22 | Zhonghua Li | Quick Braking Assembly |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2570105B1 (fr) * | 1984-09-11 | 1987-01-09 | Tech Fse Nettoyage | Procede et dispositif pour l'entretien des voies, notamment souterraines, du type metro |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2802286A (en) * | 1952-01-07 | 1957-08-13 | Wylie Laurence | Method of removing snow from a line of travel, or an area, and a mechanism to carry out the same |
US3041748A (en) * | 1961-05-19 | 1962-07-03 | Cleveland Technical Ct Inc | Snow removal apparatus |
US3099097A (en) * | 1961-05-15 | 1963-07-30 | Richard G Simmons | Snow blower apparatus |
US3136488A (en) * | 1962-05-25 | 1964-06-09 | Bristol Sheet Metal Co | Adjustable nozzle for jet snow melters |
US3199506A (en) * | 1962-03-03 | 1965-08-10 | Bertin & Cie | Device for clearing wide roads or runways covered with snow and ice |
US3359969A (en) * | 1965-10-20 | 1967-12-26 | Bertin & Cie | Device for clearing wide snow-or ice-covered runways, roads or the like |
US3417709A (en) * | 1965-06-03 | 1968-12-24 | Bertin & Cie | Air-cushion sustained vehicles |
-
1969
- 1969-07-01 FR FR6922116A patent/FR2050204A6/fr not_active Expired
-
1970
- 1970-06-30 US US00051263A patent/US3712242A/en not_active Expired - Lifetime
- 1970-06-30 CA CA087021A patent/CA919995A/en not_active Expired
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2802286A (en) * | 1952-01-07 | 1957-08-13 | Wylie Laurence | Method of removing snow from a line of travel, or an area, and a mechanism to carry out the same |
US3099097A (en) * | 1961-05-15 | 1963-07-30 | Richard G Simmons | Snow blower apparatus |
US3041748A (en) * | 1961-05-19 | 1962-07-03 | Cleveland Technical Ct Inc | Snow removal apparatus |
US3199506A (en) * | 1962-03-03 | 1965-08-10 | Bertin & Cie | Device for clearing wide roads or runways covered with snow and ice |
US3136488A (en) * | 1962-05-25 | 1964-06-09 | Bristol Sheet Metal Co | Adjustable nozzle for jet snow melters |
US3417709A (en) * | 1965-06-03 | 1968-12-24 | Bertin & Cie | Air-cushion sustained vehicles |
US3359969A (en) * | 1965-10-20 | 1967-12-26 | Bertin & Cie | Device for clearing wide snow-or ice-covered runways, roads or the like |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6148732A (en) * | 1998-09-30 | 2000-11-21 | Carolina Equipment & Supply Company, Inc. | Railcar track cleaning system |
WO2013101278A1 (en) * | 2011-04-15 | 2013-07-04 | Lta Corporation | Transportation system including a hovering vehicle |
US9180856B2 (en) | 2011-04-15 | 2015-11-10 | Lta Corporation | Transportation system including a hovering vehicle |
US9937912B2 (en) | 2011-04-15 | 2018-04-10 | Lta Corporation | Transportation system including a hovering vehicle |
US10926754B2 (en) | 2011-04-15 | 2021-02-23 | JG Entrepreneurial Enterprises LLC | Transportation system including a hovering vehicle |
US11661050B2 (en) | 2011-04-15 | 2023-05-30 | JG Entrepreneurial Enterprises LLC | Transportation system including a hovering vehicle |
US20140138190A1 (en) * | 2011-11-19 | 2014-05-22 | Zhonghua Li | Quick Braking Assembly |
Also Published As
Publication number | Publication date |
---|---|
CA919995A (en) | 1973-01-30 |
FR2050204A6 (es) | 1971-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3051413A (en) | Vtol aircraft | |
US3951360A (en) | Device for regulating and recovering the boundary layer over the surface of a body such as an aircraft in flight | |
US2220082A (en) | Spraying and dusting machine | |
US3002341A (en) | Jet engine noise suppression nozzles | |
US3128063A (en) | Airfoil with boundary layer control | |
GB580995A (en) | Improvements in and relating to aircraft employing jet propulsion | |
US3712242A (en) | Snow and ice track clearer for ground effect machines | |
GB1345786A (en) | Gas ejection device with a silencer feature | |
GB1047990A (en) | Aircraft jet propulsion power plant | |
GB1019303A (en) | Improvements in nozzle systems of jet propulsion engines | |
GB1161949A (en) | Improvements in Aircraft Gas Generator Exhaust Nozzle Structures | |
GB1067440A (en) | Improvements relating to gas-cushion supported vehicles | |
GB1381806A (en) | Air-cushion vehicle | |
US3113636A (en) | Jet noise silencing appartus for an aircraft | |
US2869479A (en) | Propulsion of vehicles | |
US3261419A (en) | System for controlling altitude and pitch in a ground effect vehicle | |
US3468395A (en) | Air cushion vehicles with centrifugal fans providing air for sustention and propulsion | |
US2849760A (en) | Moisture removal means | |
GB913312A (en) | Jet propulsion engine | |
US2954949A (en) | Bomb bay buffet control | |
GB787011A (en) | A jet deflecting flap for jet-propelled aircraft | |
GB1246136A (en) | Jet propulsion nozzle | |
US3566797A (en) | Jet thrust propulsion or braking device for a ground effect machine | |
DK0657014T3 (da) | Luftudløb til ventilationsanlæg | |
GB1006631A (en) | Improved device for clearing wide roads or runways covered with snow and ice |