US3711993A - Relatively short air lock for transfer of relatively long objects - Google Patents
Relatively short air lock for transfer of relatively long objects Download PDFInfo
- Publication number
- US3711993A US3711993A US00124172A US3711993DA US3711993A US 3711993 A US3711993 A US 3711993A US 00124172 A US00124172 A US 00124172A US 3711993D A US3711993D A US 3711993DA US 3711993 A US3711993 A US 3711993A
- Authority
- US
- United States
- Prior art keywords
- chamber
- shutter
- shutters
- air lock
- around
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000012546 transfer Methods 0.000 title description 6
- 239000012528 membrane Substances 0.000 claims abstract description 34
- 238000011010 flushing procedure Methods 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims description 14
- 239000012530 fluid Substances 0.000 claims description 8
- 238000007789 sealing Methods 0.000 claims description 4
- 238000003780 insertion Methods 0.000 claims description 2
- 230000037431 insertion Effects 0.000 claims description 2
- 206010016825 Flushing Diseases 0.000 abstract description 18
- 230000002457 bidirectional effect Effects 0.000 abstract description 6
- 238000005192 partition Methods 0.000 description 6
- 238000009434 installation Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000282620 Hylobates sp. Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F7/00—Shielded cells or rooms
- G21F7/005—Shielded passages through walls; Locks; Transferring devices between rooms
Definitions
- ABSTRACT Socleie Luxeni strengeime pour An air lock has a pair of shutters with variable aperdustrle Nucleaire, Stemfort, Germany tures defining a chamber between a pair of independent spaces.
- the shutters are flexible and snugly [22] Filed: March 15, 1971 sealingly engageable around an elongated object, and the chamber can be flushed out.
- the first shutter is [21] 124l72 closed around the object which is then axially advanced through the second shutter which closes snugly 30 Foreign Application p i Data around it.
- the chamber is fllushed and the object is axially advanced fully on through the chamber with March 17,1970 Luxembourg ..6 0.542 the Shutters closed behind it
- the chamber is also flushed during at least one other stage of the operation [52] US. Cl ..49/68, 176/30 when one f the Shutters is engaged around the object [5 1] Int. Cl. and the other is closed for a unidirectionai eaL Field of Search Three flushings can make a bidirectional seal.
- the 214/13 32 shutters can be annular membranes which are distorted or inflated to engage around the object.
- D is a diagrammatic representation of FIG.
- G
- the present invention relates to an air lock. More particularly, this invention concerns an air lock usable in nuclear installations for the transfer of elongated objects from a contaminated to a noncontaminated space and vice versa.
- a conventional double-door air lock wherein one door is opened, the object introduced into the lock, this door closed, the atmosphere purged, and then the other door opened and the object removed after which this other door is closed and the atmosphere is again purged was long considered the only solution.
- Such a lock can be used with only one purging per operating cycle, eliminating the purge after loading the object, when unidirectional leakage is permissible.
- These devices have one principal drawback: they must be large enough to fully receive the object to be transferred. This makes them very expensive and often so large as to be impractical.
- Yet another object is to provide a small air lock through which objects of an overall length many times greater than the air-lock size can be passed.
- a further object is the provision of an air lock which is easy to repair.
- an air lock having a pair of flexible shutters which are axially spaced apart by a distance shorter than the length of the object to be passes through the lock and which can tightly surround and hug the object as it is passed through, and means for flushing out the chamber formed between the shutters.
- Such an air lock is operated by a very simple method: The first shutter is fitted around one end of the object and the chamber is flushed out, then the object is advanced and the second shutter is fitted around it and the chamber is flushed out again. As the training end finally is pulled through the first shutter, this is closed and the chamber is flushed out again after which the object can be pulled all the way through. In this manner no leakage can take place in either direction. Of course, if a unidirectional seal is sufficient, either the first or last flushing operation, depending on which way the seal is to be effective, can be eliminated.
- the air lock is provided with a rigid door adjacent each shutter so that when the lock is not in use the doors can be latched shut to maintain a heavy-duty static seal.
- Each door is fixed with its shutter on a mounting ring which is removably mounted on the partition in order that either shutter can be replaced without running the risk of leakage since the other shutter and door are more than capable of maintaining a tight seal.
- each shutter is formed by a flexible annular membrane having a pair of ends attached to mutually rotatable rings so that the torsion created in the membrane can close the aperture through its center.
- the membrane can be formed as a pair of hyperboloids of revolution whose inner peripheries are joined and whose outer peripheries are attached to the adjusting rings. The inner peripheries thus form the aperture.
- the membrane can be annular and inflatable so that its internal pressure determines the aperture size.
- FIGS. 1A and 1B are side sectional views of a first embodiment of the membrane in the open and closed positions, respectively;
- FIG. 1C is a perspective view of the first embodiment of the membrane in the open position
- FIG. 1D is a front elevational view showing the first embodiment of the membrane in the closed position
- FIGS. 1E and IF, FIGS. 10 and 1H, and FIGS. II and U are side sectional views through second, third and fourth embodiments of the membrane according to the present invention, respectively, in the open and closed positions;
- FIG. 2 is a side sectional view through an air lock according to the present invention.
- FIGS. 3A through 3I are diagrammatic sectional views illustrating the method of operating the air lock according to the present invention.
- FIG. 4 is a diagrammatic side sectional view through another embodiment of the present invention.
- a membrane 1 is formed with two portions 1' and 1" each shaped as hyperboloids of revolution and joined at their inner periphery.
- the outer peripheries of the portions 1' and l" are joined to mutually rotatable adjacent rings 2' and 2", respectively.
- An actuating member 14 extends radially out from the ring 2" and serves to rotate this ring relative to the other to move the membrane from the open position shown in FIGS. 1A and 1C to the closed position of FIGS. 18 and 1D.
- FIGS. 1E and IF show a seal 3 which is highly flexible and hollow. Its interior is connected to a compressor 17 so that as the internal pressure is increased, its inner edge 30 can be brought radially into engagement around an elongated workpiece 5 of convex cross-sectional shape and regular cross section.
- This annular membrane 3 is formed at its inner periphery 3a with a plurality of circumferential ridges to form a very good seal around the object 5.
- FIGS. 1G and 1H there is shown a membrane 4 which is formed by a central highly elastic ring 4a connected via a pair of annular flexible membranes 4a and 4b to a pair of rings 2a and 2a" which are axially displaceable toward each other.
- the aperture formed by the ring 4a is open, and when they are brought toward each other as in FIG. ll-I, this aperture decreases in size to snugly hug the body 5.
- the membrane 18 shown in FIGS. ll and l] is essentially cylindrical in shape and has its ends attached to relatively rotatable rings 2b and 2b" such that their mutual rotation determines the size of the aperture through the membrane 18.
- FIG. 2 shows a partition wall 19 of concrete sheathed by steel plate which separates an uncontaminated space 7 from a radioactively contaminated space 8.
- a passage or part 6 is formed through this partition 19 with angle rings 9 and 9' seated in its opposite ends and held in place by means of dogs 13 carried on bolts 13a.
- the rings 9 and 9' are sealed by means of seal rings 20 and each carry further annular mounting members 21 in which is received a rotatable ring 10.
- a door 12 hinged at the top is provided on one of the rings 21 and a similar door 12' is provided on the other.
- Pivotal latches 22 are provided to hold these doors l2 and 12 in tight engagement with seal rings 23 carrying resilient seals 24 so that the passage 6 can be a gastight chamber.
- Adjacent each of the doors l2 and 12' is a respective membrane 11 and 11, such as described with reference to FIGS. lA-lD.
- the two mutually rotatable rings are constituted by the rings 21 and 10.
- These membranes 11 and 11' are shown in the closed position in FIG. 2.
- the conduit 16 leads to a filter 25 which is connected to a pump 26 that is itself connected to the conduit 15.
- a filter 25 which is connected to a pump 26 that is itself connected to the conduit 15.
- the pressure in the chamber 6 will have to be maintained above that on the side from which no contamination is permissible.
- pressure in the chamber 6 must be lower or higher than that to both sides. To do this the flow path must be interrupted somewhere and opened to the atmosphere.
- a pressure differential is often created as a matter of course between contaminated and noncontaminated spaces so that dust leakage is made virtually impossible. This, the pressure in the chamber 6 can be maintained at an intermediate level by the control 29 for the best seal.
- seals which do not close fully, but merely have an aperture adjustable around the size of the objects intended to pass through the air lock.
- the doors forming a static seal are absolutely necessary, and it is advantageous to arrange the pressure differentials across the shutters, which can be thought to include the doors, to prevent leakage in the wrong direction.
- the latches 13, doors 12 and 12, and membranes 11 and 1 1 can all be controlled by remote control through a control device 30, which functions synchronously with the displacement of the object 5 through the air lock.
- FIGS. 3A-3I show the operation of the air lock shown in FIG. 2.
- FIG. 3A it is shown how both doors l2 and 12 and both membranes 11 and 11' are closed so that in effect four barriers exist between the space 7 and the space 8.
- FIGS. 38 the door 12 and the corresponding membrane ll are opened and the leading end of the body 5 is inserted in the aperture, with any pressure differential compensated for by the control 29.
- FIG. 3C shows how this body 5 has been axially advanced so that its leading end is fully within the chamber 6 and the membrane 11 has been snugly closed around the body 5.
- the pump 26 is actuated to flush out the chamber 6 if a bidirectional seal is desired and to establish the same pressure as in the contaminated zone. If, however, the only aim is to prevent the radioactivity in space 8 from getting into the space 7 then there is no necessity for this flushing.
- FIG. 3D the body 5 has been axially advanced further so that its leading edge extends beyond the membrane 11 and door 12, both of which are now open. Thereafter, as seen in FIG. 3E this membrane 1 l is closed around the body 5 and the compartment 6 is flushed out. This flushing operation is necessary for a bidirectional seal.
- FIG. 3F shows how the body 5 has been advanced so that its trailing edge is within the chamber 6 and in FIG. 3G the door 12 and membrane 11 are closed and the chamber is flushed out.
- FIG. 3H the rod 5 has been advanced fully out of the air lock and in FIG. 3I all doors l2 and 12' and shutters l1 and 11" are shut and the chamber 6 is flushed.
- FIGS. 3A-3I If leakage can occur, as seen in FIGS. 3A-3I, from left to right the chamber need only be flushed in the positions shown in FIGS. 3 E and 3
- FIG. 4 shows a further embodiment of the invention wherein three shutters 11, l1 and ll" are provided, together defining two chambers 6 and 6" separately flushable by conduits l5, l6 and 16" respectively.
- This embodiment is used as taught for the embodiment of FIGS. 3A-3', except that the second chamber is used to make an extremely tight seal.
- four or more shutters can be used, the leak protection being increased thereby as well as the ability to withstand large pressure differentials.
- the air locks described above can be used in the walls of nuclear installations for the transfer of fuel elements and the like, or in the walls ofa glove box. These locks permit the passage of a relatively long object through a relatively thin wall so that, for instance, a fuel element some 4 feet long can be passed through a wall 6 inches thick. The saving in space is large. At the same time, either side of the lock can be unscrewed and replaced without in any manner risking leakage. After the new side is put in place and closed the chamber need merely be flushed to insure complete tightness.
- An air lock for the passage of an elongated object between two independent and adjacent spaces comprising:
- said means defining a cylindrical chamber between said spaces of a length greater than its diameter, said means including a pair of circular shutters at opposite sides of said chamber and interposed between the latter and a respective one of said spaces, each of said shutters being annular flexible membranes and openable from the center outwardly to produce respective axially aligned variable-size apertures surrounding and hugging the object upon its axial insertion therethrough;
- each of said membranes has in an open position the form of a pair of hyperboloids of revolution joined at their inner peripheries.
- a method of operating an air lock having a pair of shutters defining a chamber between a pair of adjacent independent spaces comprising the steps of:
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Respiratory Apparatuses And Protective Means (AREA)
- Pressure Vessels And Lids Thereof (AREA)
- Tents Or Canopies (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LU60542 | 1970-03-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3711993A true US3711993A (en) | 1973-01-23 |
Family
ID=19726298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00124172A Expired - Lifetime US3711993A (en) | 1970-03-17 | 1971-03-15 | Relatively short air lock for transfer of relatively long objects |
Country Status (7)
Country | Link |
---|---|
US (1) | US3711993A (enrdf_load_stackoverflow) |
BE (1) | BE763988A (enrdf_load_stackoverflow) |
DE (1) | DE2112263A1 (enrdf_load_stackoverflow) |
FR (1) | FR2084615A5 (enrdf_load_stackoverflow) |
GB (1) | GB1274174A (enrdf_load_stackoverflow) |
LU (1) | LU60542A1 (enrdf_load_stackoverflow) |
NL (1) | NL7103261A (enrdf_load_stackoverflow) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4117333A (en) * | 1977-04-29 | 1978-09-26 | Westinghouse Electric Corp. | Nuclear fuel element leak detection system |
US4158601A (en) * | 1977-05-12 | 1979-06-19 | Westinghouse Electric Corp. | Nuclear fuel pellet loading apparatus |
US4498834A (en) * | 1982-11-30 | 1985-02-12 | The United States Of America As Represented By The United States Department Of Energy | Valve for fuel pin loading system |
US4548347A (en) * | 1982-11-30 | 1985-10-22 | The United States Of America As Represented By The United States Department Of Energy | Automated fuel pin loading system |
US4708571A (en) * | 1984-11-03 | 1987-11-24 | Siempelkamp Giesserei Gmbh & Co. | Method of and apparatus for the introduction of radiocative metallic wastes into a melting furnace |
FR2611303A1 (fr) * | 1987-02-24 | 1988-08-26 | Atomic Energy Authority Uk | Enceinte blindee pour la manutention de produits radioactifs |
EP0457682A1 (fr) * | 1990-05-18 | 1991-11-21 | Cogema (Compagnie Generale Des Matieres Nucleaires) | Procédé de débouchage d'une tuyauterie véhiculant des produits dangereux |
EP0691913A4 (en) * | 1993-03-29 | 1997-01-02 | Francis Lee Ashley | ORIFICE TRANSFER METHOD AND APPARATUS |
US5921191A (en) * | 1996-11-25 | 1999-07-13 | Gabel; Bernard R. | Pass through interlock system |
US6705242B2 (en) * | 2002-01-08 | 2004-03-16 | Ch2M Hill Constructors, Inc. | Method and apparatus for hermetically sealing openings of an explosion containment chamber |
US20050022656A1 (en) * | 2002-01-08 | 2005-02-03 | Donovan John L. | Purging an airlock of an explosion containment chamber |
US20050192472A1 (en) * | 2003-05-06 | 2005-09-01 | Ch2M Hill, Inc. | System and method for treatment of hazardous materials, e.g., unexploded chemical warfare ordinance |
WO2024182750A1 (en) * | 2023-03-01 | 2024-09-06 | Xcimer Energy, Inc. | Shutter apparatus having ports to control energy beam and gas transfer between zones |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1709494A (en) * | 1928-05-29 | 1929-04-16 | Alvin H Shoemaker | Pneumatic bumper |
US1721039A (en) * | 1928-05-31 | 1929-07-16 | James F Risher | Submarine escaping apparatus |
US2695605A (en) * | 1949-12-12 | 1954-11-30 | Philadelphia Children Hospital | Closure device for isolation chambers |
US2835272A (en) * | 1952-11-25 | 1958-05-20 | Taupin Andre | Lock |
US3501213A (en) * | 1967-05-19 | 1970-03-17 | Snyder Mfg Co Inc | Isolator assembly and method of entering same |
US3567578A (en) * | 1968-04-15 | 1971-03-02 | Ca Atomic Energy Ltd | Nuclear reactor installation |
-
1970
- 1970-03-17 LU LU60542D patent/LU60542A1/xx unknown
-
1971
- 1971-03-09 BE BE763988A patent/BE763988A/xx unknown
- 1971-03-11 NL NL7103261A patent/NL7103261A/xx unknown
- 1971-03-13 DE DE19712112263 patent/DE2112263A1/de active Pending
- 1971-03-15 FR FR7108901A patent/FR2084615A5/fr not_active Expired
- 1971-03-15 US US00124172A patent/US3711993A/en not_active Expired - Lifetime
- 1971-04-19 GB GB23838/71A patent/GB1274174A/en not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1709494A (en) * | 1928-05-29 | 1929-04-16 | Alvin H Shoemaker | Pneumatic bumper |
US1721039A (en) * | 1928-05-31 | 1929-07-16 | James F Risher | Submarine escaping apparatus |
US2695605A (en) * | 1949-12-12 | 1954-11-30 | Philadelphia Children Hospital | Closure device for isolation chambers |
US2835272A (en) * | 1952-11-25 | 1958-05-20 | Taupin Andre | Lock |
US3501213A (en) * | 1967-05-19 | 1970-03-17 | Snyder Mfg Co Inc | Isolator assembly and method of entering same |
US3567578A (en) * | 1968-04-15 | 1971-03-02 | Ca Atomic Energy Ltd | Nuclear reactor installation |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4117333A (en) * | 1977-04-29 | 1978-09-26 | Westinghouse Electric Corp. | Nuclear fuel element leak detection system |
US4158601A (en) * | 1977-05-12 | 1979-06-19 | Westinghouse Electric Corp. | Nuclear fuel pellet loading apparatus |
US4498834A (en) * | 1982-11-30 | 1985-02-12 | The United States Of America As Represented By The United States Department Of Energy | Valve for fuel pin loading system |
US4548347A (en) * | 1982-11-30 | 1985-10-22 | The United States Of America As Represented By The United States Department Of Energy | Automated fuel pin loading system |
US4708571A (en) * | 1984-11-03 | 1987-11-24 | Siempelkamp Giesserei Gmbh & Co. | Method of and apparatus for the introduction of radiocative metallic wastes into a melting furnace |
FR2611303A1 (fr) * | 1987-02-24 | 1988-08-26 | Atomic Energy Authority Uk | Enceinte blindee pour la manutention de produits radioactifs |
US5198037A (en) * | 1990-05-18 | 1993-03-30 | Cogema-Compagnie Generale Des Matieres Nucleaires | Method for unclogging a pipe carrying dangerous substances |
FR2662101A1 (fr) * | 1990-05-18 | 1991-11-22 | Cogema | Procede de debouchage d'une tuyauterie vehiculant des produits dangereux. |
EP0457682A1 (fr) * | 1990-05-18 | 1991-11-21 | Cogema (Compagnie Generale Des Matieres Nucleaires) | Procédé de débouchage d'une tuyauterie véhiculant des produits dangereux |
EP0691913A4 (en) * | 1993-03-29 | 1997-01-02 | Francis Lee Ashley | ORIFICE TRANSFER METHOD AND APPARATUS |
US5921191A (en) * | 1996-11-25 | 1999-07-13 | Gabel; Bernard R. | Pass through interlock system |
US6705242B2 (en) * | 2002-01-08 | 2004-03-16 | Ch2M Hill Constructors, Inc. | Method and apparatus for hermetically sealing openings of an explosion containment chamber |
US20050022656A1 (en) * | 2002-01-08 | 2005-02-03 | Donovan John L. | Purging an airlock of an explosion containment chamber |
US7418895B2 (en) | 2002-01-08 | 2008-09-02 | Demil International, Inc. | Purging an airlock of an explosion containment chamber |
US20050192472A1 (en) * | 2003-05-06 | 2005-09-01 | Ch2M Hill, Inc. | System and method for treatment of hazardous materials, e.g., unexploded chemical warfare ordinance |
US20080089813A1 (en) * | 2003-05-06 | 2008-04-17 | Quimby Jay M | System and method for treatment of hazardous materials, e.g., unexploded chemical warfare ordinance |
US7700047B2 (en) | 2003-05-06 | 2010-04-20 | Ch2M Hill Constructors, Inc. | System and method for treatment of hazardous materials, e.g., unexploded chemical warfare ordinance |
WO2024182750A1 (en) * | 2023-03-01 | 2024-09-06 | Xcimer Energy, Inc. | Shutter apparatus having ports to control energy beam and gas transfer between zones |
Also Published As
Publication number | Publication date |
---|---|
LU60542A1 (enrdf_load_stackoverflow) | 1970-09-21 |
GB1274174A (en) | 1972-05-17 |
NL7103261A (enrdf_load_stackoverflow) | 1971-09-21 |
FR2084615A5 (enrdf_load_stackoverflow) | 1971-12-17 |
DE2112263A1 (de) | 1971-10-07 |
BE763988A (enrdf_load_stackoverflow) | 1971-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3711993A (en) | Relatively short air lock for transfer of relatively long objects | |
KR101724356B1 (ko) | 기밀문 개폐장치 | |
CN102166450B (zh) | 集成的密闭系统 | |
DE69531626D1 (de) | Testkammer mit veränderbarem volumen | |
CN113484070A (zh) | 一种地外天体采样密封容器 | |
TWI875991B (zh) | 用於兩個封閉空間之間的雙門密封連接系統的子組件及其製造方法與用於雙門密封連接系統的轉移裝置 | |
US2088909A (en) | Gastight closure | |
US3186680A (en) | Valves | |
US3678624A (en) | Door with double-inflatable seal and pressure chamber | |
US3026083A (en) | Butterfly valves | |
US4306583A (en) | Remotely dismountable valves | |
US3759486A (en) | Damper seal system | |
JP2002116278A (ja) | エアロック室 | |
JPH0329651Y2 (enrdf_load_stackoverflow) | ||
CN213711921U (zh) | 一种防泄漏的旋塞阀 | |
JPH037837A (ja) | バイオクリーンルームのシール構造 | |
RU6155U1 (ru) | Концевой затвор камер для запуска и приема поточных снарядов при эксплуатации трубопроводов | |
ITVA970011U1 (it) | Saracinesca per tubazioni per l'apertura e la chiusura di grossi condotti per fluidi | |
CN213289129U (zh) | 焊接保护装置 | |
JPS6314152Y2 (enrdf_load_stackoverflow) | ||
SU40871A1 (ru) | Запорный кран | |
KR810000796Y1 (ko) | 밸브 작동기 | |
CN109036597A (zh) | 一种屏蔽密封双功能人员闸门 | |
JPH0641716B2 (ja) | 竪坑内へのシールド掘削機の到達工法及びその工法に用いるシール装置及び気密槽 | |
CN119042347A (zh) | 一种限流孔板组件 |