US3700851A - Welding electrode - Google Patents
Welding electrode Download PDFInfo
- Publication number
- US3700851A US3700851A US156534A US3700851DA US3700851A US 3700851 A US3700851 A US 3700851A US 156534 A US156534 A US 156534A US 3700851D A US3700851D A US 3700851DA US 3700851 A US3700851 A US 3700851A
- Authority
- US
- United States
- Prior art keywords
- percent
- welding
- electrode
- ferrite
- martensite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000003466 welding Methods 0.000 title claims abstract description 38
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 49
- 239000011651 chromium Substances 0.000 claims abstract description 24
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 20
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 17
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 12
- 238000005275 alloying Methods 0.000 claims abstract description 11
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 11
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 10
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000010937 tungsten Substances 0.000 claims abstract description 10
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000011733 molybdenum Substances 0.000 claims abstract description 9
- 239000010703 silicon Substances 0.000 claims abstract description 8
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims abstract description 7
- 239000011248 coating agent Substances 0.000 claims abstract description 6
- 238000000576 coating method Methods 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 9
- 238000002844 melting Methods 0.000 claims description 8
- 230000008018 melting Effects 0.000 claims description 8
- 230000001681 protective effect Effects 0.000 claims description 7
- 239000007789 gas Substances 0.000 claims description 4
- 230000004907 flux Effects 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 abstract description 20
- 239000002184 metal Substances 0.000 abstract description 20
- 229910000831 Steel Inorganic materials 0.000 abstract description 17
- 239000010959 steel Substances 0.000 abstract description 17
- 229910000734 martensite Inorganic materials 0.000 abstract description 15
- 239000000203 mixture Substances 0.000 abstract description 12
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 10
- 229910001566 austenite Inorganic materials 0.000 abstract description 9
- 229910000859 α-Fe Inorganic materials 0.000 abstract description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052799 carbon Inorganic materials 0.000 abstract description 8
- 239000000470 constituent Substances 0.000 abstract description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 6
- 239000011572 manganese Substances 0.000 abstract description 5
- 239000012535 impurity Substances 0.000 abstract description 4
- 229910052742 iron Inorganic materials 0.000 abstract description 4
- 229910052748 manganese Inorganic materials 0.000 abstract description 4
- 238000010891 electric arc Methods 0.000 abstract description 2
- 238000010438 heat treatment Methods 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000005552 hardfacing Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3053—Fe as the principal constituent
- B23K35/308—Fe as the principal constituent with Cr as next major constituent
- B23K35/3086—Fe as the principal constituent with Cr as next major constituent containing Ni or Mn
Definitions
- the invention relates to a welding electrode for electric arc welding intended for joint welding and builtup welding stainless steels, particularly steels with a ferrite-martensitic, ferrite-martensite-austenitic or martensite-austenitic structure, and is characterized in that the electrode in the shape of a bare wire or a wire with a coating deposits a weld metal whose alloying constituents affecting the structure lie within the following analysis limits: 0.01-0.05 percent carbon, 0.1-0.9 percent silicon, 0.5-4.5 percent manganese, 15.0-18.0 percent chromium, 4.5-7.5 percent nickel, 0.2-2.5 percent molybdenum, 0.02-0.12 percent nitrogen and 02-35 percent tungsten, the remainder iron apart from the unavoidable impurities.
- the alloying constituents shall be adapted manually in such a way that the following two equations with the chromium equivalent (Cr,,) and the nickel equivalent (Ni are satisfied:
- Certain types of stainless steels particularly steels with a ferrite-martensitic, ferrite-martensite-austenitic or martensite-austenitic structure, obtain high mechanical strength characteristics, partly owing to their chemical composition and partly by the heat treatment they undergo prior to being used.
- Austenitic stainless steels in a heat-treated condition on the other hand, have a low yield limit, but they may be given a higher yield limit and ultimate strength values by cold work, e.g., by stretching.
- the elongation value of the weld metal may be regarded as a gauge of the welds cracking resistance.
- the risk of contraction cracks in the weld is great.
- ferrite-martensitic, ferritemartensite-austenitic or martensite-austenitic steel with the corresponding electrodes one has therefore normally applied a method which implies both the preheating of the basic material and the stress-relieving of the welded structure in order to reduce the risk of cracks.
- a weld metal with a high yield limit and ultimate strength in combination with very good elongation and impact value by using an electrode which, in the shape of a wire or a wire with a coating deposits a weld metal which contains the following alloying constituents affecting the structure: 0.01-0.05 percent carbon, 0.1-0.9 percent silicon, 0.5-4.5 percent manganese, 15.0-18.0 percent chromium, 4.5-7.5 percent nickel,
- the alloying constituents affecting the structure shall be adapted mutually in such a way that the following two equations with the chromium equivalent (Cr and 0 the nickel equivalent (Ni are satisfied:
- Equation 1 Cr +Ni 26.0 and S 32.0
- tungsten acts as a kind of modulator which in combination with nickel, manganese and nitrogen gives the desired balance to the ratio between the martensite part and the ferrite plus austenite parts.
- the martensite part of the weld structure shall lie between 5 and 50 percent and the ferrite plus austenite parts between 50 and 95 percent.
- the present invention relates to an electrode or a filler for joint-welding or built-up welding stainless steels, particularly steel with a ferrite-martensite-austenitic structure, e.g., steel of type 16 Cr 5 Ni 1 Mo, as well as steel of a ferrite-martensitic or martensite-austenitic structure, e.g., steel of type 12-14 Cr, 0-3 Ni and 0-2 Mo.
- the weld metal in itself does not require any heat treatment after the welding in order to achieve maximum toughness.
- the basic material may require stress-relieving in order to eliminate welding stresses or in order to level out the hardness tops which the latter types of steel show in heat-affected zones close to the weld.
- the electrode described it is also possible to carry out stress-relieving within the temperature range 550-700C without causing the strength values of the weld material to decrease to any great extent.
- the electrode is suitable for welding certain austenitic stainless steels, provided that the corrosion conditions to which the welded object is subjected, suit the weld metal of the electrode.
- the electrode is particularly suitable suited for joint welding stainless steels of identical or almost identical composition containing at least 13 percent chromium, and 3.5 percent nickel; they are then merged by means of arc welding and melting of a coated or an uncoated electrode whose composition lies within the composition according to claim 1.
- the electrode is also very suitable for coating a surface on work-pieces of unalloyed, low-alloyed or stainless steels; the hardfacing then takes place with an electrode which, coated or uncoated, has a composition according to that of claim 1.
- the welding electrode according to the present invention may be made in the shape of coated electrodes or uncoated wire for melting in an inert protective gas atmosphere or under a protective blanket of granulated welding powder, so-called flux.
- the bare wire in its turn may be homogeneous or so-called pipe-wire.
- the covering of coated manual-welding electrodes consists of fluxing material, arc-stabilizing, deoxidizing and alloying elements as well as some plasticizer for making the substance ductile.
- the composition of the covering may be varied and may have a lime-basic, rutile-basic or rutile-acid character all according to the welding properties desired.
- the covering should contain a certain amount of one or several of the following alloying elements: chromium, nickel, molybdenum, tungsten, manganese, silicon and nitrogen, partly in order to compensate the loss by burning which normally occurs in connection with the transport of material through the arc and partly in order to provide the weld with that part of the alloying elements which possibly for practical reasons has not been alloyed into the core wire.
- the composition of the wire in the case mentioned first shall conform as nearly as possible to the desired weld analysis and in the latter case be adapted to the composition of the welding powder.
- Table I chemical analysis The chemical analysis has been made in the manner prescribed in different standards, e.g., DIN 8556, Blatt 2 (Deutsche Industrie Normen), i.e., one makes a weld on plate with a great number of beads and determines the chemical analysis of that part of the weld which is further than 10 mm from the plate. In doing so the effect of the basic material is eliminated.
- Table II characteristics of strength The values indicated above represent an average of several tests. The welding tests have been carried out with a coated electrode in the manner prescribed in DIN 1913, Blatt 2.
- test specimens of type 10C50 according to SIS 1121 13 (SIS The Swedish Standard Association) and for the impact tests Charpy V-notch specimen according to SIS 1123 51 have been used.
- the F2 test indicated above is heat-treated at 600C with subsequent aircooling.
- a method of arc welding high strength stainless steels comprising the steps of melting an electrode in an electric are, said electrode having the following composition: 0.01-0.05 percent carbon, 0.l-0.9 percent silicon, 0.5-4.5 percent manganese, 15.0-18.0 percent chromium, 4.5-7.5 percent nickel, 0.2-2.5 percent molybdenum, 0.02-0.
- the constituents being adapted so that the chromium equivalent plus the nickel equivalent is not less than 26.0 and not more than 32.0, and 1.4 times the chromium equivalent minus the nickel equivalent is not less than 15.0 and not more than 20.0, the chromium equivalent being the sum of the percent chromium percent molybdenum percent silicon 0.5 times percent tungsten and the nickel equivalent being the sum of the percent nickel 0.5 times percent manganese 30 (percent carbon percent nitrogen 0.03) so as to obtain a weld metal having a microstructure comprising ferrite, martensite, and austenite, the martensite comprising from 5 percent to 50 percent thereof and the sum of the ferrite and austenite comprising from 50 percent to percent thereof.
- the welding electrode is a wire having a coating comprising fluxing material, arc-stabilizing material, deoxidizing material, and at least one material selected from the group of alloying elements consisting of chromium, nickel, molybdenum, tungsten, manganese, silicon and nitrogen.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Arc Welding In General (AREA)
- Nonmetallic Welding Materials (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE17574/67A SE327615B (enrdf_load_stackoverflow) | 1967-12-21 | 1967-12-21 | |
US15653471A | 1971-06-24 | 1971-06-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3700851A true US3700851A (en) | 1972-10-24 |
Family
ID=26656099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US156534A Expired - Lifetime US3700851A (en) | 1967-12-21 | 1971-06-24 | Welding electrode |
Country Status (8)
Country | Link |
---|---|
US (1) | US3700851A (enrdf_load_stackoverflow) |
AT (1) | AT291708B (enrdf_load_stackoverflow) |
BE (1) | BE725830A (enrdf_load_stackoverflow) |
CH (1) | CH514392A (enrdf_load_stackoverflow) |
DE (1) | DE1815274A1 (enrdf_load_stackoverflow) |
FR (1) | FR1597986A (enrdf_load_stackoverflow) |
GB (1) | GB1248985A (enrdf_load_stackoverflow) |
NL (1) | NL6818455A (enrdf_load_stackoverflow) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4041274A (en) * | 1974-07-11 | 1977-08-09 | The International Nickel Company, Inc. | Maraging stainless steel welding electrode |
US4412122A (en) * | 1977-07-08 | 1983-10-25 | Thyssen Industrie Ag Maschinenbau | Method for welding bodies made of very hard or greatly refined armored steel, respectively, and structures made according to this method |
WO1997032684A1 (en) * | 1996-03-07 | 1997-09-12 | Concurrent Technologies Corporation | Consumable electrodes for gma welding of hsla steels |
US6129999A (en) * | 1995-09-27 | 2000-10-10 | Sumitomo Metal Industries, Ltd. | High-strength welded steel structures having excellent corrosion resistance |
EP0953401A4 (en) * | 1996-11-18 | 2004-05-26 | Nippon Steel Corp | WIRE FOR WELDING HIGH-CHROME STEEL |
US6793744B1 (en) * | 2000-11-15 | 2004-09-21 | Research Institute Of Industrial Science & Technology | Martenstic stainless steel having high mechanical strength and corrosion |
US20050252579A1 (en) * | 1999-12-17 | 2005-11-17 | Jef Steel Corporation | Welding material and a method of producing welded joint |
US20070248203A1 (en) * | 2004-10-15 | 2007-10-25 | Yves Meyzaud | T-Shaped Pipework Element for an Auxiliary Circuit of a Nuclear Reactor, Connection Piece and Method for Producing and Assembling the Pipework Element |
WO2024248615A1 (en) | 2023-06-02 | 2024-12-05 | Technische Universiteit Delft | Durable and efficient anode material design for metal-air batteries |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1533044A (en) * | 1976-02-27 | 1978-11-22 | British Steel Corp | Hardfacing by welding |
DE2901338A1 (de) * | 1979-01-15 | 1980-07-24 | Messer Griesheim Gmbh | Verfahren zum schweissen von gusseisen |
JPS55117562A (en) * | 1979-02-09 | 1980-09-09 | Japan Steel Works Ltd:The | Build-up welding method of stainless steel |
GB2130948B (en) * | 1982-11-12 | 1986-10-08 | Nas Sweisware Eiendoms Beperk | Flux-coated arc welding electrode |
DE8816776U1 (de) * | 1988-01-05 | 1991-01-24 | Mirković, Živorad, Neuhausen am Rheinfall | Mehrfach-Spannvorrichtung |
GB2368849B (en) * | 2000-11-14 | 2005-01-05 | Res Inst Ind Science & Tech | Martensitic stainless steel having high mechanical strength and corrosion resistance |
DE102008007275A1 (de) * | 2008-02-01 | 2010-06-10 | Böhler Schweisstechnik Deutschland GmbH | Verfahren zum Herstellen einer Schweißverbindung |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1991438A (en) * | 1931-12-09 | 1935-02-19 | Gen Plate Co | Thermostatic metal |
US2125929A (en) * | 1935-06-25 | 1938-08-09 | Rustless Iron & Steel Corp | Alloy and manufactures |
US2150901A (en) * | 1938-02-01 | 1939-03-21 | Arness William Bell | Rustless iron |
US2214128A (en) * | 1939-05-27 | 1940-09-10 | Du Pont | Composition of matter |
US2229065A (en) * | 1938-12-14 | 1941-01-21 | Electro Metallurg Co | Austenitic alloy steel and article made therefrom |
US2405660A (en) * | 1942-10-17 | 1946-08-13 | Standard Oil Dev Co | Method of producing toluene |
US2848323A (en) * | 1955-02-28 | 1958-08-19 | Birmingham Small Arms Co Ltd | Ferritic steel for high temperature use |
US3123469A (en) * | 1964-03-03 | Alloy steel and method | ||
US3215814A (en) * | 1963-05-12 | 1965-11-02 | Air Reduction | Welding of high yield strength steel |
US3489551A (en) * | 1968-07-30 | 1970-01-13 | Latrobe Steel Co | Abrasion resistant ferrous alloy containing chromium |
-
1968
- 1968-12-16 AT AT1223268A patent/AT291708B/de not_active IP Right Cessation
- 1968-12-17 CH CH1874668A patent/CH514392A/de not_active IP Right Cessation
- 1968-12-18 DE DE19681815274 patent/DE1815274A1/de active Pending
- 1968-12-20 FR FR1597986D patent/FR1597986A/fr not_active Expired
- 1968-12-20 GB GB60775/68A patent/GB1248985A/en not_active Expired
- 1968-12-20 BE BE725830D patent/BE725830A/xx unknown
- 1968-12-20 NL NL6818455A patent/NL6818455A/xx unknown
-
1971
- 1971-06-24 US US156534A patent/US3700851A/en not_active Expired - Lifetime
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3123469A (en) * | 1964-03-03 | Alloy steel and method | ||
US1991438A (en) * | 1931-12-09 | 1935-02-19 | Gen Plate Co | Thermostatic metal |
US2125929A (en) * | 1935-06-25 | 1938-08-09 | Rustless Iron & Steel Corp | Alloy and manufactures |
US2150901A (en) * | 1938-02-01 | 1939-03-21 | Arness William Bell | Rustless iron |
US2229065A (en) * | 1938-12-14 | 1941-01-21 | Electro Metallurg Co | Austenitic alloy steel and article made therefrom |
US2214128A (en) * | 1939-05-27 | 1940-09-10 | Du Pont | Composition of matter |
US2405660A (en) * | 1942-10-17 | 1946-08-13 | Standard Oil Dev Co | Method of producing toluene |
US2848323A (en) * | 1955-02-28 | 1958-08-19 | Birmingham Small Arms Co Ltd | Ferritic steel for high temperature use |
US3215814A (en) * | 1963-05-12 | 1965-11-02 | Air Reduction | Welding of high yield strength steel |
US3489551A (en) * | 1968-07-30 | 1970-01-13 | Latrobe Steel Co | Abrasion resistant ferrous alloy containing chromium |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4041274A (en) * | 1974-07-11 | 1977-08-09 | The International Nickel Company, Inc. | Maraging stainless steel welding electrode |
US4412122A (en) * | 1977-07-08 | 1983-10-25 | Thyssen Industrie Ag Maschinenbau | Method for welding bodies made of very hard or greatly refined armored steel, respectively, and structures made according to this method |
FR2526346A1 (fr) * | 1977-07-08 | 1983-11-10 | Thyssen Industrie | Procede de soudage d'elements constitues d'acier de blindage |
US6129999A (en) * | 1995-09-27 | 2000-10-10 | Sumitomo Metal Industries, Ltd. | High-strength welded steel structures having excellent corrosion resistance |
WO1997032684A1 (en) * | 1996-03-07 | 1997-09-12 | Concurrent Technologies Corporation | Consumable electrodes for gma welding of hsla steels |
US5744782A (en) * | 1996-03-07 | 1998-04-28 | Concurrent Technologies Corporation | Advanced consumable electrodes for gas metal arc (GMA) welding of high strength low alloy (HSLA) steels |
EP0953401A4 (en) * | 1996-11-18 | 2004-05-26 | Nippon Steel Corp | WIRE FOR WELDING HIGH-CHROME STEEL |
US20050252579A1 (en) * | 1999-12-17 | 2005-11-17 | Jef Steel Corporation | Welding material and a method of producing welded joint |
US7325717B2 (en) * | 1999-12-17 | 2008-02-05 | National Institute For Materials Science | Welding material and a method of producing welded joint |
US6793744B1 (en) * | 2000-11-15 | 2004-09-21 | Research Institute Of Industrial Science & Technology | Martenstic stainless steel having high mechanical strength and corrosion |
US20070248203A1 (en) * | 2004-10-15 | 2007-10-25 | Yves Meyzaud | T-Shaped Pipework Element for an Auxiliary Circuit of a Nuclear Reactor, Connection Piece and Method for Producing and Assembling the Pipework Element |
US8002314B2 (en) * | 2004-10-15 | 2011-08-23 | Areva Np | T-shaped pipefitting element pertaining to an auxiliary circuit of a nuclear reactor, connection piece |
WO2024248615A1 (en) | 2023-06-02 | 2024-12-05 | Technische Universiteit Delft | Durable and efficient anode material design for metal-air batteries |
NL2034979B1 (en) * | 2023-06-02 | 2024-12-11 | Univ Delft Tech | Durable and efficient anode material design for metal-air batteries |
Also Published As
Publication number | Publication date |
---|---|
GB1248985A (en) | 1971-10-06 |
AT291708B (de) | 1971-07-26 |
DE1815274A1 (de) | 1969-09-04 |
NL6818455A (enrdf_load_stackoverflow) | 1969-06-24 |
FR1597986A (enrdf_load_stackoverflow) | 1970-06-29 |
CH514392A (de) | 1971-10-31 |
BE725830A (enrdf_load_stackoverflow) | 1969-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3700851A (en) | Welding electrode | |
US6300596B1 (en) | Flux-cored wire for gas-flow-shielded welding | |
US3726668A (en) | Welding filling material | |
CA2204339C (en) | Metal-core weld wire for welding galvanized steels | |
US5744782A (en) | Advanced consumable electrodes for gas metal arc (GMA) welding of high strength low alloy (HSLA) steels | |
WO1997032684A9 (en) | Consumable electrodes for gma welding of hsla steels | |
EP0867256B1 (en) | Welding material for stainless steels | |
US3368887A (en) | Consumable wire for improving mechanical properties of weld metal | |
US6042782A (en) | Welding material for stainless steels | |
US4017711A (en) | Welding material for low temperature steels | |
US4086463A (en) | Flux-cored wire | |
CN109311114A (zh) | 气体保护电弧焊方法和焊接结构物的制造方法 | |
US3110798A (en) | Submerged arc weld metal composition | |
US4068113A (en) | Bare electrode for welding of low temperature steel | |
US3581054A (en) | Welding electrode | |
Murti et al. | Effect of heat input on the metallurgical properties of HSLA steel in multi-pass MIG welding | |
US4436554A (en) | High strength and high toughness welding material | |
JPS60261679A (ja) | 窒素含有合金の溶接方法 | |
US3342974A (en) | Arc welding electrode providing welds having high yield and rupture value | |
JP2000312987A (ja) | 溶接用ワイヤ | |
JPH05200582A (ja) | 耐候性に優れた耐火鋼用溶接ワイヤ | |
JPH07100688A (ja) | 高強度Cr−Mo鋼用TIG溶接ワイヤ | |
JPH0596397A (ja) | 高電流mig溶接用鋼ワイヤ | |
US3527920A (en) | Welding of alloy steels | |
JPH0569141A (ja) | パイプのガスシールドアーク溶接方法 |