US3674713A - Electric ceramic resistors having positive temperature coefficients and method of manufacturing same - Google Patents

Electric ceramic resistors having positive temperature coefficients and method of manufacturing same Download PDF

Info

Publication number
US3674713A
US3674713A US6052A US3674713DA US3674713A US 3674713 A US3674713 A US 3674713A US 6052 A US6052 A US 6052A US 3674713D A US3674713D A US 3674713DA US 3674713 A US3674713 A US 3674713A
Authority
US
United States
Prior art keywords
barium titanate
fluoride
ceramic
percent
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US6052A
Other languages
English (en)
Inventor
Jean Michel Baudry Ghi Yperman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Philips Corp
Original Assignee
US Philips Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Philips Corp filed Critical US Philips Corp
Application granted granted Critical
Publication of US3674713A publication Critical patent/US3674713A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/022Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances
    • H01C7/023Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances containing oxides or oxidic compounds, e.g. ferrites
    • H01C7/025Perovskites, e.g. titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase

Definitions

  • the invention relates to a method of manufacturing ceramic resistance bodies for electric resistors having a positive temperature coefficient of the electric resistivity, which bodies mainly consist of semiconductive barium titanate; the invention further relates to resistance bodies thus manufactured and resistors manufactured by means of said bodies (so-called FTC-resistors).
  • FTC-resistors the resistance body of which consists of semiconductive barium titanate, the electric resistance of which can increase considerably when the temperature increases to and above the ferro-electric Curie-temperature are known per se.
  • resistors the ceramic resistance bodies of which consist of barium titanate in which a part of the barium ions is replaced by la ions or Sb ions or part of the Ti ions by Nb ions.
  • PlC-resistors can be manufactured the said temperature-dependence of the electric resistance of which is considerably larger than of known PTC- resistors on the basis of semiconductive titanate.
  • PTCresistors manufactured according to the invention show a considerably stronger increase of the electric resistance than the known resistors on the basis of semiconductive barium titanate when the temperature is increased to and above the ferro-electric Curie-temperature, or the absolute increase of the electric resistance in a given temperature range is considerably larger than of those known resistors; often both effects occur in a FTC-resistor obtained with the use of the invention.
  • These FTC-resistors often have a substantially constant temperature coefficient of the electric resistance over a large temperature range.
  • the FTC-resistors according to the invention can advantageously be used in those cases where electric resistors having positive temperature coefficients can be used, for example, for current limiting and stabilization in thermoregulators and voltage stabilizers, for safeguarding electric motors and for temperature and radiation measurements.
  • the invention relates to a method of manufacturing a ceramic resistance body consisting of substantially pure semiconductive barium titanate which has been made semiconductive with the use of the principle of the controlled valency from a powder which substantially consists of barium titanate or substantially of compounds which are converted into barium titanate upon heating in an oxygen-containing atmosphere, characterized in that before shaping the powder is intimately mixed with a fluoride of an element of the group consisting of Ca, Sr and Ba in a quantity corresponding to 0.5 at. percent of fluorine, calculated on barium titanate present in the ceramic resistance body, to a ceramic resistance body thus manufactured and PTC-resistors manufactured by means of said body.
  • the ceramic resistance bodies thereof must consist of substantially pure semiconductive barium titanate and preferably of such a barium titanate which contains a small excess, up to 3 mol. percent and preferably 1.5 2.0 mol. percent, of titanium dioxide.
  • a ceramic resistance body consisting of substantially pure semiconductive barium titanate is to be understood to mean herein such a body which consists for at least 95 mol. percent of barium titanate.
  • barium titanate semiconductive For making barium titanate semiconductive the known methods may be used and at least one element which introduces semiconductivity with the use of the principle of the controlled valency may be incorporated in suitable quantifies.
  • elements are antimony, bismuth, niobium, cerium, yttrium, rare earth metals, for example, lanthanum.
  • a fluoride is preferably used calcium fluoride.
  • the quantity of fluoride to be used corresponds to 0.5 10 at. percent of fluorine, calculated on barium titanate in the ceramic resistance body. This content preferably corresponds to l 8 at. percent of fluorine and in particular to 2 6 at. percent of fluorine.
  • the manufacture of ceramic resistance bodies according to the invention may be carried out, for example, as follows:
  • Powders of barium carbonate, titanium dioxide and antimony oxide, (Sb O are carefully mixed, for example, by grinding, and the mixture is heated in air at l,l00 C for 60 minutes.
  • the resulting product is ground.
  • the fluoride to be added for example, Calis intimately mixed with the resulting powder, for example, by grinding.
  • the resulting pulverulent product is given the desired shape for example, of a rod, sheet or strip, for example, by compression.
  • the body thus obtained is sintered in an oxygen-containing atmosphere to form a ceramic resistance body, for example, by heating in air at l,400 C for 60 minutes.
  • the resulting resistance body may be provided in known manner with ohmic electrodes and supply wires for the manufacture of PT C-resistors.
  • Ceramic resistance bodies to be investigated (wafers, diameter 7.5 mms, thickness 1.85 mms) were provided with ohmic electrodes as a result of which no contact resistances occur. The electric resistance was measured at different temperatures.
  • the basic composition of the ceramic bodies was the followmg:
  • the ceramic bodies according to the present invention are of a fine crystallinity. Applicants suppose that this is due to a limitation of crystal growth by the influence of fluoride. Due to this the bodies show a high breakdown voltage. The high order of reproducibility in the manufacture of the resistors is also due to the said effect.
  • an electric ceramic resistor having a positive temperature coefficient of electrical resistance and comprising a barium titanate body and a metal capable of inducing semiconductivity into said barium titanate and provided with at least one ohmic contact electrode, the improvement wherein said semi-conductive body contains 0.5 to at. percent inclusive of fluorine in the form of barium, calcium or strontium fluoride calculated on the barium titanate.
  • a ceramic resistance body consisting of semiconductive barium titanate comprising the steps, first shaping a powder consisting substantially of barium-titanate or compounds heat-convertable to barium titanate and a compound of a metal capable of inducing semiconductivity into the barium titanate into a shaped mass and then sintering the resultant shaped mass by heating in oxygen, the improvement which comprises adding to the powder before shaping at least one fluoride of an element selected from the group consisting of Ca, Sr and Ba in a quantity corresponding to 0.5-10 at. percent of fluorine, calculated on the barium titanate present in the ceramic resistance body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermistors And Varistors (AREA)
  • Compositions Of Oxide Ceramics (AREA)
US6052A 1965-12-18 1970-01-26 Electric ceramic resistors having positive temperature coefficients and method of manufacturing same Expired - Lifetime US3674713A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL6516534A NL6516534A (US20100012521A1-20100121-C00001.png) 1965-12-18 1965-12-18

Publications (1)

Publication Number Publication Date
US3674713A true US3674713A (en) 1972-07-04

Family

ID=19794963

Family Applications (1)

Application Number Title Priority Date Filing Date
US6052A Expired - Lifetime US3674713A (en) 1965-12-18 1970-01-26 Electric ceramic resistors having positive temperature coefficients and method of manufacturing same

Country Status (8)

Country Link
US (1) US3674713A (US20100012521A1-20100121-C00001.png)
AT (1) AT270807B (US20100012521A1-20100121-C00001.png)
BE (1) BE691370A (US20100012521A1-20100121-C00001.png)
CH (1) CH495609A (US20100012521A1-20100121-C00001.png)
FR (1) FR1505751A (US20100012521A1-20100121-C00001.png)
GB (1) GB1171756A (US20100012521A1-20100121-C00001.png)
NL (1) NL6516534A (US20100012521A1-20100121-C00001.png)
SE (1) SE318642B (US20100012521A1-20100121-C00001.png)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975307A (en) * 1974-10-09 1976-08-17 Matsushita Electric Industrial Co., Ltd. PTC thermistor composition and method of making the same
CN115784736A (zh) * 2022-11-24 2023-03-14 江苏省陶瓷研究所有限公司 一种表面无橘红色斑点、高阻温的ptc加热陶瓷及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3794949A (en) * 1973-02-01 1974-02-26 Texas Instruments Inc Solid state motor starting apparatus
DE3681566D1 (de) * 1985-12-06 1991-10-24 Hitachi Ltd Keramiksinter mit hohem waermeausdehnungskoeffizient und ein verbundkoerper aus demselben und metall.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975307A (en) * 1974-10-09 1976-08-17 Matsushita Electric Industrial Co., Ltd. PTC thermistor composition and method of making the same
CN115784736A (zh) * 2022-11-24 2023-03-14 江苏省陶瓷研究所有限公司 一种表面无橘红色斑点、高阻温的ptc加热陶瓷及其制备方法
CN115784736B (zh) * 2022-11-24 2024-01-26 江苏省陶瓷研究所有限公司 一种表面无橘红色斑点、高阻温的ptc加热陶瓷及其制备方法

Also Published As

Publication number Publication date
DE1665226B2 (de) 1975-08-07
SE318642B (US20100012521A1-20100121-C00001.png) 1969-12-15
FR1505751A (fr) 1967-12-15
AT270807B (de) 1969-05-12
CH495609A (de) 1970-08-31
NL6516534A (US20100012521A1-20100121-C00001.png) 1967-06-19
GB1171756A (en) 1969-11-26
DE1665226A1 (de) 1971-01-21
BE691370A (US20100012521A1-20100121-C00001.png) 1967-06-16

Similar Documents

Publication Publication Date Title
Burn Mn-doped polycrystalline BaTiO3
JPH0123434B2 (US20100012521A1-20100121-C00001.png)
KR940001655B1 (ko) 반도체 자기 조성물
US3044968A (en) Positive temperature coefficient thermistor materials
US3674713A (en) Electric ceramic resistors having positive temperature coefficients and method of manufacturing same
US2981699A (en) Positive temperature coefficient thermistor materials
US3274467A (en) Ceramic capacitor
US4606116A (en) Non-linear resistor and method of manufacturing the same
US4430255A (en) Non-ohmic device using TiO2
JPH0236041B2 (US20100012521A1-20100121-C00001.png)
US4280846A (en) Method of fabrication of dielectric material having volume-distributed insulating barriers for use at high voltages and a ceramic body fabricated by said method
EP0937692B1 (en) Barium titanate-base semiconductor ceramic
EP0694930A1 (en) Positive characteristic thermistor
US3715701A (en) Non-linear resistance element
JPS6243522B2 (US20100012521A1-20100121-C00001.png)
US3458455A (en) Method of treating objects of oxidic,ceramic,polycrystalline materials
JPH01143202A (ja) 中高温用ptcサーミスタ
EP0042009A1 (en) Internal boundary layer ceramic compositions and process for their production
JPH0248123B2 (US20100012521A1-20100121-C00001.png)
JP3178083B2 (ja) チタン酸バリウム系セラミックス半導体およびその製造方法
JPS5948521B2 (ja) 正特性半導体磁器の製造方法
JP2967439B2 (ja) 粒界酸化型電圧非直線抵抗組成物
KR101479425B1 (ko) 가돌리니아가 첨가된 바나디움계 산화아연 바리스터 및 그 제조방법
KR910006015B1 (ko) 반도성 티탄산 바륨계 소결체 및 그 제조방법
KR920001162B1 (ko) 티탄산 바륨계 반도체 자기 및 그 제조방법