US3668613A - Electrical connector - Google Patents

Electrical connector Download PDF

Info

Publication number
US3668613A
US3668613A US5011A US3668613DA US3668613A US 3668613 A US3668613 A US 3668613A US 5011 A US5011 A US 5011A US 3668613D A US3668613D A US 3668613DA US 3668613 A US3668613 A US 3668613A
Authority
US
United States
Prior art keywords
connector
conductor
combination
attaching
penetrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US5011A
Inventor
John J Klosin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3668613A publication Critical patent/US3668613A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/24Connections using contact members penetrating or cutting insulation or cable strands
    • H01R4/2495Insulation penetration combined with permanent deformation of the contact member, e.g. crimping

Definitions

  • ABSTRACT U.S. Cl. C R An e'eetrica] connector for Cables and [he having a cur. n rent carrying means, a deformable attaching body adapted to [58] Field of Search ..339/95, 9799, at least w Surround a length f the cable, and at least 339/276 one tooth-shaped penetrating member in electrical contact with the current carrying means of the connector.
  • references C'ted taching body is positioned about the cable and fixed to the UNITED STATES PATENTS cable by means ofa compression tool or the like which at least partially deforms the attachmg body causing the penetratmg 2,734,933 2/1956 KlOSin, Jr ..339/276 member to pierce the cable insulation and contact the inner 2,748,366 5/1956 e g /27 conductive core of the cable
  • All external surfaces of the con- 2,779,842 1/1957 Walker nector may be fully insulated including the penetrating mem- 2,884,478 4/1959 Becker et a1 ..339/276 bets Insulation on the connector may be ussd to Seal the 3,001,000 9/1961 Wantz, Jr 339/276 nection between the Connector and the cable to provide 3 3,194,877 7/1965 CollIer ...339/97 C th fi l t d connection 3,579,173 5/1971 Greener
  • insulated primary distribution circuits have been operated at voltages ranging from 2,000 to 5,000 volts for many years, many major utilities have now increased, or will be increasing, the voltage of such circuits to voltages approaching l5,000 volts. Some operating systems are installing insulated primary distribution circuits at 23,000 volts.
  • connectors are applied remotely using insulated live line tools 6 to 12 feet in length.
  • insulated live line tools 6 to 12 feet in length.
  • many of the high voltage lines are made using bare uninsulated conductors. Screwtype clamps can then be applied to the bare conductor by securing the clamps in the live line tool, hooking the clamp over the conductor, and then fixing the clamp to the conductor by rotating the live line tool until the joint is tight.
  • This invention provides an electrical connector for an insulated electrical conductor.
  • the present connector permits an insulated electrical connection to be made by merely fixing the connector to the line conductor.
  • the connector thus eliminates the need for insulation stripping and since it can be pre-insulated also eliminates the need for reinsulation after the connection is made.
  • the connector may be installed by a workman located at a safe distance from a high voltage line by the use of standard tools with insulated extensions of, for example, 4 to 6 feet long.
  • the connector can be gripped by a tool, placed over the line, and fixed into place, Safety is promoted whenever the connector is used since the conductor is not bared.
  • the connector comprises a conductive element, a deformable attaching body adapted to at least partially surround the live cable to be tapped and a rigid conductive penetrating member electrically connected to the conductive element of the connector.
  • the conductive components of the connector may be completely insulated along at least their outer surfaces when installed on the line cable to provide an insulated connection after the connection is completed.
  • the penetrating member is disposed in the connector so that, upon at least a partial deformation of the attaching body, the penetrating member will pierce the cable insulation and contact the electrically conductive core thereof When the penetrating member and other conductive components of the connection are fully covered with insulation, the process of fixing the attaching body to the cable causes the penetrating member to pierce its own insulation as it progresses into the cable. This stripped insulation is formed into a weather-proof sealing means between the conducting portions of the connector and the cable.
  • Another object of the present invention is to provide an improved electrical connector for cables and the like which can be safely installed in high voltage circuits.
  • Still another object of the present invention is to provide an electrical connector for cables and the like which can be easily installed in high voltage lines and operate with high reliability.
  • a further object of the present invention is to provide an improved electrical connector for cables and the like which is highly adaptable to a wide variety of installations.
  • Yet another object of the present invention is to provide an improved electrical connector for cables and the like which can be easily installed by workmen who are positioned remotely from the point of the connection.
  • Still another object of the present invention is to provide an improved electrical connector for cables and the like which can be installed on insulated lines without requiring the stripping of the insulation from the line to be tapped.
  • a further object of the present invention is to provide an improved electrical connector for cables and the like which can be installed on an insulated line and requires no re-insulation after the installation.
  • Yet another object of the present invention is to provide an improved electrical connector for cables and the like which connector when installed will provide a self-insulating connection.
  • a further object of the present invention is to provide an improved electrical connector for cables and the like which when installed on an insulated cable will provide a weather proof installation.
  • Still a further object of the present invention is to provide an improved electrical connector for cables and the like which can be fabricated from relatively simple components requiring a minimum of manufacturing processes.
  • a further object of the present invention is to provide an improved electrical connector for cables and the like which can be fabricated from standard relatively inexpensive materials used in the electrical industry.
  • Still a further object of the present invention is an improved electrical connector for cables and the like which can be used to join two or more cables.
  • FIG. 1 is a side elevational view in cross section of a connector in accordance with the invention positioned about an electrical conductor;
  • FIG. 2 is a side elevational cross sectional view of the connector of FIG. 1 after having been compressed to make the connection;
  • FIG. 3 is a front elevational view of the connection of FIG.
  • FIG. 4 is a side elevational view of a connector in accordance with the invention with the connector body shown in cross section;
  • FIG. 5 is a side elevational view of the connector of FIG. 4 in partial section
  • FIG. 6 is a side elevational view of the connector of FIG. 5 shown after connection to an electrical conductor
  • FIG. 7 is a front elevational view of the connection of FIG.
  • FIG. 8 is a front elevational view of a splice connector in accordance with the invention.
  • FIG. 9 is a front elevational view of the splice connector of FIG. 8 shown connected to two electrical conductors;
  • FIG. 10 is a side elevational view in cross-section of another embodiment of a connector built in accordance with the teachings of the present invention positioned about an electrical conductor;
  • FIG. 11 is a side elevational cross-sectional view of the connector of FIG. 10 after having been partially compressed to make the connection.
  • FIG. 12 is a side elevational cross-section view of the connector of FIG. 10 after completion of the connection;
  • FIG. 13 is a front elevational view of the connector of FIG. 12;
  • FIG. 14 is a front elevational view of another embodiment of the invention adapted to provide a temporary connection to a conductor
  • FIG. 15 is aside elevational view along Line 15-15 of FIG. 14;
  • FIG. 16 is a front elevational view of a modification of the connector shown in FIG. 14;
  • FIG. 17 is a front elevation of another embodiment of a connector build in accordance with the invention in the form of a T shape
  • FIG. 18 is a bottom view of FIG. 17;
  • FIG. 19 is a sectional view along lines 19-l9 of FIG, 17;
  • FIG. 20 is a cross-sectional view of a connector built in accordance with the invention showing the construction of the penetrating member
  • FIG. 21 is a view along lines 2121 of FIG. 20, partially in section.
  • FIG. 22 is a top view, partially in section, of another em' bodiment of a T-shaped connector built in accordance with the teachings ofthe present invention.
  • FIG. 23 is a cross sectional view of another embodiment ofa connector built in accordance with the teachings of the present invention.
  • FIGS. 1, 2 and 3 a connector 10in accordance with a preferred embodiment of the invention is shown.
  • the connector 10 is shown in FIG. 1 before connection to an electrical conductor 12 and in FIGS. 2 and 3 after connection thereto.
  • Electrical conductors with which the invention would generally be used comprise an insulating outer layer or layers and an electrically conductive inner core.
  • the inner core may comprise strands of material, solid material, etc.
  • the electrical conductor 12 has an insulating coat ing made up of two layers 14 and 16 of insulating material which surround a solid inner conductive core 18.
  • the connector 10 comprises an attaching body 20 made from a fairly rigid, malleable, electrically conductive material, such as aluminum, as shown in the drawings. It is generally C- shaped in cross-section though it could be of many other shapes as will be discussed hereinafter. Connected to the attaching body 20, or integral therewith as shown, are two tooth-like penetrating members 22.
  • the penetrating members need not be restricted in shape. They could be a solid ridge of penetrating material, be wedge-shaped, conical, or any other configuration adequate to pierce the insulation.
  • a layer ofinsulating material 24 covers the outer surfaces of the attaching body 20.
  • insulating material 26 may be disposed between the inner end of the penetrating mem bers 22 and the lower portion of the inner surface 28. It will be noted from FIG. 2 that the insulating material 26 functions to provide a positive seal for the electrical conductor 12 when the connection is completed.
  • the attaching body 20 also comprises a weakened portion 30, the function of which will be more fully discussed hereinbelow.
  • the connector 10 is positioned about the electrical conductor 12 as shown in FIG. 1.
  • a compression tool (not shown) of the type well known in the art equipped with suitable dies to handle the connector 10 is then disposed about the connector.
  • the connector could first be positioned in a compression tool which tool may be disposed on the end ofa live line pole.
  • connection is made by operating the compression tool to deform the attaching body, thereby closing the body about the conductor.
  • the penetrating members 22 thereby pierce the insulating layers 14 and I6 and contact the core 18.
  • the weakened portion 30 of the attaching body 20 is positioned and constructed to facilitate bending thereabout so that, upon deformation of the body the penetrating members pivot about the weakened area and enter the layers of insulation 14 and 16 of the electrical conductor in a direction toward the center of the electrical conductor and continue in such direction until contacting the inner core 18, at which predetermined distance the dies of the compression tool touch, preventing further penetration.
  • connection 11 differs from the connections shown in FIGS. 1-3 in that it has separate C-shaped attaching bodies 5 and 7joined by a common bottom frame portion 9.
  • Weakened portions 34 are provided (only one being shown) which function similarly to the weakened portion 30 of the embodiment of FIG. 1.
  • Tooth-like penetrating members 35 extend from the inner periphery ofthe bottom portion of each attaching body.
  • An insulating layer 37 completely covers the connector 11.
  • the insulating layer 37 provides an additional safety factor in insulating the weakened area 34 as well as the interior area adjacent thereto which areas do not contact the electrical conductor after a connection is made and thus would otherwise provide a live surface.
  • a tap wire connecting member 36 of rigid, conductive material is shown connected to the frame portion 9 though it could be connected to either attaching body.
  • the juncture of the tap wire connecting member 26 and the frame portion 9 is covered by a layer of insulating material 38.
  • a bared portion 40 of the tap wire connecting member 36 is provided for connection to a tap wire 42, the tap wire being shown in FIGS. 57 after connection to the connecting member 36.
  • the tap wire connecting member 36 could be in the form of an attaching body in accordance with the present invention whereby a compression tool could be used to attach the tap wire connector 11 to the tap wire 42 and to attach the connector 11 to the main line 13.
  • An insulating boot 44 is provided for insulating the connection between the tap wire 42 and the tap wire connecting member 36. This is accomplished by first sliding the boot 44 back along the tap wire 42, then connecting the tap wire to the connecting member 36, and thereafter sliding the insulating boot 44 over the connection.
  • the electrical conductor or main line 13 is of the stranded cable type including an electrically conductive core compris ing a plurality of strands 15 of conductive material. Such strands are usually woven together in a helical pattern. If the lay of the strands is known and special connectors are desired for a particular application, the penetrating members 35 can be spaced to conform with the cable lay to thereby enter manner previously described, the completed assembly being shown in FIGS. 6 and 7.
  • a splice connector 46 in accordance with the invention is shown in FIGS. 8 and 9.
  • the splice connector 46 comprises a plurality of tooth-like penetrating members 48.
  • the illustrated splice connector 46 comprises-separate attaching bodies 50 and 52 joined by a common frame bottom-portion 54.
  • FIG. 9 A completed splice is shown in FIG. 9 in which an electrical conductor 56 is clamped in the attaching body 50 and an electrical conductor 58 is clamped in the attaching body 52.
  • cable caps 55 and 57 are installed before assembly on cables 56 and 58 respectively.
  • the frame 54 via the penetrators 48 electrically attaching bodies 50 and 52 connects the electrical conductors 56 and 58 to each other.
  • Caps 57 and 55 could also be extended along the length of the connectors and secured by pressure from attaching bodies 52 and 50 respectively.
  • the tap connector generally indicated as 80 comprises a deformable attaching body 82 having a weakened portion 84 similar to the embodiment of the connector shown in FIG. 1.
  • a separate penetrating member 86 with a broad base section 87 is mounted in the lower portion 88 of the attaching body.
  • An insulating layer 90 covers the entire attaching body 82 including the penetrating member 86.
  • the insulating cushion 94 is formed by the stripping of the insulation 90 back along the penetrating member 86 as the penetrating member enters the conductor 70, the insulating cushion, when formed, surrounds the entrance of the penetrating member 86 into the conductor 70. As the connection is completed, as shown in FIG. 12, the insulating cushion 94 is compressed between the lower portion 88 of the attaching body and the conductor 70 to provide a weather tight seal for the connection, as well as to electrically insulate the connection.
  • the separate penetrating member 86 has an enlarged base section 87. It should be mentioned, however, that the shape of the penetrating member is not a critical factor in the formation of the insulating cushion. Therefore, a suitable penetrating member could be made from a wide selection of shapes.
  • FIG. 13 illustrates a modification of the connector of FIG. 10 shown in a side view.
  • the tap connector 80 utilizes two penetrating members 86 which are shown penetrating the cable 70.
  • the tap additionally comprises a lead off segment 91 having a cylindrical hole 92 drilled axially therein into which the bare ends of a take-off cable (not shown) may be inserted.
  • This take-off cable is sealed into the lead off portion by a clamping procedure well known in the art which produces crimp rings 93 in the lead off segment.
  • FIGS. 14, and 16 illustrate two embodiments of connectors for detachable tap lines.
  • a connector for detachable tap lines shown generally as 100, has an attaching body 102 with two penetrating teeth 104 and 106 connected to a conductor 70.
  • the upper portion 108 of attaching body 102 has an extension I 10 which runs along the top of the conductor and then turns downward into a lead off section 112.
  • a U-shaped attaching bar 1 14, formed from a conductive material, is connected into a receiving passage 116 in the lead off section.
  • the attaching body 102, the upper extension 100, the lead off section 112, and the attaching bar 114 are all coated with an insulating layer 118.
  • the other end of attaching bar 114 is bent into a hook shaped section 120 and is hung onto the conductor 78 to provide additional support for the connector.
  • the lower portion 122 of the U-shaped attaching bar 114 is stripped of the insulating layer 118 to expose the conductive material which is in electrical contact with the conductor by means of the attaching body previously described.
  • the exposed portion of the attaching bar provides a suitable surface to which a detachable tap line can be connected by means of screw connectors or other well known connectors operated by workmen from relatively remote locations using live line poles.”
  • FIG. 16 A second embodiment of a connector for detachable tap lines is shown generally as in FIG. 16.
  • This connector is similar to that shown in FIGS. 14 and 15 with the exception that the right hand portion of the connector is symmetrical with the left hand portion of the connector thereby doubling all of the components shown on the left hand side of FIG. 14, namely, the attaching body 120, the upper extension 110, and the lead off section 112.
  • This symmetrical connector has a capacity to carry twice the current load of that carried by the connector shown in FIGS. 14 and 15, since the number of attaching bodies has been doubled and accordingly the number of penetrating members which contact the conductors have also been doubled.
  • FIGS. 17, 18 and 19 show an embodiment of a T-shaped connector generally indicated as 140.
  • the connector has an attaching body 142 in the upper left hand portion of the T, an attaching body 144 in the upper right hand portion of the T, and attaching bodies 146 and 148 in the stem of the T.
  • the attaching bodies are joined together by a frame 150 of conductive material.
  • Each attaching body has a separate set of penetrating members all similarly numbered as 152 and shown in FIG. 19. Any portion of the connector or the entire connector, as shown in FIGS. 17, 18 and 19, is coated with a layer of insulation 154 as previously described in the embodiment of the invention shown in FIGS.
  • the layer of in sulation 154 will be stripped from the penetrating members 152 as the attaching bodies are deformed and the penetrating members enter the connector 70.
  • the stripped insulation will form insulating cushions designated as 158 and shown in FIG. 18, insulating and weatherproofing the connections made to the conductor.
  • the connector is being utilized to tap a conductor 70 and to transmit the power from conductor 70 to a take off line 160 which is in turn fastened to the connector through the lower attaching bodies 146 and 148.
  • a protective sleeve 162 is fitted over the end of the take off cable 160 prior to its installation in the connector to prevent the entrance of moisture into the cable strands that are exposed in the end 164 of the cable 160.
  • this embodiment is ideally suited for use as a junction box.
  • attaching bodies 142 and 144 in the arms of the T could be attached to separate conductors in a manner similar to that shown in FIG. 9, and a third conducting line could be attached and joined by attaching it to either or both of the attaching bodies 146 and 148 and the stem of the T.
  • This configuration would allow the joining of three separate conductors.
  • the same principle can be used to make an X-shaped connector which could join four conductor cables, etc.
  • FIGS. 20 and 21 show a cross section view of a connector generally indicated as 170.
  • the connector has a frame 172 to which is secured an attaching body 174 by a screw means 176.
  • a penetrating member 178 is in turn connected to the bottom of the attaching body 174 by a screw means 180.
  • the entire assembly is coated with a layer of insulating material indicated as 182.
  • This assembly illustrates the fact that the entire connector need not be fabricated from a single piece of material nor even from the same type of material.
  • harder materials can be used to form the penetrating members while softer, or cheaper, or more easily fabricated materials can be used for other parts of the connector.
  • other well known attaching means other than screws, such as welding, riveting, etc., could be used to secure the components of the conductor.
  • FIGS. 22 and 23 show embodiments of the invention in which the penetrating member is connected directly to the current carrying means, and the deformable attaching body is attached to the current carrying means by conventional fastening means, and not directly connected to the penetrating member.
  • FIG. 23 shows a cross sectional view of a connector indicated generally as 220 having a deformable attaching body 30 222 fabricated from an electrical insulating material, connected to a current carrying means 223 referred to as a buss member, by conventional fastening means (not shown).
  • a penetrating member 224 is shown as being integrally formed with and extending directly from current carrying means 223. Of course, the penetrating member could be attached to the current carrying means in the same manner that the enetrating member is connected to the attaching body in FIG. 20.
  • the buss member 223 and penetrating member 224 are completely coated with a layer of insulation 226.
  • Attaching body 222 need not be fabricated from a conductive material because in this construction of the connector there is no direct connection between the penetrating member and the attaching body. Therefore, the attaching body would have to be insulated only when it is fabricated from a conductive material.
  • Attaching body 222 has a weakened portion 228 which performs the same function as the other weakened sections of the attaching bodies previously described.
  • the attaching body is connected at its bottom portion 230 to buss member 223 by any convenient attaching means (not shown) as previously described.
  • connection shown in FIG. 23 is very similar in cross section to the connector shown in FIG. 10. It should be apparent, therefore, that the connection shown in FIG. could be constructed using a buss" member in the same manner as the connector shown in FIG. 23.
  • FIG. 22 shows a connector, generally indicated as 200, for connecting a plurality of lines.
  • the connector is constructed in a manner similar to the connector shown in FIGS. 23 and 10.
  • the buss" member forms the T frame 202 of the connector, and the penetrating members 204, east with the buss" member 202 as a single unit, extend directly from the buss member.
  • Deformable attaching bodies 206 and 208 on the left and right arms respectively of the T shaped connector 200 and deformable attaching bodies 210 and 212 on the upper and lower sections respectively of the leg of the T-shaped connector are all secured to buss member 202 by means of screws 214.
  • the entire surface of connector 200 is covered with a layer ofinsulation 216.
  • an electrical connector built in accordance with the invention can be used to form any type of electrical connection with an electrical conductor having an outer insulation layer. Further, the conmeeting operation itself is greatly simplified since it eliminates the requirement for stripping the insulating layer from the conductor and then reinsulating and weatherproofing the connection after it has been made. Additionally, the safety fea- 5 tures of the conductor are considerable.
  • An electrical connector for electrical conductors having an outer layer of insulating material and an inner core of electrically conductive material, said connector comprising:
  • a deformable attaching body operatively associated with said means to carry current and adapted for disposition about a conductor
  • At least one penetrating member of electrically conductive material in electrical communication with said means to carry current, said penetrating member disposed and adapted to penetrate said outer layer of insulating material to contact the inner conductive core of the conductor upon deformation of the attaching body about the conductor so that current will be carried from the core of the conductor to said means to carry current, a layer of insulating material, covering the entire connector.
  • An electrical connector for electrical conductors having an outer layer ofinsulating material and an inner core of electrically conductive material, said connector comprising:
  • a deformable attaching body operatively associated with said means to carry current and adapted for disposition about a conductor
  • At least one penetrating member of electrically conductive material in electrical communication with said means to carry current, a layer of insulation covering at least said penetrating member and the exposed surfaces of said connector adjacent thereto.
  • deformable body is shaped to partially conform to the shape of the conductor with said penetrating member being disposed with relation to said connector so that the insulation on said penetrating member will be stripped from said penetrating member by the conductor to form an insulating cushion between said connector and the insulating layer of said con ductor upon deformation of said attaching body about said conductor.
  • a combination claimed in claim 3 wherein said penetrating member has a relatively rounded end disposed remotely from said attaching body, said remote end adapted to provide an area contact with said electrically conductive inner core of said conductor upon deformation of the attaching body about the conductor.
  • said means to carry current includes a tap wire connecting member of conductive material electrically communicated with said penetrating member.
  • said tap wire connecting member comprises:
  • the combination claimed in claim 3 further comprising: a plurality of penetrating members disposed in spaced relation to provide means for penetrating a plurality of electrical conductors; plurality of deformable attaching bodies operatively associated with said plurality of penetrating members and connected to said means to carry current so that deformation of said plurality of deformable attaching bodies will cause said plurality of penetrating members to penetrate a plurality of conductors and electrically connect said plurality of conductors through said means to carry current, said plurality of penetrating members being connected to said means to carry current, said penetrating members being connected to said deformable attaching bodies,
  • said deformable attaching bodies being shaped to partially conform to the shape of the conductor with said penetrating members being disposed with relation to said connector so that the insulation on said penetrating members will be stripped from said penetrating members by the conductor to form an insulating cushion between said connector and the insulating layer of said conductor upon deformation of said deformable attaching bodies about said conductor.
  • said means to carry current include frame means
  • each of said plurality of penetrating members is operatively connected to an operatively associated deformable attaching body.

Landscapes

  • Connections By Means Of Piercing Elements, Nuts, Or Screws (AREA)
  • Cable Accessories (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)

Abstract

An electrical connector for cables and the like having a current carrying means, a deformable attaching body adapted to at least partially surround a length of the cable, and at least one toothshaped penetrating member in electrical contact with the current carrying means of the connector. The attaching body is positioned about the cable and fixed to the cable by means of a compression tool or the like which at least partially deforms the attaching body causing the penetrating member to pierce the cable insulation and contact the inner conductive core of the cable. All external surfaces of the connector may be fully insulated including the penetrating members. Insulation on the connector may be used to seal the connection between the connector and the cable to provide a weatherproof insulated connection.

Description

O United States Patent [15,] 3,668,6 13 Klosin 1 June 6, 1972 54] ELECTRICAL CONNECTOR FOREIGN PATENTS OR APPLICATIONS [72] Inventor: John J. Klosin, P.O. Box 0320, East Brun- 1,453,743 8/1966 France ..339/97 swick, NJ. 08816 [22] Filed: Jam 22, 1970 Primary ExaminerJos eph H McGlynn Att0rneyLerner, DavId & Llttenberg [21] App1.No.: 5,011
[57] ABSTRACT U.S. Cl. C, R An e'eetrica] connector for Cables and [he having a cur. n rent carrying means, a deformable attaching body adapted to [58] Field of Search ..339/95, 9799, at least w Surround a length f the cable, and at least 339/276 one tooth-shaped penetrating member in electrical contact with the current carrying means of the connector. The at- [56] References C'ted taching body is positioned about the cable and fixed to the UNITED STATES PATENTS cable by means ofa compression tool or the like which at least partially deforms the attachmg body causing the penetratmg 2,734,933 2/1956 KlOSin, Jr ..339/276 member to pierce the cable insulation and contact the inner 2,748,366 5/1956 e g /27 conductive core of the cable All external surfaces of the con- 2,779,842 1/1957 Walker nector may be fully insulated including the penetrating mem- 2,884,478 4/1959 Becker et a1 ..339/276 bets Insulation on the connector may be ussd to Seal the 3,001,000 9/1961 Wantz, Jr 339/276 nection between the Connector and the cable to provide 3 3,194,877 7/1965 CollIer ...339/97 C th fi l t d connection 3,579,173 5/1971 Greener ..339/97 R 2,302,767 11/1942 Hackbarth ..339/97 C 21 Claims, 23 Drawing Figures PATENTEUJuH 6 1912 3,668,613 SHEET 10F 5 PATENTEDJUH 6 I972 SHEET t 0F 5 'INVENTOR. JOHN J. KLOSIN AT TORNE Y PATENTEDJUH 61912 SHEET 5 UF 5 INVENTOR.
JOHN J. KLOSIN ATTORNEY ELECTRICAL CONNECTOR BACKGROUND OF THE INVENTION The present invention will be described with reference to problems found in the electrical utility field though the invention may be used whenever an electrical connection to an electrical conductor is to be made and for any type of electrical connection such as taps, splices, junctions, etc.
Though insulated primary distribution circuits have been operated at voltages ranging from 2,000 to 5,000 volts for many years, many major utilities have now increased, or will be increasing, the voltage of such circuits to voltages approaching l5,000 volts. Some operating systems are installing insulated primary distribution circuits at 23,000 volts.
It has been the practice, in wiring to the lower voltage primary circuits, to first strip the main cable insulation to bare the conductor metal, then install the connector, and thereafter insulate the resultant joint. Such reinsulation is usually accomplished by taping. Electrical linemen often maintained circuits of up to 5,000 volts in accordance with the aforesaid practice, while the circuits are energized, by insulating themselves from the main cable or conductor through the use of rubber gloves covered by leather gauntlets.
Maintenance of high voltage circuits exceeding 5,000 volts has always been more difficult. In view of the safety problems involved in working at these elevated voltages, connectors are applied remotely using insulated live line tools 6 to 12 feet in length. To avoid the problem of stripping cable insulation and re-insulating an electrical connection, many of the high voltage lines are made using bare uninsulated conductors. Screwtype clamps can then be applied to the bare conductor by securing the clamps in the live line tool, hooking the clamp over the conductor, and then fixing the clamp to the conductor by rotating the live line tool until the joint is tight.
Making electrical connections to insulated high voltage circuits above 5,000 volts is more difficult since it requires stripping of the cable insulation. It is also necessary to re-insulate and weather-seal the connection after it has been completed. The reinsulation is extremely important in insulated primary circuits since the conductors are closely spaced and rely on the insulation around each conductor to maintain the potential between phases. An uninsulated connection would therefore cause a short-circuit to an adjacent phase. It is also important to weather-seal the connection since any trapped moisture or contaminants in the cable could cause corrosion and ultimately destroy the conductor.
Present practice in making connections to these insulated cables varies. One common practice is to spread the conductors apart where connections must be made. The conductors are then stripped using the live line tools that operate appropriate stripping tools and then the same clamps used on uninsulated circuits are applied. The clamps are left uninsulated because the space between phases becomes the insulation just as it is in uninsulated circuits.
The problem of stripping the conductors, even when dead, has been further complicated by the present extensive use of greatly improved plastic cable insulations. Many of the new insulating materials, like high density polyethylene, are substantially rigid and hard. While these insulations have tremendous appeal because they resist abrasion from trees and tree limbs much better than conventional rubber insulation, they are extremely difficult to remove from the conductor. Thus, special expensive stripping tools are required. In some areas such insulations are burned off with propane torches. The insulation applied to the newer cables is often not as adequate as the insulation which has been stripped off.
SUMMARY OF THE INVENTION This invention provides an electrical connector for an insulated electrical conductor. The present connector permits an insulated electrical connection to be made by merely fixing the connector to the line conductor. The connector thus eliminates the need for insulation stripping and since it can be pre-insulated also eliminates the need for reinsulation after the connection is made. Further, the connector may be installed by a workman located at a safe distance from a high voltage line by the use of standard tools with insulated extensions of, for example, 4 to 6 feet long. Thus, the connector can be gripped by a tool, placed over the line, and fixed into place, Safety is promoted whenever the connector is used since the conductor is not bared.
The connector comprises a conductive element, a deformable attaching body adapted to at least partially surround the live cable to be tapped and a rigid conductive penetrating member electrically connected to the conductive element of the connector. The conductive components of the connector may be completely insulated along at least their outer surfaces when installed on the line cable to provide an insulated connection after the connection is completed. The penetrating member is disposed in the connector so that, upon at least a partial deformation of the attaching body, the penetrating member will pierce the cable insulation and contact the electrically conductive core thereof When the penetrating member and other conductive components of the connection are fully covered with insulation, the process of fixing the attaching body to the cable causes the penetrating member to pierce its own insulation as it progresses into the cable. This stripped insulation is formed into a weather-proof sealing means between the conducting portions of the connector and the cable.
Accordingly, it is an object of the present invention to provide an improved electrical connector for cables.
Yet, another object of the present invention is to provide an improved electrical connector for cables and the like which can be safely installed in high voltage circuits.
Still another object of the present invention is to provide an electrical connector for cables and the like which can be easily installed in high voltage lines and operate with high reliability.
A further object of the present invention is to provide an improved electrical connector for cables and the like which is highly adaptable to a wide variety of installations.
Yet another object of the present invention is to provide an improved electrical connector for cables and the like which can be easily installed by workmen who are positioned remotely from the point of the connection.
Still another object of the present invention is to provide an improved electrical connector for cables and the like which can be installed on insulated lines without requiring the stripping of the insulation from the line to be tapped.
A further object of the present invention is to provide an improved electrical connector for cables and the like which can be installed on an insulated line and requires no re-insulation after the installation.
Yet another object of the present invention is to provide an improved electrical connector for cables and the like which connector when installed will provide a self-insulating connection.
A further object of the present invention is to provide an improved electrical connector for cables and the like which when installed on an insulated cable will provide a weather proof installation.
Still a further object of the present invention is to provide an improved electrical connector for cables and the like which can be fabricated from relatively simple components requiring a minimum of manufacturing processes.
A further object of the present invention is to provide an improved electrical connector for cables and the like which can be fabricated from standard relatively inexpensive materials used in the electrical industry.
Still a further object of the present invention is an improved electrical connector for cables and the like which can be used to join two or more cables.
Other objects and advantages will be apparent from the fol lowing description of the embodiments of the invention, and the novelty features will be particularly pointed out hereinafter in connection with the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side elevational view in cross section ofa connector in accordance with the invention positioned about an electrical conductor;
FIG. 2 is a side elevational cross sectional view of the connector of FIG. 1 after having been compressed to make the connection;
FIG. 3 is a front elevational view of the connection of FIG.
FIG. 4 is a side elevational view of a connector in accordance with the invention with the connector body shown in cross section;
FIG. 5 is a side elevational view of the connector of FIG. 4 in partial section;
FIG. 6 is a side elevational view of the connector of FIG. 5 shown after connection to an electrical conductor;
FIG. 7 is a front elevational view of the connection of FIG.
FIG. 8 is a front elevational view ofa splice connector in accordance with the invention;
FIG. 9 is a front elevational view of the splice connector of FIG. 8 shown connected to two electrical conductors;
FIG. 10 is a side elevational view in cross-section of another embodiment of a connector built in accordance with the teachings of the present invention positioned about an electrical conductor;
FIG. 11 is a side elevational cross-sectional view of the connector of FIG. 10 after having been partially compressed to make the connection.
FIG. 12 is a side elevational cross-section view of the connector of FIG. 10 after completion of the connection;
FIG. 13 is a front elevational view of the connector of FIG. 12;
FIG. 14 is a front elevational view of another embodiment of the invention adapted to provide a temporary connection to a conductor;
FIG. 15 is aside elevational view along Line 15-15 of FIG. 14;
FIG. 16 is a front elevational view of a modification of the connector shown in FIG. 14;
FIG. 17 is a front elevation of another embodiment ofa connector build in accordance with the invention in the form ofa T shape;
FIG. 18 is a bottom view of FIG. 17;
FIG. 19 is a sectional view along lines 19-l9 of FIG, 17;
FIG. 20 is a cross-sectional view of a connector built in accordance with the invention showing the construction of the penetrating member;
FIG. 21 is a view along lines 2121 of FIG. 20, partially in section.
FIG. 22 is a top view, partially in section, of another em' bodiment of a T-shaped connector built in accordance with the teachings ofthe present invention.
FIG. 23 is a cross sectional view of another embodiment ofa connector built in accordance with the teachings of the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIGS. 1, 2 and 3, a connector 10in accordance with a preferred embodiment of the invention is shown. The connector 10 is shown in FIG. 1 before connection to an electrical conductor 12 and in FIGS. 2 and 3 after connection thereto. Electrical conductors with which the invention would generally be used comprise an insulating outer layer or layers and an electrically conductive inner core. The inner core may comprise strands of material, solid material, etc. As shown in FIGS. l3, the electrical conductor 12 has an insulating coat ing made up of two layers 14 and 16 of insulating material which surround a solid inner conductive core 18.
The connector 10 comprises an attaching body 20 made from a fairly rigid, malleable, electrically conductive material, such as aluminum, as shown in the drawings. It is generally C- shaped in cross-section though it could be of many other shapes as will be discussed hereinafter. Connected to the attaching body 20, or integral therewith as shown, are two tooth-like penetrating members 22. The penetrating members need not be restricted in shape. They could be a solid ridge of penetrating material, be wedge-shaped, conical, or any other configuration adequate to pierce the insulation.
A layer ofinsulating material 24 covers the outer surfaces of the attaching body 20. In addition, insulating material 26 may be disposed between the inner end of the penetrating mem bers 22 and the lower portion of the inner surface 28. It will be noted from FIG. 2 that the insulating material 26 functions to provide a positive seal for the electrical conductor 12 when the connection is completed. The attaching body 20 also comprises a weakened portion 30, the function of which will be more fully discussed hereinbelow.
To form a connection, the connector 10 is positioned about the electrical conductor 12 as shown in FIG. 1. A compression tool (not shown) of the type well known in the art equipped with suitable dies to handle the connector 10 is then disposed about the connector. In the alternative, the connector could first be positioned in a compression tool which tool may be disposed on the end ofa live line pole.
The connection is made by operating the compression tool to deform the attaching body, thereby closing the body about the conductor. The penetrating members 22 thereby pierce the insulating layers 14 and I6 and contact the core 18.
The weakened portion 30 of the attaching body 20 is positioned and constructed to facilitate bending thereabout so that, upon deformation of the body the penetrating members pivot about the weakened area and enter the layers of insulation 14 and 16 of the electrical conductor in a direction toward the center of the electrical conductor and continue in such direction until contacting the inner core 18, at which predetermined distance the dies of the compression tool touch, preventing further penetration.
Referring now to FIGS. 4-7, a tap connector 11 in accordance with the invention is shown. It will be seen in FIG. 7 that the connection 11 differs from the connections shown in FIGS. 1-3 in that it has separate C-shaped attaching bodies 5 and 7joined by a common bottom frame portion 9. Weakened portions 34 are provided (only one being shown) which function similarly to the weakened portion 30 of the embodiment of FIG. 1. Tooth-like penetrating members 35 extend from the inner periphery ofthe bottom portion of each attaching body.
An insulating layer 37 completely covers the connector 11. The insulating layer 37 provides an additional safety factor in insulating the weakened area 34 as well as the interior area adjacent thereto which areas do not contact the electrical conductor after a connection is made and thus would otherwise provide a live surface.
A tap wire connecting member 36 of rigid, conductive material is shown connected to the frame portion 9 though it could be connected to either attaching body. The juncture of the tap wire connecting member 26 and the frame portion 9 is covered by a layer of insulating material 38. A bared portion 40 of the tap wire connecting member 36 is provided for connection to a tap wire 42, the tap wire being shown in FIGS. 57 after connection to the connecting member 36.
The tap wire connecting member 36 could be in the form of an attaching body in accordance with the present invention whereby a compression tool could be used to attach the tap wire connector 11 to the tap wire 42 and to attach the connector 11 to the main line 13.
An insulating boot 44 is provided for insulating the connection between the tap wire 42 and the tap wire connecting member 36. This is accomplished by first sliding the boot 44 back along the tap wire 42, then connecting the tap wire to the connecting member 36, and thereafter sliding the insulating boot 44 over the connection.
The electrical conductor or main line 13 is of the stranded cable type including an electrically conductive core compris ing a plurality of strands 15 of conductive material. Such strands are usually woven together in a helical pattern. If the lay of the strands is known and special connectors are desired for a particular application, the penetrating members 35 can be spaced to conform with the cable lay to thereby enter manner previously described, the completed assembly being shown in FIGS. 6 and 7.
A splice connector 46 in accordance with the invention is shown in FIGS. 8 and 9. The splice connector 46 comprises a plurality of tooth-like penetrating members 48. The illustrated splice connector 46 comprises-separate attaching bodies 50 and 52 joined by a common frame bottom-portion 54.
A completed splice is shown in FIG. 9 in which an electrical conductor 56 is clamped in the attaching body 50 and an electrical conductor 58 is clamped in the attaching body 52. To seal the ends of the cables from moisture, cable caps 55 and 57 are installed before assembly on cables 56 and 58 respectively. The frame 54 via the penetrators 48 electrically attaching bodies 50 and 52 connects the electrical conductors 56 and 58 to each other. Caps 57 and 55 could also be extended along the length of the connectors and secured by pressure from attaching bodies 52 and 50 respectively.
Referring now to FIGS. 10, 11 and 12 another embodiment of a tap connector built in accordance with the teachings of the invention is shown. The tap connector generally indicated as 80 comprises a deformable attaching body 82 having a weakened portion 84 similar to the embodiment of the connector shown in FIG. 1. A separate penetrating member 86 with a broad base section 87 is mounted in the lower portion 88 of the attaching body. An insulating layer 90 covers the entire attaching body 82 including the penetrating member 86. Thus, when the connector of FIG. is compressed around insulated cable 70 to penetrate the cable 70 as shown in FIGS. 11 and 12, the insulating layer 90 covering the penetrating member 86 prior to its penetration of cable 70 is compressed toward base 87 of penetrating member 86 to form an insulating cushion 94 which further seals the connection.
Since the insulating cushion 94 is formed by the stripping of the insulation 90 back along the penetrating member 86 as the penetrating member enters the conductor 70, the insulating cushion, when formed, surrounds the entrance of the penetrating member 86 into the conductor 70. As the connection is completed, as shown in FIG. 12, the insulating cushion 94 is compressed between the lower portion 88 of the attaching body and the conductor 70 to provide a weather tight seal for the connection, as well as to electrically insulate the connection.
As shown in FIGS. 10, 11, and 12, the separate penetrating member 86 has an enlarged base section 87. It should be mentioned, however, that the shape of the penetrating member is not a critical factor in the formation of the insulating cushion. Therefore, a suitable penetrating member could be made from a wide selection of shapes.
FIG. 13 illustrates a modification of the connector of FIG. 10 shown in a side view. In this modification the tap connector 80 utilizes two penetrating members 86 which are shown penetrating the cable 70. The tap additionally comprises a lead off segment 91 having a cylindrical hole 92 drilled axially therein into which the bare ends of a take-off cable (not shown) may be inserted. This take-off cable is sealed into the lead off portion by a clamping procedure well known in the art which produces crimp rings 93 in the lead off segment.
Connectors which allow a tap line to be detached from the conductor can be built in accordance with the present invention. FIGS. 14, and 16 illustrate two embodiments of connectors for detachable tap lines.
In FIG. 14, a connector for detachable tap lines, shown generally as 100, has an attaching body 102 with two penetrating teeth 104 and 106 connected to a conductor 70. The upper portion 108 of attaching body 102 has an extension I 10 which runs along the top of the conductor and then turns downward into a lead off section 112. A U-shaped attaching bar 1 14, formed from a conductive material, is connected into a receiving passage 116 in the lead off section. The attaching body 102, the upper extension 100, the lead off section 112, and the attaching bar 114 are all coated with an insulating layer 118. The other end of attaching bar 114 is bent into a hook shaped section 120 and is hung onto the conductor 78 to provide additional support for the connector.
The lower portion 122 of the U-shaped attaching bar 114 is stripped of the insulating layer 118 to expose the conductive material which is in electrical contact with the conductor by means of the attaching body previously described. The exposed portion of the attaching bar provides a suitable surface to which a detachable tap line can be connected by means of screw connectors or other well known connectors operated by workmen from relatively remote locations using live line poles."
A second embodiment of a connector for detachable tap lines is shown generally as in FIG. 16. This connector is similar to that shown in FIGS. 14 and 15 with the exception that the right hand portion of the connector is symmetrical with the left hand portion of the connector thereby doubling all of the components shown on the left hand side of FIG. 14, namely, the attaching body 120, the upper extension 110, and the lead off section 112. This symmetrical connector has a capacity to carry twice the current load of that carried by the connector shown in FIGS. 14 and 15, since the number of attaching bodies has been doubled and accordingly the number of penetrating members which contact the conductors have also been doubled.
FIGS. 17, 18 and 19 show an embodiment of a T-shaped connector generally indicated as 140. As seen in FIG. 17 the connector has an attaching body 142 in the upper left hand portion of the T, an attaching body 144 in the upper right hand portion of the T, and attaching bodies 146 and 148 in the stem of the T. The attaching bodies are joined together by a frame 150 of conductive material. Each attaching body has a separate set of penetrating members all similarly numbered as 152 and shown in FIG. 19. Any portion of the connector or the entire connector, as shown in FIGS. 17, 18 and 19, is coated with a layer of insulation 154 as previously described in the embodiment of the invention shown in FIGS. 10, 11 and In a manner similar to that described above, the layer of in sulation 154 will be stripped from the penetrating members 152 as the attaching bodies are deformed and the penetrating members enter the connector 70. The stripped insulation will form insulating cushions designated as 158 and shown in FIG. 18, insulating and weatherproofing the connections made to the conductor.
As shown in FIG. 17 the connector is being utilized to tap a conductor 70 and to transmit the power from conductor 70 to a take off line 160 which is in turn fastened to the connector through the lower attaching bodies 146 and 148. A protective sleeve 162 is fitted over the end of the take off cable 160 prior to its installation in the connector to prevent the entrance of moisture into the cable strands that are exposed in the end 164 of the cable 160.
As seen in FIG. 19, there are two attaching bodies 146 and 148 in the stem section of the T to equal the two attaching bodies 142 and 144 located in the arms of the T. Therefore, there will be equal facilities to draw the current from conductor 70 and to transmit this current into the take off cable 160.
It should be pointed out that this embodiment is ideally suited for use as a junction box. As shown in FIG. 19, attaching bodies 142 and 144 in the arms of the T could be attached to separate conductors in a manner similar to that shown in FIG. 9, and a third conducting line could be attached and joined by attaching it to either or both of the attaching bodies 146 and 148 and the stem of the T. This configuration would allow the joining of three separate conductors. It should further be pointed out that the same principle can be used to make an X-shaped connector which could join four conductor cables, etc.
FIGS. 20 and 21 show a cross section view of a connector generally indicated as 170. The connector has a frame 172 to which is secured an attaching body 174 by a screw means 176. A penetrating member 178 is in turn connected to the bottom of the attaching body 174 by a screw means 180. The entire assembly is coated with a layer of insulating material indicated as 182.
This assembly illustrates the fact that the entire connector need not be fabricated from a single piece of material nor even from the same type of material. For example, harder materials can be used to form the penetrating members while softer, or cheaper, or more easily fabricated materials can be used for other parts of the connector. Additionally, other well known attaching means other than screws, such as welding, riveting, etc., could be used to secure the components of the conductor.
FIGS. 22 and 23 show embodiments of the invention in which the penetrating member is connected directly to the current carrying means, and the deformable attaching body is attached to the current carrying means by conventional fastening means, and not directly connected to the penetrating member.
FIG. 23 shows a cross sectional view of a connector indicated generally as 220 having a deformable attaching body 30 222 fabricated from an electrical insulating material, connected to a current carrying means 223 referred to as a buss member, by conventional fastening means (not shown). A penetrating member 224 is shown as being integrally formed with and extending directly from current carrying means 223. Of course, the penetrating member could be attached to the current carrying means in the same manner that the enetrating member is connected to the attaching body in FIG. 20. The buss member 223 and penetrating member 224 are completely coated with a layer of insulation 226. Attaching body 222 need not be fabricated from a conductive material because in this construction of the connector there is no direct connection between the penetrating member and the attaching body. Therefore, the attaching body would have to be insulated only when it is fabricated from a conductive material.
Attaching body 222 has a weakened portion 228 which performs the same function as the other weakened sections of the attaching bodies previously described. The attaching body is connected at its bottom portion 230 to buss member 223 by any convenient attaching means (not shown) as previously described.
It should be noted that the connection shown in FIG. 23 is very similar in cross section to the connector shown in FIG. 10. It should be apparent, therefore, that the connection shown in FIG. could be constructed using a buss" member in the same manner as the connector shown in FIG. 23.
FIG. 22 shows a connector, generally indicated as 200, for connecting a plurality of lines. The connector is constructed in a manner similar to the connector shown in FIGS. 23 and 10. In this construction, the buss" member forms the T frame 202 of the connector, and the penetrating members 204, east with the buss" member 202 as a single unit, extend directly from the buss member. Deformable attaching bodies 206 and 208 on the left and right arms respectively of the T shaped connector 200 and deformable attaching bodies 210 and 212 on the upper and lower sections respectively of the leg of the T-shaped connector are all secured to buss member 202 by means of screws 214. The entire surface of connector 200 is covered with a layer ofinsulation 216.
It will be appreciated from the foregoing that an electrical connector built in accordance with the invention can be used to form any type of electrical connection with an electrical conductor having an outer insulation layer. Further, the conmeeting operation itself is greatly simplified since it eliminates the requirement for stripping the insulating layer from the conductor and then reinsulating and weatherproofing the connection after it has been made. Additionally, the safety fea- 5 tures of the conductor are considerable.
It will be understood that various changes in the details of the materials and arrangements of parts which have been herein described and illustrated in order to explain the nature of the invention may be made by those skilled in the art within the principle and scope of the invention as expressed in the appended claims.
I claim:
1. An electrical connector for electrical conductors having an outer layer of insulating material and an inner core of electrically conductive material, said connector comprising:
means to carry current;
a deformable attaching body operatively associated with said means to carry current and adapted for disposition about a conductor; and
at least one penetrating member of electrically conductive material in electrical communication with said means to carry current, said penetrating member disposed and adapted to penetrate said outer layer of insulating material to contact the inner conductive core of the conductor upon deformation of the attaching body about the conductor so that current will be carried from the core of the conductor to said means to carry current, a layer of insulating material, covering the entire connector.
2. An electrical connector for electrical conductors having an outer layer ofinsulating material and an inner core of electrically conductive material, said connector comprising:
means to carry current;
a deformable attaching body operatively associated with said means to carry current and adapted for disposition about a conductor; and
at least one penetrating member of electrically conductive material in electrical communication with said means to carry current, a layer of insulation covering at least said penetrating member and the exposed surfaces of said connector adjacent thereto.
3. The combination claimed in claim 2 wherein said deformable body is shaped to partially conform to the shape of the conductor with said penetrating member being disposed with relation to said connector so that the insulation on said penetrating member will be stripped from said penetrating member by the conductor to form an insulating cushion between said connector and the insulating layer of said con ductor upon deformation of said attaching body about said conductor.
4. The combination claimed in claim 3 wherein said attaching body has a weakened portion adapted to give upon said deformation of said attaching body to cause said penetrating member to penetrate said conductor in a direction toward the center of the conductor.
5. A combination claimed in claim 3 wherein said penetrating member has a relatively rounded end disposed remotely from said attaching body, said remote end adapted to provide an area contact with said electrically conductive inner core of said conductor upon deformation of the attaching body about the conductor.
6. The combination claimed in claim 3 further comprising a plurality of penetrating members spaced to conform to a predetermined cable lay of a multi-strand conductor.
7. The combination claimed in claim 3 wherein said deformable attaching body is made from electrically conductive material.
8. The combination claimed in claim 7 wherein said connector is made from aluminum.
9. The combination claimed in claim 3 wherein said deformable attaching body is generally C-shaped in cross section.
10. The combination claimed in claim 9 wherein said penetrating member is connected to said attaching body on the inner part ofsaid C cross section near one end of said C.
11. The combination claimed in claim 3 wherein said means to carry current includes a tap wire connecting member of conductive material electrically communicated with said penetrating member.
12. The combination claimed in claim 11 wherein said tap wire connecting member comprises:
a. a lead off segment of electrically conductive material electrically communicated to said deformable attaching body; and b. a passage in said lead off segment adapted to receive a take off cable. 13. The combination claimed in claim 3 further comprising: a plurality of penetrating members disposed in spaced relation to provide means for penetrating a plurality of electrical conductors; plurality of deformable attaching bodies operatively associated with said plurality of penetrating members and connected to said means to carry current so that deformation of said plurality of deformable attaching bodies will cause said plurality of penetrating members to penetrate a plurality of conductors and electrically connect said plurality of conductors through said means to carry current, said plurality of penetrating members being connected to said means to carry current, said penetrating members being connected to said deformable attaching bodies,
said deformable attaching bodies being shaped to partially conform to the shape of the conductor with said penetrating members being disposed with relation to said connector so that the insulation on said penetrating members will be stripped from said penetrating members by the conductor to form an insulating cushion between said connector and the insulating layer of said conductor upon deformation of said deformable attaching bodies about said conductor.
14. The combination claimed in claim 13 further comprising a layer of insulation at least partially covering said connec- I01.
15. The combination claimed in claim 13 further comprising a layer of insulation covering the entire connector.
16. The combination claimed in claim 13 wherein said connector is made from aluminum.
17. The combination claimed in claim 13 wherein:
said means to carry current include frame means; and
each of said plurality of penetrating members is operatively connected to an operatively associated deformable attaching body.
18. The combination claimed in claim 13 wherein said means to carry current include a buss member.
19. The combination claimed in claim 13 wherein said means to carry current includes an attaching bar.
20. The combination claimed in claim 11 further compris ing an attaching bar connected to said tap wire connecting member.
21. The combination claimed in claim 20 wherein said attaching bar includes a hook shaped portion adapted to fit over a conductor and to be supported thereby.

Claims (21)

1. An electrical connector for electrical conductors having an outer layer of insulating material and an inner core of electrically conductive material, said connector comprising: means to carry current; a deformable attaching body operatively associated with said means to carry current and adapted for disposition about a conductor; and at least one penetrating member of electrically conductive material in electrical communication with said means to carry current, said penetrating member disposed and adapted to penetrate said outer layer of insulating material to contact the inner conductive core of the conductor upon deformation of the attaching body about the conductor so that current will be carried from the core of the conductor to said means to carry current, a layer of insulating material, covering the entire connector.
2. An electrical connector for electrical conductors having an outer layer of insulating material and an inner core of electrically conductive material, said conNector comprising: means to carry current; a deformable attaching body operatively associated with said means to carry current and adapted for disposition about a conductor; and at least one penetrating member of electrically conductive material in electrical communication with said means to carry current, a layer of insulation covering at least said penetrating member and the exposed surfaces of said connector adjacent thereto.
3. The combination claimed in claim 2 wherein said deformable body is shaped to partially conform to the shape of the conductor with said penetrating member being disposed with relation to said connector so that the insulation on said penetrating member will be stripped from said penetrating member by the conductor to form an insulating cushion between said connector and the insulating layer of said conductor upon deformation of said attaching body about said conductor.
4. The combination claimed in claim 3 wherein said attaching body has a weakened portion adapted to give upon said deformation of said attaching body to cause said penetrating member to penetrate said conductor in a direction toward the center of the conductor.
5. A combination claimed in claim 3 wherein said penetrating member has a relatively rounded end disposed remotely from said attaching body, said remote end adapted to provide an area contact with said electrically conductive inner core of said conductor upon deformation of the attaching body about the conductor.
6. The combination claimed in claim 3 further comprising a plurality of penetrating members spaced to conform to a predetermined cable lay of a multi-strand conductor.
7. The combination claimed in claim 3 wherein said deformable attaching body is made from electrically conductive material.
8. The combination claimed in claim 7 wherein said connector is made from aluminum.
9. The combination claimed in claim 3 wherein said deformable attaching body is generally C-shaped in cross section.
10. The combination claimed in claim 9 wherein said penetrating member is connected to said attaching body on the inner part of said C cross section near one end of said C.
11. The combination claimed in claim 3 wherein said means to carry current includes a tap wire connecting member of conductive material electrically communicated with said penetrating member.
12. The combination claimed in claim 11 wherein said tap wire connecting member comprises: a. a lead off segment of electrically conductive material electrically communicated to said deformable attaching body; and b. a passage in said lead off segment adapted to receive a take off cable.
13. The combination claimed in claim 3 further comprising: a plurality of penetrating members disposed in spaced relation to provide means for penetrating a plurality of electrical conductors; a plurality of deformable attaching bodies operatively associated with said plurality of penetrating members and connected to said means to carry current so that deformation of said plurality of deformable attaching bodies will cause said plurality of penetrating members to penetrate a plurality of conductors and electrically connect said plurality of conductors through said means to carry current, said plurality of penetrating members being connected to said means to carry current, said penetrating members being connected to said deformable attaching bodies, said deformable attaching bodies being shaped to partially conform to the shape of the conductor with said penetrating members being disposed with relation to said connector so that the insulation on said penetrating members will be stripped from said penetrating members by the conductor to form an insulating cushion between said connector and the insulating layer of said conductor upon deformation of said deformable attaching bodies about said conductor.
14. The combination claimed in claim 13 further comprising a layer of insulation at leAst partially covering said connector.
15. The combination claimed in claim 13 further comprising a layer of insulation covering the entire connector.
16. The combination claimed in claim 13 wherein said connector is made from aluminum.
17. The combination claimed in claim 13 wherein: said means to carry current include frame means; and each of said plurality of penetrating members is operatively connected to an operatively associated deformable attaching body.
18. The combination claimed in claim 13 wherein said means to carry current include a ''''buss'''' member.
19. The combination claimed in claim 13 wherein said means to carry current includes an attaching bar.
20. The combination claimed in claim 11 further comprising an attaching bar connected to said tap wire connecting member.
21. The combination claimed in claim 20 wherein said attaching bar includes a hook shaped portion adapted to fit over a conductor and to be supported thereby.
US5011A 1970-01-22 1970-01-22 Electrical connector Expired - Lifetime US3668613A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US501170A 1970-01-22 1970-01-22

Publications (1)

Publication Number Publication Date
US3668613A true US3668613A (en) 1972-06-06

Family

ID=21713677

Family Applications (1)

Application Number Title Priority Date Filing Date
US5011A Expired - Lifetime US3668613A (en) 1970-01-22 1970-01-22 Electrical connector

Country Status (5)

Country Link
US (1) US3668613A (en)
CA (1) CA924397A (en)
DE (1) DE2102180A1 (en)
FR (1) FR2076931A5 (en)
GB (1) GB1340082A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881796A (en) * 1973-03-23 1975-05-06 Itt Terminal for flat conductor
US3903896A (en) * 1974-04-01 1975-09-09 Dietrich Harmjanz Catheter for the electrical stimulation of the heart
US4867700A (en) * 1987-05-14 1989-09-19 Amp Incorporated Wave crimp for flat power cable termination
US4915650A (en) * 1988-05-13 1990-04-10 Amp Incorporated Electrical terminals and method for terminating flat power cable
US4938713A (en) * 1987-05-14 1990-07-03 Amp Incorporated Electrical terminal for wave crimp termination of flat power cable
US5643007A (en) * 1996-09-13 1997-07-01 Abb Power T&D Company Inc. Transformer tap connector
EP0841717A2 (en) * 1996-11-09 1998-05-13 Ccl Systems Limited Electrical connector
WO2000008716A1 (en) * 1998-08-04 2000-02-17 Mandex Manufacturing Corporation, Inc. Insulation displacement device for wire termination
WO2012000086A1 (en) 2010-06-29 2012-01-05 Timsit Roland S Spring-loaded compression electrical connector
US20150140855A1 (en) * 2013-11-15 2015-05-21 Philadelphia Scientific UK Ltd. Insulation Piercing Battery Connector
WO2020150524A1 (en) * 2019-01-18 2020-07-23 Hubbell Incorporated Compression connectors with insulating cover
WO2020170188A1 (en) * 2019-02-20 2020-08-27 Tyco Electronics Canada Ulc Electrical connection bails and stirrup systems and methods including same
WO2021119116A1 (en) 2019-12-09 2021-06-17 Hubbell Incorporated Insulation piercing tap connectors for electrical conductors

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2439484A1 (en) * 1978-10-18 1980-05-16 Dervaux Ets Crimped connector for bare cable junctions - is in two halves and has one which is pushed into other to form complete cylinder
FR2510311A1 (en) * 1981-07-24 1983-01-28 Sicame Sa Connector used to add electric outlet to electrical cable - has half-shells fitted with projection and recesses and tightened by small force owing to small cross-section deformable zones
DE4309843A1 (en) * 1993-03-26 1994-09-29 S L G Kunststoff Fabrik Und Fo Cable junction terminal
CN103996911A (en) * 2014-04-17 2014-08-20 国家电网公司 Lead bifurcation connector and application method thereof
DE102019117554B4 (en) * 2019-06-28 2022-10-20 Dipl.-Ing. H. Horstmann Gmbh Catch fork for contacting an electrical conductor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2302767A (en) * 1940-12-21 1942-11-24 Western Electric Co Terminal for electrical conductors
US2734933A (en) * 1956-02-14 klosin
US2748366A (en) * 1952-07-10 1956-05-29 Thomas & Betts Corp Y-shaped wire and cable tap
US2779842A (en) * 1955-04-12 1957-01-29 Norman A Walker Device to establish an electrical circuit
US2884478A (en) * 1955-04-20 1959-04-28 Fargo Mfg Co Inc Strand connector
US3001000A (en) * 1958-05-28 1961-09-19 Chance Co Ab Electrical compression connectors
US3194877A (en) * 1962-05-08 1965-07-13 Amp Inc Electrical connector for connecting an electrical lead to the braid of a braid-shielded electrical cable
FR1453743A (en) * 1965-11-16 1966-06-03 Continuous distribution electrical pipeline
US3579173A (en) * 1969-12-23 1971-05-18 Fargo Mfg Co Inc Underground cable tap connector

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734933A (en) * 1956-02-14 klosin
US2302767A (en) * 1940-12-21 1942-11-24 Western Electric Co Terminal for electrical conductors
US2748366A (en) * 1952-07-10 1956-05-29 Thomas & Betts Corp Y-shaped wire and cable tap
US2779842A (en) * 1955-04-12 1957-01-29 Norman A Walker Device to establish an electrical circuit
US2884478A (en) * 1955-04-20 1959-04-28 Fargo Mfg Co Inc Strand connector
US3001000A (en) * 1958-05-28 1961-09-19 Chance Co Ab Electrical compression connectors
US3194877A (en) * 1962-05-08 1965-07-13 Amp Inc Electrical connector for connecting an electrical lead to the braid of a braid-shielded electrical cable
FR1453743A (en) * 1965-11-16 1966-06-03 Continuous distribution electrical pipeline
US3579173A (en) * 1969-12-23 1971-05-18 Fargo Mfg Co Inc Underground cable tap connector

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881796A (en) * 1973-03-23 1975-05-06 Itt Terminal for flat conductor
US3903896A (en) * 1974-04-01 1975-09-09 Dietrich Harmjanz Catheter for the electrical stimulation of the heart
US4867700A (en) * 1987-05-14 1989-09-19 Amp Incorporated Wave crimp for flat power cable termination
US4938713A (en) * 1987-05-14 1990-07-03 Amp Incorporated Electrical terminal for wave crimp termination of flat power cable
US4915650A (en) * 1988-05-13 1990-04-10 Amp Incorporated Electrical terminals and method for terminating flat power cable
US5643007A (en) * 1996-09-13 1997-07-01 Abb Power T&D Company Inc. Transformer tap connector
EP0841717A2 (en) * 1996-11-09 1998-05-13 Ccl Systems Limited Electrical connector
EP0841717A3 (en) * 1996-11-09 1999-03-31 Ccl Systems Limited Electrical connector
WO2000008716A1 (en) * 1998-08-04 2000-02-17 Mandex Manufacturing Corporation, Inc. Insulation displacement device for wire termination
US6135805A (en) * 1998-08-04 2000-10-24 Mandex Manufacturing Corporation Insulation displacement device for wire termination
WO2012000086A1 (en) 2010-06-29 2012-01-05 Timsit Roland S Spring-loaded compression electrical connector
US20150140855A1 (en) * 2013-11-15 2015-05-21 Philadelphia Scientific UK Ltd. Insulation Piercing Battery Connector
US9806435B2 (en) * 2013-11-15 2017-10-31 Philadelphia Scientific, Europe Insulation piercing battery connector
EP2874235B1 (en) * 2013-11-15 2018-01-10 Philadelphia Scientific UK Ltd Insulation -piercing battery connector
WO2020150524A1 (en) * 2019-01-18 2020-07-23 Hubbell Incorporated Compression connectors with insulating cover
US11605906B2 (en) 2019-01-18 2023-03-14 Hubbell Incorporated Compression connectors with insulating cover
WO2020170188A1 (en) * 2019-02-20 2020-08-27 Tyco Electronics Canada Ulc Electrical connection bails and stirrup systems and methods including same
US11329401B2 (en) * 2019-02-20 2022-05-10 Tyco Electronics Canada Ulc Electrical connection bails and stirrup systems and methods including same
WO2021119116A1 (en) 2019-12-09 2021-06-17 Hubbell Incorporated Insulation piercing tap connectors for electrical conductors
EP4073887A4 (en) * 2019-12-09 2023-12-20 Hubbell Incorporated Insulation piercing tap connectors for electrical conductors

Also Published As

Publication number Publication date
CA924397A (en) 1973-04-10
GB1340082A (en) 1973-12-05
DE2102180A1 (en) 1971-07-29
FR2076931A5 (en) 1971-10-15

Similar Documents

Publication Publication Date Title
US3668613A (en) Electrical connector
US6296497B1 (en) Three-phase electrical cable plug-type connector
US2672500A (en) Pressurized multiconductor bulkhead connector assembly
US3504099A (en) Electrical connections and insulating boot therefor
EP0683545A1 (en) Glands for terminating cables and pipes
US3594703A (en) Electrical tapoff connector
IE66723B1 (en) Plug-in connection for high-voltage plastic cables
US20170338633A1 (en) Quick connect and disconnect cable junction box
US3622688A (en) Cable lead bushing
US3065292A (en) Electrical connector
NZ207821A (en) Cable connector: axially sliding sheath halves
US2696518A (en) Shielded cable terminal
US3582868A (en) Sealed receptacle tap
US3778531A (en) Distribution cable with coaxial connectors permanently connected thereto and a method of manufacture thereof
WO1998027619A1 (en) Power connector system
US3347977A (en) Homogeneous sodium conductor connections
US3609646A (en) Connector assembly
US3564118A (en) Cable connector for underground applications
EP3499646B1 (en) Electrical connector and connector system using the same
JP3954061B2 (en) Connection sleeve for multiphase low voltage cable
US3626082A (en) Corrugated pipe busline
US2993083A (en) Spider for line tap
JPH0321166Y2 (en)
US3487159A (en) Multi-linked flexible connector
JPH06176625A (en) Link type cable