US3648017A - Device for deicing rails - Google Patents
Device for deicing rails Download PDFInfo
- Publication number
- US3648017A US3648017A US41330A US3648017DA US3648017A US 3648017 A US3648017 A US 3648017A US 41330 A US41330 A US 41330A US 3648017D A US3648017D A US 3648017DA US 3648017 A US3648017 A US 3648017A
- Authority
- US
- United States
- Prior art keywords
- rails
- magnetic core
- exciting
- alternating current
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01B—PERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
- E01B19/00—Protection of permanent way against development of dust or against the effect of wind, sun, frost, or corrosion; Means to reduce development of noise
Definitions
- railroad lines can often have ice and/or crystallized snow stuck thereon.
- Such ice and/or crystallized snow accumulated on the railroad line may cause vehicles to slip along the line during acceleration or deceleration thereby providing an obstacle to traffic service and may even cause the vehicles to be derailed.
- the invention accomplishes this object by the provision of a device for deicing a railroad line including at least two parallel rails, comprising an exciting element for supplying an alternating current magnetic flux across the rails, and a source of alternating current for energizing the exciting element, the arrangement being such that the alternating current magnetic flux passes through the rails to cause an iron loss in each of the rails thereby to deice the rails.
- the deicing device may comprises a magnetic member for magnetically interconnecting the rails on the undersides, a winding inductively disposed around the magnetic member, and a source of alternating current for energizing the winding to induce an alternating current magnetic flux in the magnetic member, the magnetic flux being caused to flow through the rails to cause a iron loss in each of the rails thereby to deice the rails.
- FIG. I is a fragmental schematic circuit diagram of a deicing device constructed in accordance with the principles of the invention.
- FIG. 2 is a cross-sectional view of the deicing device shown in FIG. I and illustrating one exciting element in more detail;
- FIGS. 3A and B are views similar to FIG. 1 but illustrating two different modifications of the invention.
- an arrangement disclosed herein comprises a pair of rails B, and B, disposed in spaced parallel relationship and a plurality of magnetic flux means generally designated by the reference characters U,, U U and U, and disposed at predetermined intervals across the rails B, and B
- the magnetic flux means U,, U U or U includes a magnetic core C,, C C or C, of any suitable magnetic material such as silicon steel connected across the rails B, and 3,, an exciting element or winding W,, W W or W, inductively disposed around each magnetic core and a source of alternating current E,, E E, or E, connected across each of the winding W,, W W, or W, to energize the latter and flow sufficient exciting current therethrough to produce a magnetic flux of alternating current in the associated magnetic core.
- the magnetic fluxes thus produced will then flow through the rails B, and B,.
- the magnetic fluxes thus produced have preferably their instantaneous polarities alternating from one another for the purpose of facilitating the circulation of the fluxes through the rails.
- the magnetic cores should be electrically isolated from the rails by any suitable means such as will be described hereinafter. However, it will readily be understood that for railroad along which cargo crane cars travel, the magnetic cores are not required to be electrically isolated from the rails.
- FIG. 2 shows a cross section of one of the magnetic flux means, forexample the magnetic flux means U,.
- a pair of rails B, and B, disposed'in opposite parallel relationship have the respective lower faces interconnected through a U-shaped magnetic core including a .pair of L- shaped magnetic core portions C, and C and an electric insulation D, sandwiched between the opposited ends of the core portions.
- both rails B, and B are electrically isolated from each other by the insulation D, ensuring that any signal voltage for trains is prevented from shortcircuiting through the magnetic core C -C Then an exciting winding W, is inductively disposed around both the magnetic core portions C and C and connected across the source of alternating current E,.
- the source E energizes the exciting winding W, to produce in the magnetic core portions C and C a magnetic flux of alternating current which, in turn, circulates through the rails B, and B
- the circulation of the flux through the rails causes the generation of heat in the rails as previously described.
- the succeeding magnetic flux means are arranged to produce the magnetic fluxes having the instantaneous polarities alternating from one another so that the fluxes can effectively flow through the rails to increase the temperature thereof. It will readily be understood that the quantity of heat generated in the rails and therefore the temperatures thereof can be controlled by adjusting the magnitudes of the respectivefluxes.
- each magnetic flux means U,, U may preferably be a stack of laminations of any suitable magnetic material such as sheet, silicon-steel low in magnetic loss in order to eliminate or minimize the eddy current loss caused in the magnetic core portions.
- the magnetic flux means each are conveniently disposed between adjacent sleepers for the rails without hindrance.
- magnetic flux means are shown as being connected across their own sources of alternating current, it is to be understood that a plurality of magnetic flux means may be connected across a common source of alternating current with satisfactory results. In the latter case, one of the rails is utilized to form one part of the circuit for energizing the individual exciting winding. 7
- FIG. 3A wherein like reference characters designate the components identical or corresponding to those shown in FIG. 1, illustrates a modification of the invention. More specifically, the source E is connected at one side to one of the rails, in this case the rail 3,, and all the exciting windings W,, W W and W, are connected across the rail 8, and the other side of the source E with the magnetic core composed of two pertions C,, and C electrically isolated from each other. In other respects the arrangement is identical to that shown in FIG. 1.
- FIG. 38 illustrates another modification of the invention.
- a selected number of the exciting windings in the illustrated example, two windings W, and W are connected in series circuit relationships across the source E, through that portion disposed between both windings of the rail 8,.
- the remaining windings W and W are connected in the similar manner across another source E
- the arrangement is identical to that shown in FIG. 3A.
- the arrangement of FIG. 38 includes the two separate sources E, and B, it is to be understood that with thesourcescomprising, for example, transformers, their primary windings are not required to be electrically isolated from each other. It is sufficient to energize the series combinations of the exciting windings by the respective sources electrically insulated from one another.
- a device for deicing a railroad line including at least two parallel rails comprising: an exciting element operable when energized to supply an alternating current magnetic flux across the rails, and means including a source of alternating current for energizing the exciting element to develop an alternating current magnetic flux flowing through the rails to cause an iron loss in each of the rails of sufficient magnitude to effect deicing of the rails.
- the exciting element includes a magnetic core for magnetically interconnecting the rails on the lower surfaces thereof, the magnetic core having an electric insulation interposed therein, and an exciting winding inductively disposed around the magnetic core and connected to be energized by the source.
- a rail deicing device as claimed in claim 1 wherein the exciting element includes a magnetic core of lamination type for magnetically interconnecting the rails on the lower surfaces thereof, and wherein the magnetic core has an electric insulation interposed therein.
- a device for deicing a railroad line including at least two parallel rails comprising: a source of alternating current a magnetic core magnetically interconnecting said two rails and including means maintaining said two rails electrically insulated from each other and alternating current exciting means disposed between said two rails and including an exciting winding disposed around said magnetic core energizable by said source to produce an alternating current magnetic flux flowing from said magnetic core into said rails to develop an iron loss in each of said rails of sufficient magnitude to selfheat the rails to a temperature effective to deice same.
- a device for deicing a railroad line including at least two parallel rails, comprising: a source of alternating current; at least two alternating current exciting means disposed between said two rails and spaced apart from each other along the length of the rails at predetermined intervals and each including an exciting winding energizable by said source to produce respective alternating current magnetic fluxes; and one magnetic core magnetically coupled to each said exciting winding to magnetically interconnect said two rails while said rails are maintained electrically insulated from each other and wherein the two adjacent magnetic cores and those portions of said rails disposed therebetween define a closed loop magnetic circuit in which the alternating current magnetic flux'produced by one of the associated alternating current exciting means is added to that produced by the other of the associated alternatmg current exciting means to develop an ll'Ol'l loss in each of those portions of the rails disposed between said two magnetic cores of sufficient magnitude to self-heat the rails to a tem perature effective to deice same.
- a combination according to claim 11 including means locating said magnetic core member and said magnetic flux generating means sufficiently away from the riding surface of said rails to allow vehicles to ride on said rails while same are being heated.
- said magnetic flux generating means comprises an exciting winding disposed around said magnetic core member, and alternating current means connected to said exciting winding for flowing sufficient exciting current therethrough to develop said varying magnetic flux.
- a combination according to claim 13 including means electrically connecting said exciting winding in series with a portion of one of said rails and said alternating current means whereby said exciting current flows through said rail portion.
- a combination according to claim 12; wherein said means electrically insulating said pair of rails from each other comprises a section of electric insulation effectively dividing said magnetic core member into two sections.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- General Induction Heating (AREA)
- Train Traffic Observation, Control, And Security (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP4446869 | 1969-06-06 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3648017A true US3648017A (en) | 1972-03-07 |
Family
ID=12692319
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US41330A Expired - Lifetime US3648017A (en) | 1969-06-06 | 1970-05-28 | Device for deicing rails |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US3648017A (enExample) |
| CH (1) | CH525327A (enExample) |
| DE (1) | DE2027525B2 (enExample) |
| FR (1) | FR2050042A5 (enExample) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5389766A (en) * | 1992-11-27 | 1995-02-14 | Fuji Electric Co., Ltd. | Rail snow-melting by electromagnetic induction heating |
| NL2008641C2 (nl) * | 2012-04-16 | 2013-10-17 | Brouwers Holding B V | Werkwijze voor het verwarmen van een spoorstaafsamenstel. |
| US12457666B2 (en) | 2021-12-02 | 2025-10-28 | Jared Kluver | Methods and apparatus for the removal of snow and ice from crane booms |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2216504B2 (de) * | 1972-04-06 | 1978-09-28 | Fa. Carl Still, 4350 Recklinghausen | Gleisbahn für den Löschwagen von Verkokungsbatterien |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE508104C (de) * | 1929-09-26 | 1930-09-24 | Koch & Sterzel Akt Ges | Vorrichtung zum elektrischen Auftauen von vereisten metallischen Gegenstaenden, insbesondere von Weichenzungen |
| US2223970A (en) * | 1939-04-29 | 1940-12-03 | Gen Electric | Electric induction heating apparatus |
| US3530499A (en) * | 1969-09-29 | 1970-09-22 | Charles F Schroeder | Electrically heated appliance unit |
-
1970
- 1970-05-28 US US41330A patent/US3648017A/en not_active Expired - Lifetime
- 1970-05-28 CH CH795870A patent/CH525327A/de not_active IP Right Cessation
- 1970-06-04 DE DE19702027525 patent/DE2027525B2/de not_active Withdrawn
- 1970-06-05 FR FR7020841A patent/FR2050042A5/fr not_active Expired
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE508104C (de) * | 1929-09-26 | 1930-09-24 | Koch & Sterzel Akt Ges | Vorrichtung zum elektrischen Auftauen von vereisten metallischen Gegenstaenden, insbesondere von Weichenzungen |
| US2223970A (en) * | 1939-04-29 | 1940-12-03 | Gen Electric | Electric induction heating apparatus |
| US3530499A (en) * | 1969-09-29 | 1970-09-22 | Charles F Schroeder | Electrically heated appliance unit |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5389766A (en) * | 1992-11-27 | 1995-02-14 | Fuji Electric Co., Ltd. | Rail snow-melting by electromagnetic induction heating |
| NL2008641C2 (nl) * | 2012-04-16 | 2013-10-17 | Brouwers Holding B V | Werkwijze voor het verwarmen van een spoorstaafsamenstel. |
| US12457666B2 (en) | 2021-12-02 | 2025-10-28 | Jared Kluver | Methods and apparatus for the removal of snow and ice from crane booms |
Also Published As
| Publication number | Publication date |
|---|---|
| CH525327A (de) | 1972-07-15 |
| DE2027525B2 (de) | 1971-08-12 |
| FR2050042A5 (enExample) | 1971-03-26 |
| DE2027525A1 (de) | 1971-01-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4190137A (en) | Apparatus for deicing of trolley wires | |
| US3648017A (en) | Device for deicing rails | |
| US3506862A (en) | Dynamic and eddy current railway brake device | |
| US1704736A (en) | Railway-traffic-controlling apparatus and electrical apparatus suitable for use therein | |
| US1905218A (en) | Railway car retarder | |
| US1787550A (en) | Electrical apparatus | |
| US2017546A (en) | Railway track circuit apparatus | |
| US2215822A (en) | Railway signaling apparatus | |
| US2091708A (en) | Battery charging regulation | |
| US1609141A (en) | Voltage-regulating apparatus | |
| US804176A (en) | System of automatic signaling for electric railways. | |
| US663398A (en) | Electric railway. | |
| US2049859A (en) | Track circuit | |
| US1790691A (en) | Sylvania | |
| US1683696A (en) | Alternating-current relay | |
| US1083669A (en) | Electric traffic-controlling system. | |
| US2024845A (en) | Device for use in operating track relays in railway signaling systems | |
| US1092460A (en) | Railway signaling. | |
| US1093780A (en) | Relay-bound. | |
| US1792427A (en) | Railway-traffic-controlling apparatus | |
| US2120037A (en) | Electrical relay | |
| US1389258A (en) | Electrical system of train communication | |
| US1775016A (en) | Railway-traffic-controlling apparatus | |
| US1798674A (en) | Railway track circuits | |
| US2057159A (en) | Track shunting apparatus |