US3647515A - Process for treating windshields of organic glass and, respectively, the outer layers thereof - Google Patents
Process for treating windshields of organic glass and, respectively, the outer layers thereof Download PDFInfo
- Publication number
- US3647515A US3647515A US763818A US3647515DA US3647515A US 3647515 A US3647515 A US 3647515A US 763818 A US763818 A US 763818A US 3647515D A US3647515D A US 3647515DA US 3647515 A US3647515 A US 3647515A
- Authority
- US
- United States
- Prior art keywords
- windshields
- bromine
- treated
- organic glass
- plastic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 34
- 230000008569 process Effects 0.000 title claims description 31
- 239000011521 glass Substances 0.000 title abstract description 14
- 238000011282 treatment Methods 0.000 claims description 18
- 230000003472 neutralizing effect Effects 0.000 claims description 7
- -1 aliphatic amines Chemical class 0.000 claims description 6
- 150000004982 aromatic amines Chemical class 0.000 claims description 4
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 abstract description 22
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 abstract description 20
- 229910052794 bromium Inorganic materials 0.000 abstract description 20
- 229910052736 halogen Inorganic materials 0.000 abstract description 9
- 150000002367 halogens Chemical class 0.000 abstract description 9
- 239000011248 coating agent Substances 0.000 abstract description 5
- 238000000576 coating method Methods 0.000 abstract description 5
- 230000003068 static effect Effects 0.000 abstract description 4
- 230000002411 adverse Effects 0.000 abstract description 3
- 229920003023 plastic Polymers 0.000 description 26
- 239000004033 plastic Substances 0.000 description 23
- 239000000463 material Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000006386 neutralization reaction Methods 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229920002574 CR-39 Polymers 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229920002521 macromolecule Polymers 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- NNWNNQTUZYVQRK-UHFFFAOYSA-N 5-bromo-1h-pyrrolo[2,3-c]pyridine-2-carboxylic acid Chemical compound BrC1=NC=C2NC(C(=O)O)=CC2=C1 NNWNNQTUZYVQRK-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- KEQGZUUPPQEDPF-UHFFFAOYSA-N 1,3-dichloro-5,5-dimethylimidazolidine-2,4-dione Chemical compound CC1(C)N(Cl)C(=O)N(Cl)C1=O KEQGZUUPPQEDPF-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000002925 chemical effect Effects 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- XTHPWXDJESJLNJ-UHFFFAOYSA-N chlorosulfonic acid Substances OS(Cl)(=O)=O XTHPWXDJESJLNJ-UHFFFAOYSA-N 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000003678 scratch resistant effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/12—Chemical modification
- C08J7/126—Halogenation
Definitions
- the present invention relates to a process for treating windshields made of organic glass and, respectively, the outer layers thereof, particularly the windshields of airplanes and aircraft with halogens in vapor or solutions to prevent the formation of static changes.
- FIGS. I to 3 are cross-sectional views on an enlarged scale of panes of the glasses described.
- FIGS. I and 2 are cross-sectional views of the glasses treated in accordance with the prior art, and are presented here for purposes of comparison,
- FIG. 3 is a view of glass treated in accordance with the present invention.
- FIGS. 4 and 5 are diagrammatic views showing certain relationships resulting from the processes of the present invention.
- FIG. 6 is a table showing results of treatment carried out in accordance with the present invention.
- FIG. 7 is a perspective view of an apparatus for performing the process of the invention.
- the specific electric resistance of a windshield made of organic glass is generally from 10 to 10 ohm X centimeter.
- the surfaces thereof must be made electrically conducting, i.e., antistatic.
- antistatic effcct In order to achieve the required antistatic effcct on the windshields, it is necessary to reduce this high specific resistance to approximately 10 ohm X centimeter.
- the desired results are accomplished by treating the surfaces of the windshields with materials which are compatible with the plastic glass material on hand, readily adhere thereto and do not affect adversely its light transmission and have the desired conductivity.
- materials which are compatible with the plastic glass material on hand readily adhere thereto and do not affect adversely its light transmission and have the desired conductivity.
- the inventor discovered that among the numerous materials best suitable for this purpose are halogens, namely, chlorine, bromine, fluorine and iodine. The first two mentioned halogens are particularly best suitable for the purpose.
- the desired conductivity by providing it with a specific or a mixture of halogens, the conductivity or conductivities of which are predetermined.
- the reaction may be accelerated by means of light or heat.
- FIGS. 1 and 2 show the chemical effect of the treatment in depths of penetration 7, 8 respectively, up to u, as they are produced with the aforementioned processes which are not suitable for airplanes and aircraft.
- FIG. 3 illustrates a part of a windshield surface which has been chemically treated according to the present invention with a depth of penetration of from 9 to l00 u.
- FIG. 4 shows the relationship between the surface resistance and the time of bromine action at four differently chosen temperatures.
- the percentage of halogens. particularly bromine and iodine, is produced as a function of the temperature on the basis of the vapor pressure equilibrium in accordance with Henry's Law.
- the temperatures and durations of treatment are apparent from the following table. They depend upon the material that is to be treated.
- the process of the preach is particularly suitable for plastics which are employed in their glass-clear conditions, for example for glazing airplanes, instruments, etc., and whose optical properties are not significantly impaired by an antistatic treatment.
- Said plastics are, for instance, polystyrene, polyvinyl chloride, polyester, polyethylene and polycarbonate.
- water vapor may be used, if necessary, in connection with the neutralization of the treated surfaces of the windshields.
- vapor is an optional process specifically for plastics which are difficult to brominate and which at room temperature can be brominated only to an economically unsatisfactory degree, if at all.
- the diagram of FIG. 5 shows light absorption curves in relation to wavelength of untreated EEC plastic windshields x, of bromine-vapor treated EEC plastic windshields o and of EEC plastic windshields treated with bromine vapor under a high vacuum.
- the light permeability is indicated along the X-axis, the wavelength along the Y-axis.
- the diagram shows that short-wave light around 400 nm. is absorbed particularly intensively and is therefore suitable also for accelerating the reaction.
- the curves presented here apply only to allyl diglycol carbonate. With the aid of additional light treatment, the surface resistance can be lowered by one tenth power.
- FIG. 6 shows three curves which illustrate that the light is strongly absorbed only within the blue and violet ranges, but hardly within the normal visibility range. This graphic illustration proves that the process according to the present invention does not result in a significant impairment of the permeability to light or transparency of the treated windshields.
- the RC 900 plastic mentioned in the tests of FIG. 6 is obtained by peroxyd polymerization of monomers of allyl diglycol carbonate
- the spatial bond with the macromolecule occurs on the C C double linkage. It is worth mentioning that no organic wetting-reactions occur quantitatively. Therefore, in the macromolecule remain in accordance with the degree of wetting occasional remaining double linkages.
- These C-C double linkages are capable to react in conjunction with various addition and oxydation reactions.
- the addition of bromine occurs generally radically stepwise often with superimpositions of these processes.
- aromatic and aliphatic amines are used for the neutralization of the treated surfaces of the windshields. They are employed preferably in aqueous solutions and at elevated temperatures.
- bromine causes a chain reaction. It occurs predominantly in the gaseous phase and is advanced generally by light or additions of radical starter mixtures in accordance with the following 15:1 Br-Br Br. Br.
- the brominating process occurs in polar solvents such as for instance in cooled acetic acid as well as in the presence of catalysts, as per following equations:
- the neutralization is a necessary process step designed to reestablish the stability of the plastic and to eliminate excess bromine. It is possible, if desired, to complement the neutralization with a correspondingly long watering, i.e., rinsing of the plastic.
- the amines are preferably employed in the undiluted condition.
- the neutralization is carried out in every case of treatment until all free bromine has disappeared.
- FIG. 7 a treating device is shown for two airplane panes or Windshields, which shows the manner in which the saturation of the air takes place.
- FIG. 7 an apparatus for carrying out the process of the invention is shown.
- the window shield to be treated itself is utilized as a wall of the treatment chamber.
- Other details of the apparatus will be obvious from the drawing to those skilled in this particular art.
- the treatment of the windshields according to the process proposed by the present invention takes place at room temperature.
- the air is saturated with bromine vapor and its flow is directed over the windshield surfaces.
- the saturation of the air is achieved in that the air is passed in a closed cycle over liquid bromine in a storage container.
- the windshield may be treated with liquid bromine with diluents.
- a process for treating a transparent plastic article such as a windshield of an airplane comprising the steps of:
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Surface Treatment Of Glass (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19671694393 DE1694393A1 (de) | 1967-09-29 | 1967-09-29 | Verfahren zum Behandeln von Sichtscheiben aus organischem Glas bzw. deren Aussenschichten |
Publications (1)
Publication Number | Publication Date |
---|---|
US3647515A true US3647515A (en) | 1972-03-07 |
Family
ID=5687820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US763818A Expired - Lifetime US3647515A (en) | 1967-09-29 | 1968-09-30 | Process for treating windshields of organic glass and, respectively, the outer layers thereof |
Country Status (4)
Country | Link |
---|---|
US (1) | US3647515A (enrdf_load_stackoverflow) |
CH (1) | CH501518A (enrdf_load_stackoverflow) |
FR (1) | FR1581263A (enrdf_load_stackoverflow) |
GB (1) | GB1208339A (enrdf_load_stackoverflow) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4066387A (en) * | 1975-03-26 | 1978-01-03 | The State Of Israel Ministry Of Commerce And Industry | Method of improving the sorption capacity of polymers |
AU624668B2 (en) * | 1988-12-21 | 1992-06-18 | Mitsubishi Rayon Company Limited | Dental composition and process for preparing high-molecular shape for dental use |
US5296513A (en) * | 1988-12-21 | 1994-03-22 | Mitsubishi Rayon Co., Ltd. | Dental composition and process for producing dental polymeric shaped articles |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2727831A (en) * | 1952-10-09 | 1955-12-20 | Westinghouse Electric Corp | Method of rendering polystyrene articles static-free and resulting article |
US2788306A (en) * | 1953-03-24 | 1957-04-09 | Pittsburgh Plate Glass Co | Surface treatment of halogenated fluoroethylenes and laminates thereof |
US2801447A (en) * | 1953-04-07 | 1957-08-06 | Du Pont | Process for treating polyethylene structures |
US2805960A (en) * | 1952-11-29 | 1957-09-10 | Du Pont | Process for treating polyethylene structures and articles resulting therefrom |
US2832698A (en) * | 1956-04-30 | 1958-04-29 | Dow Chemical Co | Method for destaticizing polymeric substances and articles thereby obtained |
US2832697A (en) * | 1956-04-30 | 1958-04-29 | Dow Chemical Co | Method for applying antistatic agents to polymeric substances and destaticized articles thereby obtained |
US2876185A (en) * | 1956-09-06 | 1959-03-03 | Du Pont | Chlorination of polyester structure |
US3036930A (en) * | 1957-12-24 | 1962-05-29 | Hoechst Ag | Process for improving the adhesiveness of polyolefins |
US3076124A (en) * | 1954-05-19 | 1963-01-29 | Velourit Corp | Method for eliminating static electricity |
US3317339A (en) * | 1963-12-23 | 1967-05-02 | Monsanto Co | Surface modification of plastic articles |
US3364056A (en) * | 1963-05-25 | 1968-01-16 | Kalle Ag | Flame and halogen treatment of a polyolefin to improve adhesivity |
US3485574A (en) * | 1965-03-15 | 1969-12-23 | Uniroyal Inc | Polyester and olefin yarns with basic resins therein wound on core,steamed and acidified with so2 or no2 |
-
1968
- 1968-08-30 FR FR1581263D patent/FR1581263A/fr not_active Expired
- 1968-09-04 GB GB42007/68A patent/GB1208339A/en not_active Expired
- 1968-09-27 CH CH1449368A patent/CH501518A/de not_active IP Right Cessation
- 1968-09-30 US US763818A patent/US3647515A/en not_active Expired - Lifetime
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2727831A (en) * | 1952-10-09 | 1955-12-20 | Westinghouse Electric Corp | Method of rendering polystyrene articles static-free and resulting article |
US2805960A (en) * | 1952-11-29 | 1957-09-10 | Du Pont | Process for treating polyethylene structures and articles resulting therefrom |
US2788306A (en) * | 1953-03-24 | 1957-04-09 | Pittsburgh Plate Glass Co | Surface treatment of halogenated fluoroethylenes and laminates thereof |
US2801447A (en) * | 1953-04-07 | 1957-08-06 | Du Pont | Process for treating polyethylene structures |
US3076124A (en) * | 1954-05-19 | 1963-01-29 | Velourit Corp | Method for eliminating static electricity |
US2832698A (en) * | 1956-04-30 | 1958-04-29 | Dow Chemical Co | Method for destaticizing polymeric substances and articles thereby obtained |
US2832697A (en) * | 1956-04-30 | 1958-04-29 | Dow Chemical Co | Method for applying antistatic agents to polymeric substances and destaticized articles thereby obtained |
US2876185A (en) * | 1956-09-06 | 1959-03-03 | Du Pont | Chlorination of polyester structure |
US3036930A (en) * | 1957-12-24 | 1962-05-29 | Hoechst Ag | Process for improving the adhesiveness of polyolefins |
US3364056A (en) * | 1963-05-25 | 1968-01-16 | Kalle Ag | Flame and halogen treatment of a polyolefin to improve adhesivity |
US3317339A (en) * | 1963-12-23 | 1967-05-02 | Monsanto Co | Surface modification of plastic articles |
US3485574A (en) * | 1965-03-15 | 1969-12-23 | Uniroyal Inc | Polyester and olefin yarns with basic resins therein wound on core,steamed and acidified with so2 or no2 |
Also Published As
Publication number | Publication date |
---|---|
FR1581263A (enrdf_load_stackoverflow) | 1969-09-12 |
CH501518A (de) | 1971-01-15 |
GB1208339A (en) | 1970-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6042737A (en) | Process for improving adhesion of coatings to polymeric substrates and articles produced thereby | |
US3255099A (en) | Surface treatment of polymeric shaped structures | |
US3519462A (en) | Method of impregnating polymethyl methacrylate | |
US3700487A (en) | Polycarbonate substrate with durable,abrasion and scratch-resistant,antifogging coating | |
US3297462A (en) | Process for rendering organic polymeric shaped structure resistant to degradation by ultraviolet light | |
US4091166A (en) | Boron trifluoride coatings for thermoplastic materials and method of applying same in glow discharge | |
US3647515A (en) | Process for treating windshields of organic glass and, respectively, the outer layers thereof | |
US3783011A (en) | Protecting plastics from photodegradation | |
US5569537A (en) | Laminated glass with polyurethane resin layer and silane coupling agent layer | |
US2761797A (en) | Method of producing conductive coating on a surface and the coated article | |
US4269896A (en) | Surface passivated alkali halide infrared windows | |
DE60013582T2 (de) | Verfahren zum färben eines durchsichtigen artikels aus polycarbonat sowie daraus hergestellte artikel | |
JPH0629881B2 (ja) | 光案内物品の製造法 | |
US3164719A (en) | Luminescent screen having a protective film | |
US3104176A (en) | Optical filters and method of making same | |
JP3331697B2 (ja) | ハードコート層を有する成形品、及びその製造方法 | |
US4622355A (en) | Radiation-hardened polymeric films | |
BR0110035B1 (pt) | método de corar fotocromicamente uma lente ótica plástica, e, lente ótica plástica fotocrÈmica tendo uma mistura infundida nela por um solvente. | |
JPS61276882A (ja) | フオトクロミツク積層体 | |
ES486797A1 (es) | Un procedimiento para preparar una pelicula termoplastica soldable por calor | |
Hara et al. | Effect on Wettability of FEP Teflon Surface Morphology | |
JPH0555001B2 (enrdf_load_stackoverflow) | ||
TW202031759A (zh) | 偏光件之製造方法 | |
US1683315A (en) | Process of making antistatic nitrocellulose film | |
KR0182351B1 (ko) | 농업용 합성수지필름의 무적제 코팅방법 및 그 장치 |