US3643780A - Automatic bottle feeder - Google Patents

Automatic bottle feeder Download PDF

Info

Publication number
US3643780A
US3643780A US75302A US3643780DA US3643780A US 3643780 A US3643780 A US 3643780A US 75302 A US75302 A US 75302A US 3643780D A US3643780D A US 3643780DA US 3643780 A US3643780 A US 3643780A
Authority
US
United States
Prior art keywords
bottle
conveyor
bottles
washing machine
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US75302A
Other languages
English (en)
Inventor
Toshio Shimogaki
Saburo Suzuki
Hiroaki Shigematsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Barry Wehmiller Co Inc
Original Assignee
Barry Wehmiller Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP1870068A external-priority patent/JPS4819740B1/ja
Application filed by Barry Wehmiller Co Inc filed Critical Barry Wehmiller Co Inc
Application granted granted Critical
Publication of US3643780A publication Critical patent/US3643780A/en
Assigned to CITICORP INDUSTRIAL CREDIT, INC., reassignment CITICORP INDUSTRIAL CREDIT, INC., SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BARRY-WEHMILLER COMPANY A MO CORP
Assigned to BARRY-WEHMILLER COMPANY (THE "COMPANY") reassignment BARRY-WEHMILLER COMPANY (THE "COMPANY") RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITICORP INDUSTRIAL CREDIT, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto
    • B08B9/08Cleaning containers, e.g. tanks
    • B08B9/20Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought
    • B08B9/42Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought the apparatus being characterised by means for conveying or carrying containers therethrough
    • B08B9/44Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought the apparatus being characterised by means for conveying or carrying containers therethrough the means being for loading or unloading the apparatus

Definitions

  • ABSTRACT This invention relates to an apparatus for handling bottles being fed to a bottling-washing machine.
  • a plurality of bottles are placed in an upright position on a first conveyor means.
  • a plurality of parallel divider plates for forming a plurality of discrete rows of bottles.
  • a rotatable lift having diametrically extending claw means thereon receives each row of upright bottles and places each bottle in a horizontal position on a second conveyor.
  • Detec tion means located above the second conveyor serve to produce a detection signal to the operator if the bottle is fed from the second conveyor to the bottle-washing machine conveyor with its bottom directed forward. If this condition is not corrected in a predetermined time, the drive connection to the lift is broken and bottlefeeding operation for the particular row is stopped.
  • This invention relates to improvements in an automatic bot tle feeder for use with a bottle-washing machine.
  • the bottlewashing machine is one of the important components in a bottling plant and generally has a high capability of handling no less than L200 bottles per minute. With such a high capability, if the washing machine gets out of order, the efficiency thereof is greatly reduced even when the time during which the machine is shut down due to the disorder is relatively short. Therefore, it is advisable to remove any disorder or trouble from the machine as soon as possible and without shutting down the machine.
  • Statistics show that no less than 80 percent of the troubles in the bottle-washing machine are caused in the bottle feeder provided at the input side of the washing machine to feed dirty bottles thereinto. Therefore, to provide a trouble-free bottle feeder is to improve the working efficiency of the washing machine as a whole.
  • One known type of bottle-washing machine includes a plurality, say, forty belt or chain conveyors arranged side by side each having a plurality of bottle-carrying baskets attached thereto for bottles to be cleaned to be put into one by one, so that as the conveyors circulate inside the washing machine, the bottles in the baskets are cleaned and sterilized.
  • a bottle feeder is provided at the input side of the washing machine. The feeder receives many dirty bottles, arranges them in proper rows and feed them onto the washing machine, so that the bottles are put into the baskets ofthe machine one by one.
  • the baskets are so dimensioned and contoured that they can receive a bottle only when it is put thereinto with its mouth forward.
  • a detector detects reverse bottles in front of the baskets, so that only those bottles which are properly positioned may further proceed to be received into the baskets, thereby preventing the breaking down of reverse bottles and/or deformation of the baskets.
  • a warning whether visual or acoustic, is given so that the operator of the machine corrects the reversed position of the bottle. If such correction requires a considerable period of time, the detection signal may be utilized to temporarily stop the operation ofthe machine.
  • FIG. I is an elevational view of the principal portion of the bottle feeder embodying the invention.
  • FIG. 2 is a top plan view of FIG. 1;
  • FIG. 3 is an enlarged view taken along the line AA in FIG. 1;
  • FIG. 4 is a view similar to FIG. I but showing a reverse bot tle being detected
  • FIG. 5 is an enlarged vertical section of a clutch means provided at one end of the drive shaft shown in FIG. 1', and
  • FIG. 6 is an enlarged elevation as viewed from the line BB in FIG. 5.
  • FIGS. 1 and 2 there are shown a plurality of endless chain conveyors I laterally spaced at suitable distance apart from each other and each running around a pair of sprocket wheels, only one of which is shown at 3, rigidly secured to a drive shaft 2 for rotation therewith.
  • a drive shaft 2 for rotation therewith.
  • 40 or more such conveyors but only six of them are illustrated in the drawing.
  • a crossbeam 4 extends between a pair of opposite side panels 5 of the bottle feeder and carries thereon a bearing block 6 for supporting the drive shaft 2.
  • a spacer bar 8 sup ported by a pair of metallic pieces 7 fixed to the upper surface of the crossbar 4 in such a manner that the upper surface of each bar 8 is positioned a little below the level of the con veyors.
  • the right-hand end of the bar 8 terminates at a point in the direction of 45 upward from the center of the drive shaft 2 in FIG. I, so that below this point a space is left between each adjacent pair of conveyors for a purpose to be described later.
  • the right-hand end of the bar 8 has its upper surface 9 so curved downward and contoured as to conform to the arc of the conveyor as it begins to pass round the sprocket wheel 3.
  • a pair of crossbeams I0 and I] extend between the opposite side panels 5 of the machine.
  • a plurality, say, 41 upright divider plates 12, only four of which is shown in FIG. 2, laterally spaced a little greater distance than the diameter of the bottle a have their respective leg portions I3 secured to the cross beam 10.
  • Each divider plate I2 has a pair of wings 12a and 12b extending in opposite directions along the length of the conveyor 1. The wing 12a extends backward (or leftward in FIGS.
  • each divider plate 12 stands securely on its two legs 13 and 14.
  • Bottles are successively and at random placed upright on the front (left-hand) end of the conveyors I. As they are carried on the conveyors, they are arranged into 40 rows in a manner well known in the art and enter the space between each adjacent two of the divider plates 12. As previously men tioned, each divider plate is portioned above the center line of each conveyor, so that the bottles that have entered the space between each adjacent two of the divider plates are carried on two adjacent conveyors, as shown in FIG. 2, without having their bottom surfaces contacting the upper surface of the two spacer bars 8 disposed between the two adjacent conveyors. As each bottle reaches the rear (right-hand) end of the conveyors, it is tilted rightward (see the bottle b in FIG. I) due to the arc of the conveyor passing round the sprocket wheel 3 and the conforming curvature of the right-hand end of the bar 8.
  • a drive shaft 16 extends between the opposite side panels 5 of the machine.
  • the shaft 16 comprises two separate axially aligned portions each having its inner end journaled in a bearing block I7 secured to a plate 18 supported by the beams 10 and II and its outer end projecting outside through each side panel 5 of the machine.
  • a pair of guide members 20 are secured to the opposing side surfaces of each adjacent two divider plates 12.
  • Each guide 20 is curved substantially along the are of a circle about the center of the axis of the drive shaft 16 and so arranged as to receive the tilted bottle b from the end of the conveyor.
  • Forty lifting arms 21 are mounted on the drive shaft 16 for rotation therewith.
  • Each arm comprises two claws 21 extending in diametrically opposite directions. As the drive shaft I6 rotates, the claws 21 alternately enter the space between the two adjacent conveyors I so as to engage with the bottom surface of the tilted bottle to lift it up along the opposed guide members 20.
  • Each claw 21' is provided at its inner end with a semicircular boss 22, which is secured by means of bolts 23 to the correspondingly semicircular boss 22 of the other claw to securely encircle a clutch hub 25 keyed as at 24 to the drive shaft 16.
  • Each claw 21' is formed with a side tube 26 enclosing an iron ball 27 and a coil spring 28 therein and closed at the outer end by a screw plug 29.
  • the ball 27 engages in a depression 30 formed in the outer peripheral surface of the clutch hub 25.
  • the lifting arm 21 is rotated, with its claws alternately lifting a bottle. However, if any of the claws is overloaded, the balls 27 disengages from the depressions 30, thereby breaking the drive connection between the lifting arm 21 and the shaft 16.
  • Forty pairs of sprocket wheels are rigidly mounted on short shafts 36, each being journaled in the right wing 12b of the divider plate 12 adjacent the upper end of the guide member 20.
  • Each pair of sprocket wheels 35 are secured to the opposite ends of each shaft 36 at the opposite lateral sides of the right-hand wing 12h ofeach divider plate 12.
  • Forty pairs of sprocket wheels 34 are mounted on a single drive shaft 31 for rotation therewith. each pair being spaced a predetermined distance apart from the adjacent pairs and so disposed as to correspond to one pair of sprocket wheels 35 (see FIG. 2).
  • the drive shaft 31 is spaced apart from the shafts 36 longitudinally of the divider plates 12 and journaled at its middle portion by a bearing arm 33 standing on the cross beam 15, and has its opposite ends projecting outward through the metal fittings fixed to the opposite side panels 5 of the machine.
  • each divider plate wing 12b there extend a pair ofendless chain conveyors 37 each passing round the sprocket wheels 34 and 35.
  • the sprocket wheel 35 is positioned adjacent the upper end of the guide member 20 as previously mentioned, while the sprocket wheel 34 is positioned a little below the height of the sprocket wheel 35, so that the conveyor 37 is inclined at little downward toward the right as viewed in FIG. 1.
  • pair of chain conveyors 37 are provided laterally spaced from each other by a short distance just enough to accommodate the width of the lifting arm 2], so that the two conveyors 37 receive the bottle that has been brought by the lifting arm claw 21' as far as the upper end of the guide member 20 and carry it along onto the next stage of the machine.
  • a plate 38 secured to each of the opposite lateral sides of each divider plate wing 12b supports the upper portion of each conveyor 37, thereby preventing the conveyor portion from being flexed downward due to the weight of the bottle placed thereon.
  • a plurality of baskets 40 are mounted on an endless chain 41, only a small portion of which is shown in P16. 1, at a predetermined distance from each other.
  • Each basket 40 is formed with a large opening at that one end thereof which faces the conveyors 37 and a smaller opening at the opposite end thereof.
  • the chain 41 carrying the baskets 40 is intermit tently moved upward by one predetermined pitch upon every half a revolution of the shaft 16 to pass by the right-hand end of the conveyor 37, with the larger opening of the basket directed toward the conveyor end, so that the bottles on the conveyor may be successively put into the baskets to be held therein, with their neck engaging the edge of the smaller opening of the basket to prevent the bottle from dropping out of the basket when it is held upside down during the washing operation.
  • the shafts 16 and 31 and the conveyors 41 are moved in a synchronous relation to each other.
  • a crossbeam 42 of an inverted U-shaped cross section between the opposite side panels 5 of the machine there extends a crossbeam 42 of an inverted U-shaped cross section between the opposite side panels 5 of the machine.
  • Two pairs of bearings 43 are secured to the beam 42, each pair supporting the opposite end of a shaft 44 having a square cross section.
  • a pair of vertical bars 46 pending from the opposite ends of each shaft 44 there are a pair of vertical bars 46, to the lower ends of which is secured a horizontal bar 47 having an inverted U-shaped cross section.
  • Twenty sensing levers, only six of which are shown at 48 in FIG. 3, have their respectively upper ends pivotally connected to each horizontal bar 47.
  • Each sensing lever 48 extend aslant downward to have its lower free end positioned in the space between each adjacent pair of divider plate wings 12b above each paired chain conveyors 37, as best shown in FIG. 3.
  • the drive shaft 16 is shown having one end projecting through a metal fitting 53 secured to the side panel 5 of the machine.
  • a gear 54 is loosely mounted on the projecting end of the drive shaft 16 and driven by a suitable motor, not shown, which also drives the basket conveyors 41.
  • the gear 54 rotates clockwise, that is, in the direction of the arrow D in FIG. 6.
  • An annular plate 55 is secured to the outer side face of the gear 54 by a plurality of bolts 56.
  • a lever 58 is pivoted to the annular plate 54 as at 57.
  • a roller 59 is provided at the outer free end of the lever 58 so as to roll on the outer surface of the annular plate 55.
  • the lever 58 has a claw 61 incor porated therewith and having its outer end 62 projecting inwardly of the inner periphery of the annular plate 55.
  • a generally elliptical plate 63 has a boss 64 keyed as at 65 to the outer end of the drive shaft 16 for rotation therewith. In the diametrically opposite portions of the plate 63 there are formed a pair of slots 66.
  • a disc 67 is loosely mounted on the boss 64 of the elliptical plate 63 and has a pair of pins 68 en gaging in the slots 66, respectively.
  • a pair of springs 70 each having one end secured to the disc 67 by a pin 68' and the opposite end secured to the plate 63 by a pin 69, bias the disc 67 counterclockwise.
  • the springs 70, the pins 68 and slots 66 connect the plate 63 to the disc 67.
  • a notch 71 is formed in the periphery of the disc 67 so that normally the outer end 62 of the lever claw 61 engages the notch, thereby connecting the gear 54 to the disc 67 through the lever 58 and thence to the drive shaft 16.
  • a bracket 72 is secured to the side panel 5 below the drive shaft 16.
  • a bearing 73 is mounted on the basket 72 and receives a plunger aligned with the axis of the drive shaft 16.
  • the plunger 75 has a conical head 74 directed toward a corresponding recess 76 formed in the outer end face of the drive shaft.
  • the previously mentioned lever 58 pivoted to the annular plate 55 partially covers the recess 75.
  • the conical head 74 thereof engages into the recess 76, pushing aside the lever 58 from over the recess 76 against the force of the spring 60.
  • the lever 58 is thus pushed aside, it is tilted leftward in FlG. 6, whereupon the outer end 62 of the claw 61 disengages from the notch 71 in the periphery of the disc 67, thereby breaking the drive connection between the gear 54 and the shaft 16.
  • an air cylinder 77 supported by another bracket 78.
  • the cylinder has a piston rod 79 pivotally connected through a link 80 to the plunger 75.
  • a signal is produced in a control circuit, not shown, to actuate an electromagnetic valve 81, whereupon air is supplied into the cylinder to project the plunger 75.
  • a reset switch not shown, is pressed, the piston rod 79 is retracted to withdraw the plunger 75.
  • bottles are placed at random onto the con veyors l and as they are carried thereon, they are arranged into 40 rows to enter the spaces between the adjacent pairs of divider plates 12.
  • the lifting arm 21 comes round so that its claw 21' engages with the bottom surface of the bottle and as the claw is moved upward between the laterally opposed guide members 20, it lifts the bottle to be guided along the guide members 20, gradually bringing it down into a generally horizontal position.
  • the bottle is then transferred onto the two adjacent parallel chain conveyors 37. lfthe bottle lies thereon with its mouth ahead.
  • the control circuit produces a signal to energize the electromagnetic valve 8] thereby to supply pressurized air into the cylinder 77.
  • the piston rod 79 projects outwardly of the cylinder to move the plunger 75 as far as its conical head 74 engages into the recess 76 in the outer end ofthe drive shaft 16.
  • the conical head pushes the lever 58 aside toward the left in FIG. 6 against the force of the spring 60, thereby causing the claw end 62 to disengage from the notch 71 in the disc 67.
  • An automatic bottle feeder for use with a bottle washing machine, comprising: first conveyor means for conveying a plurality of bottles standing upright thereon in a predeter mined direction; a plurality of parallel divider plates for dividing the space above the output end portion of said first conveyor means into a plurality of longitudinally extending sec tions, one between each adjacent two of said divider plates, through each of which sections said bottles are successively conveyed in a single row in said predetermined direction; a shaft extending transversely of said predetermined direction below said divider plates adjacent the output end of said first conveyor means; drive means for rotating said shaft; a plurality of lifting arms mounted on said shaft for rotation therewith, each said arm comprising a pair of diametrically oppositely extending claws so that as each said arm is rotated, said claws al ternatcly receive one of said bottles after another from each said conveyor section, lifts and conveys said bottle further ahead, bringing said bottle into a substantially horizontal position', guide means associated with said divider plates for guiding said bottles as they
  • the bottle feeder of claim 1 further including clutch means disposed between said shaft and said shaft driving means; and means operable in response to said detection signal to cause said clutch means to break the drive connection between said driving means and said shaft, said clutch means being so arranged as to establish said drive connection at a predetermined position thereof relative to said drive shaft.
  • a loading mechanism for container-processing apparatus the combination with a container-receiving conveyor in said processing apparatus, of a rotary member spaced from said container-receiving conveyor to receive and initiate container movement toward said processing apparatus, conveying means cooperating with and extending from said first rotary member toward said processing apparatus and adapted to convey the containers into said container receiving conveyor of said processing apparatus, container supply conveyor means adjacent said rotary member on the side opposite from said conveying means, elements moved by said rotary member to pick up successive containers from said supply conveyor and move the containers onto said conveying means, said conveying means continuing container movement into said receiving conveyor of said processing apparatus, drive means operatively connected to said rotary member to move said means in timed relation with said container receiving conveyor, means disposed above said conveying means to detect any of said containers moved by said means bottom first toward said receiving conveyor to produce a detection signal, clutch means operative between said drive means and said rotary member, and means operable in response to said detection signal to operate said clutch means to break the drive connection between said drive means and said rotary member.
  • An automatic bottle feeder for use with a bottle washing machine comprising: first conveyor means to move bottles toward the washing machine in generally upright positions, the discharge of said first conveyor being spaced from the washing machine, bottle-aligning means cooperating with said first conveyor to arrange the bottles in a plurality of rows, rotary means adjacent said first conveyor discharge adapted to engage the respective rows of bottles and simultaneously move the bottles toward the washing machine, bottle delivering means generally horizontally directed and cooperating with said rotary means and extending to a discharge end adjacent the washing machine for loading bottles thereinto, said rotary means acting to move the upright bottles into a generally horizontal position for conveyance by said bottle-delivering means, means disposed adjacent said bottle-delivering means to detect any of said bottles on said delivering means with its bottom directed foremost toward the washing machine and produce a detection signal, means driving said rotary means in a predetermined timed relation with the washing machine, and means operable in response to said detection signal to stop the driving of said rotary means by said drive means upon detection ofa bottle with its bottom directed foremost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Specific Conveyance Elements (AREA)
  • Branching, Merging, And Special Transfer Between Conveyors (AREA)
  • Attitude Control For Articles On Conveyors (AREA)
  • Cleaning In General (AREA)
US75302A 1968-03-22 1970-09-24 Automatic bottle feeder Expired - Lifetime US3643780A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1870068A JPS4819740B1 (cs) 1968-03-22 1968-03-22
JP1870168 1968-03-22

Publications (1)

Publication Number Publication Date
US3643780A true US3643780A (en) 1972-02-22

Family

ID=26355415

Family Applications (1)

Application Number Title Priority Date Filing Date
US75302A Expired - Lifetime US3643780A (en) 1968-03-22 1970-09-24 Automatic bottle feeder

Country Status (4)

Country Link
US (1) US3643780A (cs)
DE (1) DE1913730C3 (cs)
FR (1) FR2004516A1 (cs)
GB (1) GB1199398A (cs)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4022315A (en) * 1974-08-05 1977-05-10 Shibuya Kogyo Company, Ltd. Bottle handling apparatus
US4601686A (en) * 1981-02-18 1986-07-22 British-American Tobacco Company Limited Production of tobacco-smoke filters
US5038917A (en) * 1989-08-12 1991-08-13 Hermann Kronseder Apparatus for conveying bottles to a bottle processing machine
US5310300A (en) * 1992-02-03 1994-05-10 R. A. Pearson Co. Apparatus and method for packing containers onto a rack
US6415903B1 (en) * 2000-08-29 2002-07-09 William Zinno Container tipping device and associated method
US20070079574A1 (en) * 2005-09-13 2007-04-12 Ulrich Wiedemann Beverage bottling plant with beverage bottle handling machines having beverage bottle transfer stations and a method of operation thereof
US20080267744A1 (en) * 2006-10-06 2008-10-30 Miles Gregory W Automated arrangement for loading bottles into shipping racks
EP3401028A1 (en) * 2017-05-12 2018-11-14 Gebo Packaging Solutions Italy SRL A washing unit for treating empty articles
EP3401027A1 (en) * 2017-05-12 2018-11-14 Gebo Packaging Solutions Italy SRL A feeding system and method for feeding a washing unit with empty articles
CN113510107A (zh) * 2021-04-02 2021-10-19 涂香妹 一种儿科用压舌板清洗消毒装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK447882A (da) * 1982-10-11 1984-04-12 Cosan Crisplant As Fyldestation for gasflasker, med organer til indfoering af flaskerne paa en karrusel
DE4224261C2 (de) * 1992-07-20 1998-06-04 Geraer Maschinenbau Gmbh Vorrichtung zum Zuführen von Flaschen zu Flaschenreinigungsmaschinen
GB0603461D0 (en) 2006-02-22 2006-04-05 Quin Systems Ltd Conveyors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1310128A (en) * 1919-07-15 Facturing co
US2861670A (en) * 1956-03-16 1958-11-25 Dostal & Lowey Co Inc Loading apparatus for bottle washing machines

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1310128A (en) * 1919-07-15 Facturing co
US2861670A (en) * 1956-03-16 1958-11-25 Dostal & Lowey Co Inc Loading apparatus for bottle washing machines

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4022315A (en) * 1974-08-05 1977-05-10 Shibuya Kogyo Company, Ltd. Bottle handling apparatus
US4601686A (en) * 1981-02-18 1986-07-22 British-American Tobacco Company Limited Production of tobacco-smoke filters
US5038917A (en) * 1989-08-12 1991-08-13 Hermann Kronseder Apparatus for conveying bottles to a bottle processing machine
US5310300A (en) * 1992-02-03 1994-05-10 R. A. Pearson Co. Apparatus and method for packing containers onto a rack
US6415903B1 (en) * 2000-08-29 2002-07-09 William Zinno Container tipping device and associated method
US20080317580A1 (en) * 2005-09-13 2008-12-25 Ulrich Wiedemann Beverage bottling plant with beverage bottle handling machines having beverage bottle transfer stations and a method of operation thereof
US7392632B2 (en) * 2005-09-13 2008-07-01 Khs Maschinen-Und Anlagenbau Ag Beverage bottling plant with beverage bottle handling machines having beverage bottle transfer stations and a method of operation thereof
US20070079574A1 (en) * 2005-09-13 2007-04-12 Ulrich Wiedemann Beverage bottling plant with beverage bottle handling machines having beverage bottle transfer stations and a method of operation thereof
US7886893B2 (en) 2005-09-13 2011-02-15 Khs Maschinen- Und Anlagenbau Ag Beverage bottling plant with beverage bottle handling machines having beverage bottle transfer stations and a method of operation thereof
CN101003327B (zh) * 2005-09-13 2011-10-19 Khs股份公司 容器处理机上的上料站以及输送容器的方法
US20080267744A1 (en) * 2006-10-06 2008-10-30 Miles Gregory W Automated arrangement for loading bottles into shipping racks
US8596948B2 (en) * 2006-10-06 2013-12-03 Gregory W. Miles Automated arrangement for loading bottles into shipping racks
EP3401028A1 (en) * 2017-05-12 2018-11-14 Gebo Packaging Solutions Italy SRL A washing unit for treating empty articles
EP3401027A1 (en) * 2017-05-12 2018-11-14 Gebo Packaging Solutions Italy SRL A feeding system and method for feeding a washing unit with empty articles
WO2018206375A1 (en) * 2017-05-12 2018-11-15 Gebo Packaging Solutions Italy Srl A feeding system and method for feeding a washing unit with empty articles
WO2018206381A1 (en) * 2017-05-12 2018-11-15 Gebo Packaging Solutions Italy Srl A washing unit for treating empty articles
CN113510107A (zh) * 2021-04-02 2021-10-19 涂香妹 一种儿科用压舌板清洗消毒装置
CN113510107B (zh) * 2021-04-02 2022-05-24 青岛市妇女儿童医院 一种儿科用压舌板清洗消毒装置

Also Published As

Publication number Publication date
DE1913730C3 (de) 1975-10-02
DE1913730B2 (de) 1975-02-13
GB1199398A (en) 1970-07-22
DE1913730A1 (de) 1969-11-27
FR2004516A1 (cs) 1969-11-28

Similar Documents

Publication Publication Date Title
US3643780A (en) Automatic bottle feeder
US2542090A (en) Gauging machine
US4244459A (en) Parison unscrambler
US3429416A (en) Transfer conveyor apparatus for candy bars and the like
KR0157336B1 (ko) 팩킹 장치
CN107878985B (zh) 一种物流包裹智能分拣系统及其分拣方法
US4479582A (en) Sorting device for sorting conveyed objects
US2629481A (en) Article arranging apparatus
CN101868419A (zh) 用于在容器处理机器中检测容器的错误位置的装置
US3178005A (en) Discharging mechanism for bottle handling machines
US3737019A (en) Conveyor system
US3392815A (en) Unscrambling and orienting apparatus
US4213526A (en) Apparatus for unscrambling and erecting a plurality of non-vertical bottles
US2538408A (en) Apparatus for delivering cans in reoriented position
US3951285A (en) Bottle uncaser
CN211109709U (zh) 包装盒翻转装置
US2684147A (en) Can unscrambling machine
US6502688B1 (en) Method and apparatus for high speed plastic container unscrambling
US3327835A (en) Apparatus for conveying work pieces, such as containers or the like
US3917053A (en) Interlocking device for article transporter having pusher fingers
US2759593A (en) Conveyor for bottle crate unloading machine
US3207286A (en) Vial loading apparatus
EP0348471A1 (en) Straight line checkweigher
US3272298A (en) Multi-path feed in a conveyor assembly
US2549062A (en) Bottle crate shaker and cleaner

Legal Events

Date Code Title Description
AS Assignment

Owner name: CITICORP INDUSTRIAL CREDIT, INC., 200 S. WACKER, C

Free format text: SECURITY INTEREST;ASSIGNOR:BARRY-WEHMILLER COMPANY A MO CORP;REEL/FRAME:004302/0831

Effective date: 19840724

AS Assignment

Owner name: BARRY-WEHMILLER COMPANY (THE "COMPANY")

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:CITICORP INDUSTRIAL CREDIT, INC.;REEL/FRAME:004673/0849

Effective date: 19870126