US3642542A - A process for preparing aluminum base alloys - Google Patents
A process for preparing aluminum base alloys Download PDFInfo
- Publication number
- US3642542A US3642542A US14189A US3642542DA US3642542A US 3642542 A US3642542 A US 3642542A US 14189 A US14189 A US 14189A US 3642542D A US3642542D A US 3642542DA US 3642542 A US3642542 A US 3642542A
- Authority
- US
- United States
- Prior art keywords
- percent
- alloy
- process according
- hot working
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 70
- 239000000956 alloy Substances 0.000 title claims abstract description 70
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 25
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 21
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 20
- 239000011777 magnesium Substances 0.000 claims abstract description 20
- 239000010703 silicon Substances 0.000 claims abstract description 20
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 19
- 238000010791 quenching Methods 0.000 claims abstract description 12
- 230000032683 aging Effects 0.000 claims abstract description 7
- 230000000171 quenching effect Effects 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 29
- 230000008569 process Effects 0.000 claims description 28
- 229910052804 chromium Inorganic materials 0.000 claims description 17
- 239000011651 chromium Substances 0.000 claims description 17
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 16
- 229910052748 manganese Inorganic materials 0.000 claims description 16
- 239000011572 manganese Substances 0.000 claims description 16
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 15
- 238000001816 cooling Methods 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 15
- 229910052726 zirconium Inorganic materials 0.000 claims description 15
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 238000005096 rolling process Methods 0.000 claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 18
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 9
- 229910052742 iron Inorganic materials 0.000 description 9
- 239000010936 titanium Substances 0.000 description 9
- 229910052719 titanium Inorganic materials 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- 238000001125 extrusion Methods 0.000 description 8
- 238000005266 casting Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 238000000265 homogenisation Methods 0.000 description 3
- 238000009863 impact test Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 101100264195 Caenorhabditis elegans app-1 gene Proteins 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/05—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
- C22C21/08—Alloys based on aluminium with magnesium as the next major constituent with silicon
Definitions
- ABSTRACT U.S. A process for preparing aluminum base alloys containing 5. 75/146, 75/147, 148/325 icon and magnesium comprising the steps of hot working, [5 Cl- ..C22f quenching and aging and to improved hot.worked aluminum- [58] Field of Search ..75/ 146, 147, 141, 142; based ll h i high-strength and high-impact properties.
- the present invention relates to a process for obtaining an aluminum base alloy containing silicon and magnesium.
- the present invention also relates to an improved aluminum base alloy containing silicon and magnesium, wherein said alloy is a hotworked alloy and has high-strength and high-impact properties.
- Hot-worked aluminum base alloys containing magnesium and silicon find wide application in a wide variety of uses, for example. they may be readily used as extrusions, forgings or rolled products.
- the improved hot-worked alloy of the present invention consists essentially of silicon from 0.3 to' 1.3 percent, magnesium from 0.3 to 1.5 percent, chromium from 0.03 to 0.40 percent and zirconium from 0.03 to 0.20 percent.
- the alloy of the present invention also contains manganese in an amount from 0.03 to 0.4 percent.
- the improved alloy of the present invention is a hot-worked product and has a surprising combination of high-strength and high-impact properties.
- the microstructure of the alloy of the present invention is characterized by a substantially unrecrystallized grain structure. lt is surprising that the combination of ingredients of the alloy of the present invention achieves such excellent properties and it is further surprising that the substantially unrecrystallized grain structure results in improved impact properties.
- the process of the present invention comprises: hot working the alloys at a finishing temperature in excess of 850 F.; water quenching the alloysdown to a temperature of 350 F. or below at a cooling rate of from 1,000 to 10,000 F. per minute; and thermally artificially aging the alloys at a temperature from 200 to 410 F. for from 15 minutes to 24 hours.
- the alloys of the present invention are characterized by a surprising combination of high-strength and high-impact toughness.
- the minimum properties obtained in accordance with the foregoing process are as follows: tensile strength at least 38,000 p.s.i.; yield strength at 0.2 percent offset at least 35,000 p.s.i. and elongation at least 8 percent.
- the minimum impact toughness of the alloys of the present invention is for a xi-inch-thiclt specimen the Charpy Notch impact test yields at least 15 foot pounds. One would obtain at least 20 foot-pounds for a 0.394-inch-thick specimen, and typically 30 to 40 foot-pounds.
- the alloy of the present invention has numerous other highly desirable characteristics, for example, it is easily extruded and has good corrosion resistance.
- the alloy of the present invention contains from 0.3 to 1.3 percent silicon and preferably from 0.4 to 0.9 percent silicon.
- the alloy of the present invention contains magnesium in an amount from 0.3 to 1.5 percent and preferably from 0.4 to 1.0 percent.
- the chromium content may vary from 0.03 to 0.40 percent and preferably from 0.05 to 0.35 percent.
- the zirconium may vary from 0.03 to 0.20 percent and preferably from 0.05 to 0.15 percent.
- manganese in an amount from 0.03 to 0.4 percent and preferably in an amount from 0.05 to 0.3 percent.
- the present invention contemplates conventional impurities common for alloys of this type. This is important since it indicates that the improved properties of the alloys of the present invention are obtainable with normal commercial purity materials.
- normal impurities include 0.60 percent maximum iron; 0.30 percent maximum copper; 0.50 percent maximum zinc; up to 0.008 percent boron; 0.10 percent maximum each of other elements the total of which is a maximum of 0.50 percent.
- the manner of melting and casting the alloy is not especially critical and conventional methods of melting and casting may be conveniently employed. It is desirable to uniformly distribute the silicon and magnesium throughout the matrix of the alloy before the process of the present invention is performed, such as by a homogenization heat treatment subsequent to the casting operation. Before or during hot working some high temperature precipitate should be formed due to Cr, Zr and Mn, as this is the mechanism by which recrystallization is inhibited. However, this can be accomplished by reheating for hot working as well as by homogenization.
- the alloy After casting the alloy is hot worked at a finishing temperature in excess of 850 F. and preferably in excess of 900 F for example, forging, rolling or extruding.
- inishing temperature it is meant the final temperature at which significant deformation is obtained in the hot-working operation.
- the die exit temperature should be in excessof 850 F. It is preferable that the actual temperature be high enough to dissolve substantially all Mg and Si which is available for maximum strengthening.
- the rapid quenching is normally obtained by plunging the material in water or by passing the material through a water spray quench.
- the material may then be cold worked up to 5 percent, e.g., rolling, stretching, etc.
- the material should be then artificially aged at a temperature of 200 to 410 F. for 15 minutes to 24 hours.
- the alloys of the present invention are quench sensitive. It is a particularly surprising finding of the present invention that this quench sensitivity can be controlled with respect to a particularly preferred composition. This is accomplished by a critical adjustment of the quantities of chromium, zirconium and manganese present in the alloy so that each of these materials are present in an amount of 0.03 to 0.2 percent, and the total chromium plus zirconium plus manganese content is from 0.2 to 0.35 percent. It has been found that when the composition has been controlled in this manner, the alloy can be air cooled at a cooling rate from to 1,000 F. per minute; otherwise, the alloy must be water quenched at the more rapid rate specified hereinabove.
- the air cooling is nonnally achieved by using appropriately placed fans.
- the hot working step should be performed at a finishing temperature in excess of 900 F. and preferably in excess of 950 F.
- the alloy of the present invention is a hot-worked product with a surprising combination of highstrength and high-impact properties and with a microstructure characterized by a substantially unrecrystallized grain structure.
- EXAMPLE 1 lngots were prepared by direct chill (DC) casting in a conventional manner summarized as follows. Melting and alloying e impact test value TABLE II Charpy Section Y.S. Elongation impact thickness Quench UIS (K 5,1.) (percent strength (lnehes) Alloy method (K s.1.) at 0.2% in 2 1n.) (IL-lbs.) 43. 5 41. 10 20. 1% A 4 .1 11 23.2 4 .5 9. 9. 5 .8 54 B 42.5 42. 4 32.3
- Measured surface temperatures ranged between 975 and 1,025 F. before entering the press. Three extrusion dies were used to produce section thicknesses of one-eighth, one-fourth, and one-half inch. Exit temperatures ranged from 980 to 1,000" F. One extrusion of each thickness was fan cooled as it exited from the press at a cooling rate in the range of the process of the present invention; another was water quenched by passing it through an open ended trough fed by an upward flow of water at both ends at a cooling rate in the range of the process of the present invention. All extrusions were aged at room temperature for about 24 hours, followed by artificial aging at 350 F. for 5 hours. Tensile test specimens and Charpy impact specimens were taken from the extrusions. The and Va-lnCh-thiCk extrusions were tested with reduced ingots were prepared in a conventional manner from two kilogram melts cast by the tilt mold (Durville) process. The resultant compositions are indicated in Table 111 below.
- EXAMPLE V lngots were prepared in a manner after Example 1 to have the composition indicated in Table V below.
- Alloy J (Commercial Alloy 6061) silicon 0.64% magnesium 1.10% iron 0.25% copper 0.25% titanium 0.017% chromium 0.18% manganese 0.053%
- Example V1 The materials from Example V were processed in a manner after Example 1V except that the materials were hot rolled 50 percent in one pass rather than 80 percent and Alloys I and J were aged for 8 hours at 350 F.
- Table VI The results are given in Table VI below and clearly show the surprising propertiesotiAlloy H not contain the chromium addition which represents the alloy of the present invention. It should be noted that the Charpy impact test utilized standard 0.394 inch specimens.
- the process for preparing a material having a combination of high-strength and high-impact properties which comprises: providing an aluminum base alloy consisting essentially of from 0.3 to 1.3 percent silicon, 0.3 to 1.5 percent magnesium, 0.03 to 0.4 percent chromium, 0.03 to 0.2 percent zirconium, balance essentially aluminum; hot working said alloy at a finishing temperature in excess of 850 F.; water quenching said alloy to a temperature of at least 350 F. at a cooling rate of from l,000 to 10,000 F. per minute; and thermally artificially aging said alloy at a temperature of from 200 to 410 F. for 15 minutes to 24 hours.
- the process for preparing a material having a combination of high-strength and high-impact properties which comprises: providing an aluminum base alloy consisting essentially of silicon from 0.3 to 1.3 percent, magnesium from 0.3 to 1.5 percent, chromium from 0.03 to 0.2 percent, zirconium from 0.03 to 0.2 percent, manganese from 0.03 to 0.2 percent, balance essentially aluminum, wherein the total chromium plus zirconium plus manganese content is from 0.2 to 0.35 percent; hot working said alloy at a finishing temperature in excess of 900 F; air cooling said alloy to a temperature of at least 350 F. at a cooling rate of from to l,000 F. per minute; and thermally artificially aging said alloy at a temperature offrom 200 to 410 F. for 15 minutes to 24 hours.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Continuous Casting (AREA)
- Heat Treatment Of Steel (AREA)
- Metal Rolling (AREA)
- Printing Plates And Materials Therefor (AREA)
- Extrusion Of Metal (AREA)
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US1418970A | 1970-02-25 | 1970-02-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3642542A true US3642542A (en) | 1972-02-15 |
Family
ID=21764025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14189A Expired - Lifetime US3642542A (en) | 1970-02-25 | 1970-02-25 | A process for preparing aluminum base alloys |
Country Status (7)
Country | Link |
---|---|
US (1) | US3642542A (enrdf_load_stackoverflow) |
JP (1) | JPS5021283B1 (enrdf_load_stackoverflow) |
BE (1) | BE763460A (enrdf_load_stackoverflow) |
CH (1) | CH580166A5 (enrdf_load_stackoverflow) |
DE (1) | DE2103614B2 (enrdf_load_stackoverflow) |
FR (1) | FR2078965A5 (enrdf_load_stackoverflow) |
GB (3) | GB1344249A (enrdf_load_stackoverflow) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3879194A (en) * | 1971-05-25 | 1975-04-22 | Alcan Res & Dev | Aluminum alloys |
US3938991A (en) * | 1974-07-15 | 1976-02-17 | Swiss Aluminium Limited | Refining recrystallized grain size in aluminum alloys |
DE2629838A1 (de) * | 1975-07-02 | 1977-01-27 | Kobe Steel Ltd | Al-legierungsblech fuer finnen eines waermeaustauschers und verfahren zu seiner herstellung |
US4019931A (en) * | 1976-03-04 | 1977-04-26 | Swiss Aluminium Ltd. | Thread plate process |
US4039355A (en) * | 1974-03-29 | 1977-08-02 | Riken Light Metal Industries Company, Ltd. | Aluminum alloy shapes |
US4093474A (en) * | 1976-07-09 | 1978-06-06 | Swiss Aluminium Ltd. | Method for preparing aluminum alloys possessing improved resistance weldability |
US4490189A (en) * | 1982-04-13 | 1984-12-25 | Aluminium Pechiney | Method of manufacturing stamped-out or forged parts made of aluminum alloys |
US4766664A (en) * | 1987-02-17 | 1988-08-30 | Alumax Extrusions, Inc. | Process for formation of high strength aluminum ladder structures |
US5098490A (en) * | 1990-10-05 | 1992-03-24 | Shin Huu | Super position aluminum alloy can stock manufacturing process |
RU2170282C2 (ru) * | 1999-07-21 | 2001-07-10 | Открытое акционерное общество "Красноярский металлургический завод" | Способ термической обработки алюминиевых сплавов системы алюминий-магний-кремний |
US6364969B1 (en) * | 1996-07-04 | 2002-04-02 | Malcolm James Couper | 6XXX series aluminium alloy |
RU2215058C1 (ru) * | 2002-02-28 | 2003-10-27 | Закрытое акционерное общество "Промышленный центр "МАТЭКС" | Способ производства прессованных изделий из термически упрочняемых алюминиевых сплавов |
CN100482828C (zh) * | 2007-05-09 | 2009-04-29 | 东北轻合金有限责任公司 | 一种高精度铝合金波导管的制造方法 |
US20100089503A1 (en) * | 2007-03-14 | 2010-04-15 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Aluminum alloy forgings and process for production thereof |
CN111218591A (zh) * | 2020-02-28 | 2020-06-02 | 福建祥鑫股份有限公司 | 一种新能源汽车动力系统用高强韧7xxx铝合金型材的制备方法 |
EP3981893A1 (de) * | 2020-10-07 | 2022-04-13 | AMAG rolling GmbH | Platte aus einer gewalzten aluminiumlegierung und herstellung solch einer platte |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2398558A1 (fr) * | 1977-07-29 | 1979-02-23 | Cegedur | Procede de filage d'alliages d'aluminium a haute resistance |
FR2446865A1 (fr) * | 1979-01-16 | 1980-08-14 | Pechiney Aluminium | Alliage d'aluminium type a-gs a resistance mecanique et tenacite elevees |
FR2457328A1 (fr) * | 1979-05-25 | 1980-12-19 | Cebal | Alliage d'aluminium de type a-gs |
JPS58156197A (ja) * | 1982-03-10 | 1983-09-17 | Sumitomo Light Metal Ind Ltd | 超高圧用プレ−トフイン型熱交換器 |
DE3243371A1 (de) * | 1982-09-13 | 1984-03-15 | Schweizerische Aluminium AG, 3965 Chippis | Aluminiumlegierung |
JPS59153861A (ja) * | 1983-02-22 | 1984-09-01 | Fuji Photo Film Co Ltd | 平版印刷版用支持体 |
US4729939A (en) * | 1985-07-25 | 1988-03-08 | Nippon Light Metal Company Limited | Aluminum alloy support for lithographic printing plates |
JPH0674480B2 (ja) * | 1987-09-03 | 1994-09-21 | 本田技研工業株式会社 | 溶接性、耐糸錆性、成形性及び焼付硬化性に優れた成形用及び溶接用A▲l▼合金板及びその製造法 |
AT394580B (de) * | 1989-11-30 | 1992-05-11 | Austria Metall Aktienges | Verfahren zur herstellung eines bleches aus einer aluminiumlegierung fuer bauteile |
DE10324453B4 (de) * | 2002-07-01 | 2008-06-26 | Corus Aluminium N.V. | Gewalztes wärmebehandelbares Al-Mg-Si-Legierungsprodukt |
WO2007114078A1 (ja) * | 2006-03-31 | 2007-10-11 | Kabushiki Kaisha Kobe Seiko Sho | アルミニウム合金鍛造部材およびその製造方法 |
DE102006039684B4 (de) * | 2006-08-24 | 2008-08-07 | Audi Ag | Aluminium-Sicherheitsbauteil |
EP2553131B1 (en) | 2010-03-30 | 2019-05-08 | Norsk Hydro ASA | High temperature stable aluminium alloy |
ES2695698T3 (es) | 2012-04-25 | 2019-01-10 | Norsk Hydro As | Perfil extruido de aleación de aluminio Al-Mg-Si con propiedades mejoradas |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3113052A (en) * | 1960-07-05 | 1963-12-03 | Aluminum Co Of America | Method of making aluminum base alloy extruded product |
US3234054A (en) * | 1964-08-05 | 1966-02-08 | Olin Mathieson | Process for preparing aluminum base alloy |
-
1970
- 1970-02-25 US US14189A patent/US3642542A/en not_active Expired - Lifetime
- 1970-12-31 GB GB2159273A patent/GB1344249A/en not_active Expired
- 1970-12-31 GB GB3766173A patent/GB1344250A/en not_active Expired
- 1970-12-31 GB GB6205270A patent/GB1344248A/en not_active Expired
-
1971
- 1971-01-26 DE DE2103614A patent/DE2103614B2/de not_active Withdrawn
- 1971-02-17 JP JP46007343A patent/JPS5021283B1/ja active Pending
- 1971-02-23 FR FR7106120A patent/FR2078965A5/fr not_active Expired
- 1971-02-25 CH CH274071A patent/CH580166A5/xx not_active IP Right Cessation
- 1971-02-25 BE BE763460A patent/BE763460A/xx unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3113052A (en) * | 1960-07-05 | 1963-12-03 | Aluminum Co Of America | Method of making aluminum base alloy extruded product |
US3234054A (en) * | 1964-08-05 | 1966-02-08 | Olin Mathieson | Process for preparing aluminum base alloy |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3879194A (en) * | 1971-05-25 | 1975-04-22 | Alcan Res & Dev | Aluminum alloys |
US4039355A (en) * | 1974-03-29 | 1977-08-02 | Riken Light Metal Industries Company, Ltd. | Aluminum alloy shapes |
US3938991A (en) * | 1974-07-15 | 1976-02-17 | Swiss Aluminium Limited | Refining recrystallized grain size in aluminum alloys |
DE2629838A1 (de) * | 1975-07-02 | 1977-01-27 | Kobe Steel Ltd | Al-legierungsblech fuer finnen eines waermeaustauschers und verfahren zu seiner herstellung |
US4019931A (en) * | 1976-03-04 | 1977-04-26 | Swiss Aluminium Ltd. | Thread plate process |
US4093474A (en) * | 1976-07-09 | 1978-06-06 | Swiss Aluminium Ltd. | Method for preparing aluminum alloys possessing improved resistance weldability |
US4490189A (en) * | 1982-04-13 | 1984-12-25 | Aluminium Pechiney | Method of manufacturing stamped-out or forged parts made of aluminum alloys |
US4766664A (en) * | 1987-02-17 | 1988-08-30 | Alumax Extrusions, Inc. | Process for formation of high strength aluminum ladder structures |
US5098490A (en) * | 1990-10-05 | 1992-03-24 | Shin Huu | Super position aluminum alloy can stock manufacturing process |
US6364969B1 (en) * | 1996-07-04 | 2002-04-02 | Malcolm James Couper | 6XXX series aluminium alloy |
RU2170282C2 (ru) * | 1999-07-21 | 2001-07-10 | Открытое акционерное общество "Красноярский металлургический завод" | Способ термической обработки алюминиевых сплавов системы алюминий-магний-кремний |
RU2215058C1 (ru) * | 2002-02-28 | 2003-10-27 | Закрытое акционерное общество "Промышленный центр "МАТЭКС" | Способ производства прессованных изделий из термически упрочняемых алюминиевых сплавов |
US20100089503A1 (en) * | 2007-03-14 | 2010-04-15 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Aluminum alloy forgings and process for production thereof |
US8372220B2 (en) * | 2007-03-14 | 2013-02-12 | Kobe Steel, Ltd. | Aluminum alloy forgings and process for production thereof |
CN100482828C (zh) * | 2007-05-09 | 2009-04-29 | 东北轻合金有限责任公司 | 一种高精度铝合金波导管的制造方法 |
CN111218591A (zh) * | 2020-02-28 | 2020-06-02 | 福建祥鑫股份有限公司 | 一种新能源汽车动力系统用高强韧7xxx铝合金型材的制备方法 |
CN111218591B (zh) * | 2020-02-28 | 2020-09-15 | 福建祥鑫股份有限公司 | 一种新能源汽车动力系统用高强韧7xxx铝合金型材的制备方法 |
EP3981893A1 (de) * | 2020-10-07 | 2022-04-13 | AMAG rolling GmbH | Platte aus einer gewalzten aluminiumlegierung und herstellung solch einer platte |
WO2022074153A1 (de) * | 2020-10-07 | 2022-04-14 | Amag Rolling Gmbh | Platte aus einer gewalzten aluminiumlegierung und ein verfahren zur herstellung dieser platte |
Also Published As
Publication number | Publication date |
---|---|
CH580166A5 (enrdf_load_stackoverflow) | 1976-09-30 |
GB1344250A (en) | 1974-01-16 |
DE2103614B2 (de) | 1975-08-14 |
JPS5021283B1 (enrdf_load_stackoverflow) | 1975-07-22 |
FR2078965A5 (enrdf_load_stackoverflow) | 1971-11-05 |
BE763460A (fr) | 1971-08-25 |
GB1344248A (en) | 1974-01-16 |
GB1344249A (en) | 1974-01-16 |
DE2103614A1 (de) | 1971-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3642542A (en) | A process for preparing aluminum base alloys | |
JP3194742B2 (ja) | 改良リチウムアルミニウム合金系 | |
US5198045A (en) | Low density high strength al-li alloy | |
US5389165A (en) | Low density, high strength Al-Li alloy having high toughness at elevated temperatures | |
EP3404123A1 (en) | 2xxx series aluminum lithium alloys having low strength differential | |
US9970090B2 (en) | Aluminum alloy combining high strength, elongation and extrudability | |
EP3842561A1 (en) | Method of manufacturing an aluminium alloy rolled product | |
US20160138138A1 (en) | Aluminum alloy composition with improved elevated temperature mechanical properties | |
US3990922A (en) | Processing aluminum alloys | |
US3717512A (en) | Aluminum base alloys | |
KR102841879B1 (ko) | 내식성이 개선된 Al-Mg-Mn 합금 판 제품의 제조 방법 | |
US6918975B2 (en) | Aluminum alloy extrusions having a substantially unrecrystallized structure | |
JPS63235454A (ja) | アルミニウムベース合金の平圧延製品の製造方法 | |
US3320055A (en) | Magnesium-base alloy | |
JP3346186B2 (ja) | 耐摩耗性,鋳造性,鍛造性に優れた鋳造・鍛造用アルミ合金材及びその製造法 | |
JPH1030147A (ja) | Al−Zn−Mg系合金押出材とその製造方法 | |
CA2266193C (en) | Extrudable aluminum alloys | |
JPH01225756A (ja) | 高強度A1‐Mg‐Si系合金部材の製造法 | |
EP3763844B1 (en) | Al-mg-si energy absorption extrusion component and method of making thereof | |
US3346372A (en) | Aluminum base alloy | |
US2614053A (en) | Method of making aluminum alloy tubing and product | |
JPH04353A (ja) | 加工用Al―Cu系アルミニウム合金鋳塊の熱処理法およびこれを用いた押出材の製造法 | |
US6322647B1 (en) | Methods of improving hot working productivity and corrosion resistance in AA7000 series aluminum alloys and products therefrom | |
JPH0247234A (ja) | 室温時効硬化性を抑制した高強度成形用アルミニウム合金とその製造方法 | |
EP3831969B1 (en) | High strength press quenchable 7xxx alloy |