US3633520A - Gradient armor system - Google Patents

Gradient armor system Download PDF

Info

Publication number
US3633520A
US3633520A US25128A US3633520DA US3633520A US 3633520 A US3633520 A US 3633520A US 25128 A US25128 A US 25128A US 3633520D A US3633520D A US 3633520DA US 3633520 A US3633520 A US 3633520A
Authority
US
United States
Prior art keywords
armor
gradient
armor system
percent
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US25128A
Inventor
Jacob J Stiglich Jr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Army
Original Assignee
US Department of Army
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Army filed Critical US Department of Army
Application granted granted Critical
Publication of US3633520A publication Critical patent/US3633520A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0414Layered armour containing ceramic material
    • F41H5/0421Ceramic layers in combination with metal layers

Abstract

An armor system consisting of a ceramic matrix having a gradient of fine metallic particles dispersed therein in an amount of from 0.0 percent commencing at the front or impact surface of the armor system to about 0.5 to 50 percent by volume along the interface of the system.

Description

Elnfited States merit 1111 3,633,520
[72] lnventor Jacob J. Stlgllch, Jr. [56] References Cited West Allis, UNITED STATES PATENTS 5 Q J' 1 3,369,877 2/1968 Humenik, Jr. 75/206 e d 1972 3,042,555 7/1962 George etal.. 109/85 3] t 3 3,509,833 5/1970 Cook 109/82 [73] Ass1gnee The United States of Amerlca as R22 072 4/1942 Selmi 75/128 represented by the Secretary of the Army 3 378 4/1968 75/206 Primary Examiner-Reinaldo P. Machado [54] GRADXENT ARM R Y EM Attorneys-Harry M. Saragovitz, Edward J. Kelly and Herbert 6 Claims, 5 Drawing Figs. B [52] US. Cl. 109/82, 5] I C! 109/495 22 13333 ABSTRACT: An armor system consisting ofa ceramic matrix 1 'f i 109 80 85 having a gradient offine metallic particles dispersed therein in [50] 1e 0 earc an amount offrom 00 percent Commencing at the from or 49's; 89/36 A; 161/404; 29/1825 1823; 3 pact surface of the armor system to about 0.5 to 50 percent by 7 volume along the interface of the system.
I 1 I 1 1 m 0 0521103055202; 32 42153 HTENTEU MN 1 B72 GRADIENT ARMOR SYSTEM The invention described herein may be manufactured, used, and licensed by or for the Government for governmental purposes without the payment to me of any royalty thereon.
The present invention relates to an armor system comprising an aluminum oxide matrix having a gradient offine molybdenum dispersed therein.
Early lightweight armor systems comprised, for example, monolithic ceramic armor materials such A1 and 8 C. During development of the lightweight armor, it was realized that the brittle ceramic material required an energy absorbing material, e.g., woven-roving" or impregnated fiberglass, in order to contain the spallation caused by impact and thus prevent damage by secondary missiles. It was also found that the backup material resulted in a more efficient armor system in that the combination stopped projectiles at slightly higher velocities than did the ceramic materials when utilized without a backup material.
The present armor system represents an improvement over the prior art in that it combines a hard, bullet shattering medium and an energy absorbing medium into one integral plate. The system consists of an A1 0 matrix in which fine molybdenum particles, i.e., approximately 1 micron, are dispersed.
Work in the field has shown that the most important property of a ceramic for defeating a projectile is its dynamic tensile strength. This property influences the time after impact at which the fractures begin to move toward each other from front and rear surfaces of the ceramic plate. The dynamic tensile strength also influences the volume fraction of a plate which will bear the loading of the projectile. It is considered that providing a cermet having increasing volume fraction toward the rear of the plate will increase the time necessary to form the crack at the rear of the plate and also increase the volume of the plate which bears the impact loading of the projectile.
The total time during which a projectile, e.g., a 30 caliber bullet, interacts with a ceramic plate is of the order of 200 to 300 microseconds. During this time many events take place during which the bullet is either defeated or sufficient fragments of the bullet and/or armor perforate the backup material causing defeat of the armor. The present armor has the tendency to increase the "incubation period before formation of one or both of the initial cracks in an armor plate, a period extending from the instant of contact to about 5 microseconds after contact. Increasing the time necessary to form the crack at the rear ofthe plate while increasing the volume of the plate which bears the impact loading of the projectile is considered to result in a significant increase in ballistic limit for the gradient material.
In addition to increasing the incubation period before formation of one or both of the initial cracks in a gradient armor plate, the utilization of said gradient material is also considered to result in the lengthening of the total time ofinteraction between the projectile and the armor. It is considered that the presence of a phase in which the shock velocity is quite different from that of the matrix will influence the wave front in two important ways. First, when the wave front moves through the region having different materials, it becomes broken up or dispersed since portions of it will have different velocities in the different particles. Secondly, each time a portion of the wave moves from one material to the other, there should be an absorption of energy from the wave at the transition region between the two materials. Thus, one would expect these transition regions to be extremely important in determining the properties of the gradient armor system. A result of this importance is that nothing less than a chemical bond should be acceptable for these interface areas, i.e., there should be an interdiffusion layer between the particles or a reaction layer as a result of chemical reaction at the interface. Concurrently, there should be negligible or no porosity.
It is an object of this invention to provide and disclose an improved lightweight ceramic material.
It is a further object of this invention to provide and disclose an integral material comprising a hard exterior impact surface in combination with an energy absorbing interior medium.
It is a further object of this invention to provide and disclose an armor material comprising a ceramic matrix having a gradient of fine metal particles dispersed therein.
It is a further object of this invention to provide and disclose an armor material comprising a ceramic matrix having a gradient of fine metal particles dispersed therein, and also having an interdiffusion layer between the particles or a reaction layer as a result of the chemical reaction at the interface.
It is a further object of this invention to provide and disclose an armor material comprising an aluminum oxide matrix having a gradient of fine molybdenum oxide particles dispersed therein.
Other objects and a fuller understanding of the invention may be had by referring to the following description and claims taken in conjunction with the accompanying drawing in which:
FIG.. 1 is a schematic illustration of the gradient armor system.
FIG. 2 shows a schematic of a specific example of an alternative of the invention.
FIG. 3 shows a graphic illustration of the variation of the hardness of the material as a function of the distance within the armor material from the impact to the rear surfaces.
FIG. 4 is a graphic illustration of the variation of the dynamic tensile strength of the material as a function of the distance within the armor material from the impact to rear surfaces.
FIG. 5 is a graphic illustration of the variation of the energy absorbing capacity of the material as a function of the distance within the armor material from the impact to the rear surfaces.
Referring now to FIG. 1 of the drawing, the present armor material comprises impact surface 11 and rear surface 13. The armor material is divided into two segments. Segment 15 comprises a hard layer having high compressive properties. This is the hard, bullet shattering medium. Segment 17 comprises a layer having gradually increasing dynamic tensile strength and energy absorbing capacity. These properties are obtained by the incorporation ofa metallic or intermetallic phase 19 into the matrix of the material in a progressively increasing volume fraction.
An illustration of the distribution of the fine metallic particles in the ceramic matrix obtainable in practice is shown in FIG. 2. In addition, backup plate 21 consisting of wovenroving" fiberglass may be bonded to the rear surface of the armor. The thickness of the backup material is dependent upon the threat to be defeated and the volume fraction of metallic phase which has been incorporated into the ceramic matrix.
Line AB of FIG. 3 represents the distance from impact surface 11 to rear surface 13 of FIG. 1. Line AC represents the hardness of the material. Thus, it is seen that the hardness of the material progressively decreases commencing from the impact surface 11 to the rear surface 13 of the material.
Line AB of FIG. 4 represents the distance from impact surface 11 to rear surface 13 of FIG. 1. Line AC represents the dynamic strength of the material. Thus, it is seen that the dynamic strength of the material progressively increases commencing from the impact surface 11 to the rear surfaces 13 of the material.
Line AB of FIG. 5 represents the distance from impact surface 11 to rear surface 13 of FIG. 1. Line AC represents the energy absorbing capacity of the material. Thus, it is seen that the energy absorbing capacity of the material progressively increases commencing from impact surface 11 to rear surface 13 of the material.
The A1 0 powder, utilized to illustrate a specific example of this invention was developed under US. Pat. No. 3,305,349. The material consisted of A1 0 containing a fine dispersoid of 5 percent by volume of Mo. Utilizing reagent A1 0 powder, eight different powders containing 0.0; 0.5; 1.0; 1.5; 2.0; 3.0; 4.0 and 5 percent volume M0 were prepared. The gradient material is constructed by simply placing successive layers of each powder composition on top of the previous layer. Layer thickness is not critical. The thickness of each layer of the prototype sample was oneeighth of the total thickness. The total thickness chosen depends on the threat to be defeated. A typical total thickness is about one-third to 1.0 inch.
A hot-pressing type, commercially available apparatus was utilized to prepare the gradient armor. The final product is prepared by positioning the layers of the material, prepared as described above, in a graphite die and onto a graphite bottom plunger. A top plunger is placed in the die in contact with the powder layers, and the entire ensemble placed within an induction coil. Powder is applied to the coil to raise the temperature of the die and sample to 800 C. as quickly as possible. The temperature of the sample is held constant at 800 C. for 30 minutes to permit outgassing of gasses present within the sample. After 30 minutes the temperature is raised to l,600 C. as quickly as possible, and pressure is applied to the plunger and sample system so as to reach 8,000 psi. when the sample reaches l,600 C. The actual heating and rate of application of pressure will depend on the specific pressure and power application equipment used of which a variety are commercially available. The pressure and temperature are held at 8,000 p.s.i. and 1,600 C., respectively, for a period of 5 minutes. The sample is then allowed to cool in the die to room temperature and recovered. While l have specifically disclosed a metallic gradient of 0.5 to 5 percent by volume at the interface, a metallic gradient of 0.5 to 50 percent by volume is considered operable.
It is considered that spallation could be significantly reduced utilizing the present gradient armor thus reducing the thickness ofa backup material to contain it. In certain applications, e.g., a purely fragment protective personnel armor, the backup material may not even be necessary. This would result in a significant weight reduction since the woven-roving" backup material typically weighs 2.5 pounds per square foot. In addition, it is considered that the fragments of gradient armor which the backup material would have to contain would not be as sharp and knifelike as fragments from a monolithic ceramic plate such as A1 0 or 8 C.
Although I have described my invention with a certain degree of particularity, I wish to be understood that I do not desire to be limited to the exact details of formulation shown and described, for obvious modifications will occur to a person skilled in the art.
Having described my invention, I claim:
1. An armor system having front projectile impact and rear surfaces, comprising an aluminum oxide matrix having a gradient of fine molybdenum metal particles dispersed therein in an amount of 0.0 commencing at the projectile impact surface of the armor system to about 0.5 to 50 percent by volume along the interface ofthe system.
2. An armor system in accordance with claim 1 wherein the molybdenum metal particles are dispersed in the aluminum oxide matrix in an amount of about 0.5 to 5.0 percent by volume along the interface of the system.
3. An armor system in accordance with claim 1 wherein the molybdenum metal has a particle size of approximately 1 micron.
4. An armor system having a front projectile impact and rear surfaces, comprising an aluminum oxide matrix having a gradient of fine molybdenum metal particles dispersed therein in an amount of 0.0 commencing at the projectile impact surface of the armor system to about 0.5 to 50 percent by volume along the interface of the system, and a backup plate attached to the rear surface of the system.
5. A armor system in accordance with claim 4 wherein the molybdenum metal particles are dispersed in the aluminum oxide matrix in an amount of about 0.5 to 5.0 percent by volume along the interface of the system.
6. An armor system in accordance with claim 4 wherein the molybdenum metal has a particle size of approximately I

Claims (5)

  1. 2. An armor system in accordance with claim 1 wherein the molybdenum metal particles are dispersed in the aluminum oxide matrix in an amount of about 0.5 to 5.0 percent by volume along the interface of the system.
  2. 3. An armor system in accordance with claim 1 wherein the molybdenum metal has a particle size of approximately 1 micron.
  3. 4. An armor system having a front projectile impact and rear surfaces, comprising an aluminum oxide matrix having a gradient of fine molybdenum metal particles dispersed therein in an amount of 0.0 commencing at the projectile impact surface of the armor system to about 0.5 to 50 percent by volume along the interface of the system, and a backup plate attached to the rear surface of the system.
  4. 5. A armor system in accordance with claim 4 wherein the molybdenum metal particles are dispersed in the aluminum oxide matrix in an amount of about 0.5 to 5.0 percent by volume along the interface of the system.
  5. 6. An armor system in accordance with claim 4 wherein the molybdenum metal has a particle size of approximately 1 micron.
US25128A 1970-04-02 1970-04-02 Gradient armor system Expired - Lifetime US3633520A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US2512870A 1970-04-02 1970-04-02

Publications (1)

Publication Number Publication Date
US3633520A true US3633520A (en) 1972-01-11

Family

ID=21824202

Family Applications (1)

Application Number Title Priority Date Filing Date
US25128A Expired - Lifetime US3633520A (en) 1970-04-02 1970-04-02 Gradient armor system

Country Status (1)

Country Link
US (1) US3633520A (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3828699A (en) * 1971-08-19 1974-08-13 Atomic Energy Authority Uk Armour
DE3005586A1 (en) * 1980-02-15 1981-08-20 Kernforschungsanlage Jülich GmbH, 5170 Jülich ARMOR
WO1983000715A1 (en) * 1981-08-14 1983-03-03 Hastings, Otis, H. Insulating apparatus and composite laminates employed therein
US4523528A (en) * 1979-12-11 1985-06-18 Transaction Security, Inc. Insulating apparatus and composite laminates employed therein
US4547122A (en) * 1983-10-14 1985-10-15 Aeronautical Research Associates Of Princeton, Inc. Method of containing fractured turbine blade fragments
US4628819A (en) * 1985-08-16 1986-12-16 The United States Of America As Represented By The Secretary Of The Navy Disintegrating tamper mass
US4766420A (en) * 1978-06-05 1988-08-23 Hastings Otis Insulating apparatus and composite laminates employed therein
GB2231129A (en) * 1989-01-11 1990-11-07 Harold Birkett Protective armour
US5022307A (en) * 1989-12-12 1991-06-11 The United States Of America As Represented By The Secretary Of The Army Light weight attenuator of blast and shock from detonating munitions
US5443917A (en) * 1991-05-24 1995-08-22 Gte Products Corporation Ceramic armor
US6641893B1 (en) * 1997-03-14 2003-11-04 Massachusetts Institute Of Technology Functionally-graded materials and the engineering of tribological resistance at surfaces
US6679157B2 (en) 1999-09-30 2004-01-20 Bechtel Bwxt Idaho Llc Lightweight armor system and process for producing the same
US6895851B1 (en) * 2003-06-16 2005-05-24 Ceramics Process Systems Multi-structure metal matrix composite armor and method of making the same
US20060286883A1 (en) * 2005-01-24 2006-12-21 The Brown Idea Group, Llc Ballistics panel, structure, and associated methods
US20060284338A1 (en) * 2005-01-24 2006-12-21 The Brown Idea Group, Llc Ballistics panel, structure, and associated methods
WO2008115248A2 (en) 2006-06-30 2008-09-25 Materials & Electrochemical Research Corp. A composite armor tile based on a continuously graded ceramic-metal composition and manufacture thereof
US20100257997A1 (en) * 2009-04-10 2010-10-14 NOVA Research, Inc Armor Plate
US7910219B1 (en) 2006-06-30 2011-03-22 Materials & Electrochemical Research Corp. Composite armor tile based on a continuously graded ceramic-metal composition and manufacture thereof
GB2475023A (en) * 1985-09-11 2011-05-11 Interatom Multi-layer armour and radiation screening plate
US20110159760A1 (en) * 2006-11-29 2011-06-30 Schott Ag Armor material and method for producing it
US20110203452A1 (en) * 2010-02-19 2011-08-25 Nova Research, Inc. Armor plate
US8037804B1 (en) * 2006-10-06 2011-10-18 Raytheon Company Dynamic armor
CN102853722A (en) * 2012-03-20 2013-01-02 西安交通大学 Gradient-density armor protection device
US8464626B2 (en) 2009-11-20 2013-06-18 CPS Technologies Corp. Multi-layer metal matrix composite armor with edge protection
US20130305727A1 (en) * 2008-04-28 2013-11-21 The Boeing Company Built-up composite structures with a graded coefficient of thermal expansion for extreme environment applications
US8598057B1 (en) * 2009-05-04 2013-12-03 Verco Materials, Llc Multi-hit unitary seamless, and continuous ceramic ballistic body for armor including body armor, vehicle armor, and aircraft armor
US8695476B2 (en) 2011-03-14 2014-04-15 The United States Of America, As Represented By The Secretary Of The Navy Armor plate with shock wave absorbing properties
US9046324B2 (en) 2011-06-30 2015-06-02 Israel Military Industries Ltd. Antiballistic article and method of producing same
US9140522B1 (en) * 2012-09-05 2015-09-22 The United States Of America As Represented By The Secretary Of The Army Compositionally graded transparent ceramic armor
US9696122B2 (en) 2011-06-30 2017-07-04 Imi Systems Ltd. Antiballistic article and method of producing same
US10139201B2 (en) 2014-02-02 2018-11-27 Imi Systems Ltd. Pre-stressed curved ceramic plates/tiles and method of producing same
EP3450903A1 (en) * 2017-09-05 2019-03-06 The Boeing Company Compositionally-graded metal-ceramic structure and method for manufacturing the same
US10527391B1 (en) * 2012-06-20 2020-01-07 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Preparation of impedance gradients for coupling impulses and shockwaves into solids
US10662542B2 (en) 2010-07-22 2020-05-26 Modumetal, Inc. Material and process for electrochemical deposition of nanolaminated brass alloys
US10689773B2 (en) 2008-07-07 2020-06-23 Modumetal, Inc. Property modulated materials and methods of making the same
US10781524B2 (en) 2014-09-18 2020-09-22 Modumetal, Inc. Methods of preparing articles by electrodeposition and additive manufacturing processes
US10808322B2 (en) 2013-03-15 2020-10-20 Modumetal, Inc. Electrodeposited compositions and nanolaminated alloys for articles prepared by additive manufacturing processes
US10844504B2 (en) 2013-03-15 2020-11-24 Modumetal, Inc. Nickel-chromium nanolaminate coating having high hardness
US10961635B2 (en) 2005-08-12 2021-03-30 Modumetal, Inc. Compositionally modulated composite materials and methods for making the same
US11118280B2 (en) 2013-03-15 2021-09-14 Modumetal, Inc. Nanolaminate coatings
US11180864B2 (en) 2013-03-15 2021-11-23 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings
US11242613B2 (en) 2009-06-08 2022-02-08 Modumetal, Inc. Electrodeposited, nanolaminate coatings and claddings for corrosion protection
US11286575B2 (en) 2017-04-21 2022-03-29 Modumetal, Inc. Tubular articles with electrodeposited coatings, and systems and methods for producing the same
US11293272B2 (en) 2017-03-24 2022-04-05 Modumetal, Inc. Lift plungers with electrodeposited coatings, and systems and methods for producing the same
US11365488B2 (en) 2016-09-08 2022-06-21 Modumetal, Inc. Processes for providing laminated coatings on workpieces, and articles made therefrom
US11519093B2 (en) 2018-04-27 2022-12-06 Modumetal, Inc. Apparatuses, systems, and methods for producing a plurality of articles with nanolaminated coatings using rotation
US11571742B2 (en) 2020-01-03 2023-02-07 The Boeing Company Tuned multilayered material systems and methods for manufacturing
US11692281B2 (en) 2014-09-18 2023-07-04 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings
US11969796B2 (en) 2020-01-03 2024-04-30 The Boeing Company Tuned multilayered material systems and methods for manufacturing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US22072A (en) * 1858-11-16 Stkaw-ctttteb
US3042555A (en) * 1958-10-02 1962-07-03 Henry P George Impact resistant aluminum alloy plate
US3369877A (en) * 1965-09-20 1968-02-20 Ford Motor Co Dispersion strengthened aluminum oxide with tungsten or molybdenum
US3378369A (en) * 1964-04-06 1968-04-16 Lockheed Aircraft Corp Method of molding powdered metal
US3509833A (en) * 1963-03-28 1970-05-05 Goodyear Aerospace Corp Hard faced ceramic and plastic armor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US22072A (en) * 1858-11-16 Stkaw-ctttteb
US3042555A (en) * 1958-10-02 1962-07-03 Henry P George Impact resistant aluminum alloy plate
US3509833A (en) * 1963-03-28 1970-05-05 Goodyear Aerospace Corp Hard faced ceramic and plastic armor
US3378369A (en) * 1964-04-06 1968-04-16 Lockheed Aircraft Corp Method of molding powdered metal
US3369877A (en) * 1965-09-20 1968-02-20 Ford Motor Co Dispersion strengthened aluminum oxide with tungsten or molybdenum

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3828699A (en) * 1971-08-19 1974-08-13 Atomic Energy Authority Uk Armour
US4766420A (en) * 1978-06-05 1988-08-23 Hastings Otis Insulating apparatus and composite laminates employed therein
US4523528A (en) * 1979-12-11 1985-06-18 Transaction Security, Inc. Insulating apparatus and composite laminates employed therein
DE3005586A1 (en) * 1980-02-15 1981-08-20 Kernforschungsanlage Jülich GmbH, 5170 Jülich ARMOR
WO1983000715A1 (en) * 1981-08-14 1983-03-03 Hastings, Otis, H. Insulating apparatus and composite laminates employed therein
US4547122A (en) * 1983-10-14 1985-10-15 Aeronautical Research Associates Of Princeton, Inc. Method of containing fractured turbine blade fragments
US4628819A (en) * 1985-08-16 1986-12-16 The United States Of America As Represented By The Secretary Of The Navy Disintegrating tamper mass
GB2475023A (en) * 1985-09-11 2011-05-11 Interatom Multi-layer armour and radiation screening plate
GB2475023B (en) * 1985-09-11 2011-11-16 Interatom Multi-layer armour and screening plate as well as process for its production
GB2231129A (en) * 1989-01-11 1990-11-07 Harold Birkett Protective armour
GB2231129B (en) * 1989-01-11 1993-09-22 Harold Birkett Improved protective armour
US5022307A (en) * 1989-12-12 1991-06-11 The United States Of America As Represented By The Secretary Of The Army Light weight attenuator of blast and shock from detonating munitions
US5443917A (en) * 1991-05-24 1995-08-22 Gte Products Corporation Ceramic armor
US6641893B1 (en) * 1997-03-14 2003-11-04 Massachusetts Institute Of Technology Functionally-graded materials and the engineering of tribological resistance at surfaces
US6679157B2 (en) 1999-09-30 2004-01-20 Bechtel Bwxt Idaho Llc Lightweight armor system and process for producing the same
US6955112B1 (en) * 2003-06-16 2005-10-18 Ceramics Process Systems Multi-structure metal matrix composite armor and method of making the same
US6895851B1 (en) * 2003-06-16 2005-05-24 Ceramics Process Systems Multi-structure metal matrix composite armor and method of making the same
US20060286883A1 (en) * 2005-01-24 2006-12-21 The Brown Idea Group, Llc Ballistics panel, structure, and associated methods
US20060284338A1 (en) * 2005-01-24 2006-12-21 The Brown Idea Group, Llc Ballistics panel, structure, and associated methods
US10961635B2 (en) 2005-08-12 2021-03-30 Modumetal, Inc. Compositionally modulated composite materials and methods for making the same
US7910219B1 (en) 2006-06-30 2011-03-22 Materials & Electrochemical Research Corp. Composite armor tile based on a continuously graded ceramic-metal composition and manufacture thereof
US7955706B1 (en) 2006-06-30 2011-06-07 Materials & Electrochemical Research Corp. Composite armor tile based on a continuously graded ceramic-metal composition and manufacture thereof
WO2008115248A2 (en) 2006-06-30 2008-09-25 Materials & Electrochemical Research Corp. A composite armor tile based on a continuously graded ceramic-metal composition and manufacture thereof
US8037804B1 (en) * 2006-10-06 2011-10-18 Raytheon Company Dynamic armor
US20110159760A1 (en) * 2006-11-29 2011-06-30 Schott Ag Armor material and method for producing it
US10316792B2 (en) * 2008-04-28 2019-06-11 The Boeing Company Built-up composite structures with a graded coefficient of thermal expansion for extreme environment applications
US20130305727A1 (en) * 2008-04-28 2013-11-21 The Boeing Company Built-up composite structures with a graded coefficient of thermal expansion for extreme environment applications
US10689773B2 (en) 2008-07-07 2020-06-23 Modumetal, Inc. Property modulated materials and methods of making the same
US20100257997A1 (en) * 2009-04-10 2010-10-14 NOVA Research, Inc Armor Plate
US8176831B2 (en) 2009-04-10 2012-05-15 Nova Research, Inc. Armor plate
US8598057B1 (en) * 2009-05-04 2013-12-03 Verco Materials, Llc Multi-hit unitary seamless, and continuous ceramic ballistic body for armor including body armor, vehicle armor, and aircraft armor
US11242613B2 (en) 2009-06-08 2022-02-08 Modumetal, Inc. Electrodeposited, nanolaminate coatings and claddings for corrosion protection
US8464626B2 (en) 2009-11-20 2013-06-18 CPS Technologies Corp. Multi-layer metal matrix composite armor with edge protection
US20110203452A1 (en) * 2010-02-19 2011-08-25 Nova Research, Inc. Armor plate
US10662542B2 (en) 2010-07-22 2020-05-26 Modumetal, Inc. Material and process for electrochemical deposition of nanolaminated brass alloys
US8695476B2 (en) 2011-03-14 2014-04-15 The United States Of America, As Represented By The Secretary Of The Navy Armor plate with shock wave absorbing properties
US9046324B2 (en) 2011-06-30 2015-06-02 Israel Military Industries Ltd. Antiballistic article and method of producing same
US9696122B2 (en) 2011-06-30 2017-07-04 Imi Systems Ltd. Antiballistic article and method of producing same
CN102853722A (en) * 2012-03-20 2013-01-02 西安交通大学 Gradient-density armor protection device
US10527391B1 (en) * 2012-06-20 2020-01-07 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Preparation of impedance gradients for coupling impulses and shockwaves into solids
US9140522B1 (en) * 2012-09-05 2015-09-22 The United States Of America As Represented By The Secretary Of The Army Compositionally graded transparent ceramic armor
US10844504B2 (en) 2013-03-15 2020-11-24 Modumetal, Inc. Nickel-chromium nanolaminate coating having high hardness
US10808322B2 (en) 2013-03-15 2020-10-20 Modumetal, Inc. Electrodeposited compositions and nanolaminated alloys for articles prepared by additive manufacturing processes
US11851781B2 (en) 2013-03-15 2023-12-26 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings
US11118280B2 (en) 2013-03-15 2021-09-14 Modumetal, Inc. Nanolaminate coatings
US11168408B2 (en) 2013-03-15 2021-11-09 Modumetal, Inc. Nickel-chromium nanolaminate coating having high hardness
US11180864B2 (en) 2013-03-15 2021-11-23 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings
US10563961B2 (en) 2014-02-02 2020-02-18 Imi Systems Ltd. Pre-stressed curved ceramic plates/tiles and method of producing same
US10139201B2 (en) 2014-02-02 2018-11-27 Imi Systems Ltd. Pre-stressed curved ceramic plates/tiles and method of producing same
US10781524B2 (en) 2014-09-18 2020-09-22 Modumetal, Inc. Methods of preparing articles by electrodeposition and additive manufacturing processes
US11692281B2 (en) 2014-09-18 2023-07-04 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings
US11560629B2 (en) 2014-09-18 2023-01-24 Modumetal, Inc. Methods of preparing articles by electrodeposition and additive manufacturing processes
US11365488B2 (en) 2016-09-08 2022-06-21 Modumetal, Inc. Processes for providing laminated coatings on workpieces, and articles made therefrom
US11293272B2 (en) 2017-03-24 2022-04-05 Modumetal, Inc. Lift plungers with electrodeposited coatings, and systems and methods for producing the same
US11286575B2 (en) 2017-04-21 2022-03-29 Modumetal, Inc. Tubular articles with electrodeposited coatings, and systems and methods for producing the same
US11255641B2 (en) * 2017-09-05 2022-02-22 The Boeing Company Compositionally-graded metal-ceramic structure and method for manufacturing the same
EP3450903A1 (en) * 2017-09-05 2019-03-06 The Boeing Company Compositionally-graded metal-ceramic structure and method for manufacturing the same
CN109458879A (en) * 2017-09-05 2019-03-12 波音公司 Compositionally graded metal-ceramic structural body and its manufacturing method
US11519093B2 (en) 2018-04-27 2022-12-06 Modumetal, Inc. Apparatuses, systems, and methods for producing a plurality of articles with nanolaminated coatings using rotation
US11571742B2 (en) 2020-01-03 2023-02-07 The Boeing Company Tuned multilayered material systems and methods for manufacturing
US11969796B2 (en) 2020-01-03 2024-04-30 The Boeing Company Tuned multilayered material systems and methods for manufacturing

Similar Documents

Publication Publication Date Title
US3633520A (en) Gradient armor system
López-Puente et al. The effect of the thickness of the adhesive layer on the ballistic limit of ceramic/metal armours. An experimental and numerical study
US3705558A (en) Armor
US7478579B2 (en) Encapsulated ballistic structure
Cour-Palais et al. A multi-shock concept for spacecraft shielding
US3802850A (en) Graded impact resistant structure of titanium diboride in titanium
Hazell et al. The design of mosaic armour: The influence of tile size on ballistic performance
US5905225A (en) Armouring
Aydin et al. Experimental damage analysis of Al/SiC functionally graded sandwich plates under ballistic impact
Gooch An overview of ceramic armor applications
Garcia-Avila et al. Ballistic performance of a composite metal foam-ceramic armor system
US5469773A (en) Light weight armor
GB2149482A (en) Projectile-proof material
US3743569A (en) Armor of cermet with metal therein increasing with depth
CN110006303A (en) A kind of blocking explosion wave emergency explosion-proof lamp
CN104553143A (en) Novel explosion-proof composite structure based on metamaterial
Hohler et al. Comparative analysis of oblique impact on ceramic composite systems
CN108302998B (en) Protective armor structure in explosion container and design method thereof
US3592942A (en) Composite ceramic armor
US5456156A (en) Ceramic armor
Bashurov et al. Experimental modelling and numerical simulation of high-and hypervelocity space debris impact to spacecraft shield protection
CN108788439B (en) Explosive welding method for lead-zinc stainless steel multilayer radiation-proof composite board
Wilkins Use of boron compounds in lightweight armor
GB1318351A (en) Composite armour
Walters et al. The penetration resistance of a titanium alloy against jets from tantalum shaped charge liners