US3632512A - Method of preparing magnetically responsive carrier particles - Google Patents
Method of preparing magnetically responsive carrier particles Download PDFInfo
- Publication number
- US3632512A US3632512A US799966A US3632512DA US3632512A US 3632512 A US3632512 A US 3632512A US 799966 A US799966 A US 799966A US 3632512D A US3632512D A US 3632512DA US 3632512 A US3632512 A US 3632512A
- Authority
- US
- United States
- Prior art keywords
- iron
- powder
- carrier
- particles
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002245 particle Substances 0.000 title abstract description 96
- 238000000034 method Methods 0.000 title description 22
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 205
- 229910052742 iron Inorganic materials 0.000 abstract description 83
- 239000000843 powder Substances 0.000 abstract description 52
- 239000000463 material Substances 0.000 abstract description 47
- 239000002253 acid Substances 0.000 abstract description 42
- 238000001035 drying Methods 0.000 abstract description 26
- 230000003647 oxidation Effects 0.000 abstract description 15
- 238000007254 oxidation reaction Methods 0.000 abstract description 15
- 230000005294 ferromagnetic effect Effects 0.000 abstract description 4
- 239000012260 resinous material Substances 0.000 abstract description 4
- 239000011260 aqueous acid Substances 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 description 41
- 238000011161 development Methods 0.000 description 33
- 229920005989 resin Polymers 0.000 description 31
- 239000011347 resin Substances 0.000 description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 25
- 230000005291 magnetic effect Effects 0.000 description 22
- 238000012360 testing method Methods 0.000 description 16
- 239000003570 air Substances 0.000 description 15
- 239000010410 layer Substances 0.000 description 15
- 239000007787 solid Substances 0.000 description 14
- 239000000243 solution Substances 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 239000012876 carrier material Substances 0.000 description 12
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 11
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 11
- 238000000576 coating method Methods 0.000 description 11
- 239000000356 contaminant Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 239000007858 starting material Substances 0.000 description 10
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- 238000005406 washing Methods 0.000 description 8
- -1 acetic acids Chemical class 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 7
- 238000010908 decantation Methods 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000000969 carrier Substances 0.000 description 6
- 238000005755 formation reaction Methods 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 230000000717 retained effect Effects 0.000 description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 5
- 238000010306 acid treatment Methods 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- 239000008399 tap water Substances 0.000 description 5
- 235000020679 tap water Nutrition 0.000 description 5
- 229920002554 vinyl polymer Polymers 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000004952 Polyamide Substances 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000025 natural resin Substances 0.000 description 4
- 229920002647 polyamide Polymers 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910000640 Fe alloy Inorganic materials 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 238000013019 agitation Methods 0.000 description 3
- 239000003963 antioxidant agent Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 229940114081 cinnamate Drugs 0.000 description 3
- 239000007859 condensation product Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000010981 drying operation Methods 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- 239000000057 synthetic resin Substances 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- WBYWAXJHAXSJNI-VOTSOKGWSA-M trans-cinnamate Chemical compound [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 3
- XLLIQLLCWZCATF-UHFFFAOYSA-N 2-methoxyethyl acetate Chemical compound COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 2
- FUSNOPLQVRUIIM-UHFFFAOYSA-N 4-amino-2-(4,4-dimethyl-2-oxoimidazolidin-1-yl)-n-[3-(trifluoromethyl)phenyl]pyrimidine-5-carboxamide Chemical compound O=C1NC(C)(C)CN1C(N=C1N)=NC=C1C(=O)NC1=CC=CC(C(F)(F)F)=C1 FUSNOPLQVRUIIM-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000001680 brushing effect Effects 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000004519 grease Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 239000012493 hydrazine sulfate Substances 0.000 description 2
- 229910000377 hydrazine sulfate Inorganic materials 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000005325 percolation Methods 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 235000010288 sodium nitrite Nutrition 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 238000010301 surface-oxidation reaction Methods 0.000 description 2
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- WOGITNXCNOTRLK-VOTSOKGWSA-N (e)-3-phenylprop-2-enoyl chloride Chemical compound ClC(=O)\C=C\C1=CC=CC=C1 WOGITNXCNOTRLK-VOTSOKGWSA-N 0.000 description 1
- XRUGBBIQLIVCSI-UHFFFAOYSA-N 2,3,4-trimethylphenol Chemical compound CC1=CC=C(O)C(C)=C1C XRUGBBIQLIVCSI-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- AXDJCCTWPBKUKL-UHFFFAOYSA-N 4-[(4-aminophenyl)-(4-imino-3-methylcyclohexa-2,5-dien-1-ylidene)methyl]aniline;hydron;chloride Chemical compound Cl.C1=CC(=N)C(C)=CC1=C(C=1C=CC(N)=CC=1)C1=CC=C(N)C=C1 AXDJCCTWPBKUKL-UHFFFAOYSA-N 0.000 description 1
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 description 1
- 235000007173 Abies balsamea Nutrition 0.000 description 1
- 239000004857 Balsam Substances 0.000 description 1
- RQEZZMOFOAEIIC-UHFFFAOYSA-N C(C=1C(C(=O)O)=CC=CC1)(=O)O.C(C=CC1=CC=CC=C1)(=O)O Chemical compound C(C=1C(C(=O)O)=CC=CC1)(=O)O.C(C=CC1=CC=CC=C1)(=O)O RQEZZMOFOAEIIC-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 1
- 244000018716 Impatiens biflora Species 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- YCUVUDODLRLVIC-UHFFFAOYSA-N Sudan black B Chemical compound C1=CC(=C23)NC(C)(C)NC2=CC=CC3=C1N=NC(C1=CC=CC=C11)=CC=C1N=NC1=CC=CC=C1 YCUVUDODLRLVIC-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- YPPQDPIIWDQYRY-UHFFFAOYSA-N [Ru].[Rh] Chemical compound [Ru].[Rh] YPPQDPIIWDQYRY-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 150000001243 acetic acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 238000005513 bias potential Methods 0.000 description 1
- HZIYKDPQTWUCRQ-UHFFFAOYSA-N butanedioic acid 3-phenylprop-2-enoic acid Chemical compound C(CCC(=O)O)(=O)O.C(C=CC1=CC=CC=C1)(=O)O HZIYKDPQTWUCRQ-UHFFFAOYSA-N 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 150000001851 cinnamic acid derivatives Chemical class 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical class O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 150000002506 iron compounds Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 238000009828 non-uniform distribution Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920001289 polyvinyl ether Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 150000003739 xylenols Chemical class 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/10—Developers with toner particles characterised by carrier particles
- G03G9/113—Developers with toner particles characterised by carrier particles having coatings applied thereto
- G03G9/1131—Coating methods; Structure of coatings
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/10—Developers with toner particles characterised by carrier particles
- G03G9/107—Developers with toner particles characterised by carrier particles having magnetic components
- G03G9/1075—Structural characteristics of the carrier particles, e.g. shape or crystallographic structure
Definitions
- Electrophotographic imaging processes and techniques have been extensively described in both the patent and other literature, for example, US. Pats. Nos. 2,221,776; 2,277,013; 2,297,691; 2,357,809; 2,551,582; 2,825,814; 2,833,648; 3,220,324; 3,220,831; 3,220,833 and many others.
- these processes have in common the steps of employing a normally insulating photoconductive element which is prepared to respond to imagewise exposure with electromagnetic radiation by forming a latent electrostatic charge image.
- the electrostatic latent image is then rendered visible by a development step in which the charged surface of the photoconductive element is brought into contact with a suitable developer mix.
- One method for applying the developer mix is by the well-known magnetic brush process.
- Such a process can utilize apparatus of the type described, for example, in U.S. Pat. No. 3,003,462 and often comprises a nonmagnetic rotatably mounted cylinder having fixed magnetic means mounted inside.
- the cylinder is arranged to rotate so that part of the surface is immersed in or otherwise contacted with a supply of developer mix.
- the granular mass comprising the developer mix is magnetically attracted to the surface of the cylinder.
- the particles of the developer mix arrange themselves in bristle-like formations resembling a brush.
- the bristle formations of developer mix tend to conform to the lines of magnetic flux, standing erect in the vicinity of the poles and lying substantially flat when said mix is outside the environment of the magnetic poles.
- the continuously rotating cylinder picks up developer mix from a supply source and then returns part or all of this material to the supply. This mode of operation assures that fresh mix is always available to the surface of the photoconductive element at its point of contact with the brush.
- the roller performs the successive steps of developer mix pickup, brush formation, brush contact with the photoconductive element, brush collapse and finally mix release.
- the developer is commonly a triboelectric mixture of fine toner powder comprised of dyed or pigmented thermoice plastic resin with coarser carrier particles of a soft magnetic material such as ground chemical iron (iron filings), reduced iron oxide particles or the like.
- the conductivity of the ferromagnetic carrier particles which form the bristles of a magnetic brush provides the effect of a development electrode having a very close spacing to the surface of the electrophotographic element being developed.
- One difficulty with such counter-electrode development is that the exposure latitude obtainable is limited. Consequently, for certain applications, it is desirable to suppress the counter-electrode effect in order to obtain improved exposure latitude.
- One method of suppressing the counter-electrode effect is to use a carrier material which has a high electrical resistance.
- the prior art has not recognized the heterogeneous nature of the intimate surface of the iron powders used in this art.
- no recognition has been given to the resulting complications in magnetic-brush processing which arise from using some of the presently available materials.
- the extraneous surface dirt found on the available iron particles is only part of the problem.
- the iron particles invariably carry a non-uniform distribution of iron oxide and oftentimes pyrites such as iron sulfide, as well as other iron compounds.
- the iron carrier is in continuous motion and the constant friction of the particles against one another and against the various mechanical parts gradually remove bits of this nonuniform surface material.
- the attrition will, of course, vary from point to point on an iron particle depending on the nature of the deposit, its thickness, friability, adhesion to the underlying structure, and the like.
- a progressive change occurs in the character of the iron surface during use.
- the nature of the admixed toner also changes as it becomes contaminated with the fine particles which have separated from the surface of the carrier.
- iron carriers which will present a more nearly homogeneous surface and which will have stable triboelectric and other properties even during continued use. Furthermore, there is a need for iron carrier patricles which will enhance the counter-electrode effect and thus improve the solid-area type development obtainable in magnetic brush processing. Also, there is a need for iron carrier particles which can repress the counter-electrode effect so that fringing development will be induced with its accompanying improvement in exposure latitude.
- a further object of this invention is to provide new developing compositions for use in magnetic brush development.
- the carrier materials which are suitable for treatment in accordance with this invention include ferromagnetic materials such as iron powder in varoius forms.
- iron powder as used herein is meant to include a wide variety of particulate, magnetically responsive material the surface of which can be readily oxidized and includes material in such forms as reduced iron oxide bits; particles produced by atomization of molten metal and subsequent cooling of the droplets; particles produced by grinding, milling, filing, turning, etc.; as well as particles of iron alloys having oxidizable iron on the surface thereof such as stainless steel and iron alloys containing nickel and/or cobalt.
- the ferromagnetic carrier particles used can vary in size and in shape with useful results being obtained with average particle sizes of from about 1200 to about 40 microns. Particularly useful results are obtained with average particle sizes from about 600 to about 60 microns.
- the size of the carrier particles used will, of course, depend upon several factors, such as the type of images ultimately developed, the desired thickness of any subsequent coatings, etc.
- iron powder is first subjected to an acid treatment in accordance to this invention.
- This acid treatment can be carried out using a dilute aqueous solution of the acid.
- acids can be used such as sulfuric, hydrochloric, nitric, and other mineral acids.
- Sulfuric acid is a preferred material, by virtue of the fact that it is inexpensive, readily available, and only slightly volatile.
- certain organic acids such as acetic acids, e.g., trichloroacetic acid, etc., are also useful in certain applications.
- the acid concentrations which are useful can vary from about l-normal to about 3-normal. Higher or lower acid concentrations can sometimes be useful because of the quantity of iron being treated, the average particle size or other such variables.
- the step of acid treatment of the iron particles is in no way restricted to any particular method of applying the acid.
- spraying, percolation, and/or other means can conveniently be used to accomplish the acid treatment step.
- One very convenient procedure is to form a slurry of the iron powder in dilute acid for a period of time which will vary with the nature and concentration of the acid used, the agitation applied, the required degree of attack by the acid, the particle size of the iron powder, as well as the character and thickness of the surface material which is to be removed.
- an alkaline solution can be added to the acid slurry.
- the reaction can be checked by dilution with cold water.
- the acid concentration required will vary with different iron powders, depending on the amount used and the average particle size, the nature of the surface on the starting material, etc.
- the reduction in weight resulting from removal of undesired surface contaminants and incidental solution of elementary iron in the treatment of commercial iron powders by the method of this invention is of the order of about 1 to about 2% by weight or less.
- Treatment need not be extended beyond the degree necessary to remove the heterogeneous surface contaminants. No further reduction in surface contaminants nor improvement in surface uniformity is observed by continuing treatment until the loss of metallic iron is about 2% by weight.
- the metallic iron lost by dissolution should be less than about 1% by weight of the iron powder.
- unduly prolonged treatment not only results in needless consumption of acid and dissolution of iron but, in some instances, can produce deleterious results, by exposing occluded particles of acid-insoluble material.
- decantation washing is a preferred method of eliminating both the residual acid and the suspended products of the reaction.
- a simple decantation procedure can be carried out by slurrying the iron in clean cold water followed by a settling period to permit the iron particles of suitable carrier size to settle to the bottom of the liquid. After setling the supernatant liquid is rapidly decanted such that the unwanted contaminants are carried off with the liquid. This washing operation can be repeated until the rinse water is clear or until an established level of residual turbidity is reached.
- the process of this invention can be used to prepare iron particles having very high surface conductivity.
- the highly conductive particles, made in accordance with this invention show surface resistance values several orders of magnitude lower than the best of the commercially available iron powders when measured in magnetic brush conformation under standardized testing conditions.
- the resistance of the carrier particles is measured in a standard resistance test. This test is conducted each time using a 15 g. quantity of carrier material.
- a cylindrically shaped magnet having a circular end of about 6.25 square centimeters in area is used to attract the carrier and hold it in the form of a brush. After formation of the brush, the bar magnet is then positioned with the brush-carrying end approximately parallel to and about 0.5 cm. from a burnished copper plate.
- the resistance of the particles in the magnetic brush is then measured between the magnet and the copper plate.
- the uncoated conductive particles made in accordance with this invention have a resistance of less than about 50 ohms, with especially preferred materials having a resistance of less than about 20 ohms.
- Metallic iron is a very good electrical conductor and the clean elemental iron surface of the carrier iron prepared by this process of this invention results in a highly conductive iron powder as mentioned above.
- iron is also a highly reactive metal and readily oxidizes in air. Therefore, it is of utmost importance when making highly conductive carrier material by this invention to repress oxidation during the washing and drying steps as well as during subsequent storage.
- the repression of oxidation can be accomplished in any of several ways.
- One useful Way to repress oxidation is by the addition of an antioxidant or reducing agent to the wash water and particularly to the last several quantities of wash water.
- a variety of known antioxidants or reducing agents can be used to inhibit oxidation in the subsequent drying operation.
- one-half percent of hydrazine sulfate or sodium nitrite is usually quite effective for this purpose.
- Oxidation can also be minimized by the use of one or a succession of rinses in a Water-miscible organic solvent such as acetone or a lower alcohol like methanol, ethanol and isopropanol.
- a Water-miscible organic solvent such as acetone or a lower alcohol like methanol, ethanol and isopropanol.
- Such solvents remove the residual water from the iron and speed subsequent drying.
- the temperature and relative humidity of the drying air should also be carefully controlled.
- One reason for the careful control is that warming of the iron powder will encourage oxidation while similarly, if the iron is cooled too rapidly such that the temperature drops below the dew point, condensation of water on the iron will also encourage surface oxidation.
- the iron powder processed according to this highly conductive embodiment of the invention can be dried by agitating continuously in a current of Warm air.
- the temperature of the air is in the range of from about 15 to about 40 C. with a preferred temperature of from about 20 to about 30 C.
- the drying temperature should be kept above the dew point of the ambient atmosphere to avoid unnecessary condensation.
- the relative humidity of the drying air should be kept low. Generally, good results can be obtained with relative humidity values of less than about 30% and preferably the relative humidity is less than about 20% Under these conditions of temperature and humidity, the resulting powder shows very high surface conductivity. If, however, even higher surface conductivities are required, the iron can be dried in an inert, substantially oxygen-free atmosphere such as hydrogen, nitrogen, etc.
- the iron After drying, the iron must be protected from oxidation until ready for use. This can be readily accomplished by storing it in an inert atmosphere in a sealed container.
- the carrier particles When used, the carrier particles are mixed with a toner material of suitable triboelectric properties which toner provides a physical coating that effectively lessens any further oxidation on the carrier during use. As a result, it is possible to maintain the improved surface conductivity of the carriers of the invention during extended periods of use in magnetic brush apparatus.
- One particularly useful surface treatment involves overcoating each carrier particle with a thin continuous layer of a nonferrous electrically conducting metal which is more resistant to aerial oxidation than iron.
- the materials useful for coating or plating onto the present conductive carriers are typically nonferrous metals which are substantially more resistant to surface oxidation than iron and iron-alloy. Suitable coating materials having a resistance to aerial oxidation greater than that of iron include those metals in Groups VIa, VIII, Ib and 11b of the Periodic Table (Cotton and Wilkinson, Advanced In organic Chemistry, 1962, page 30).
- Particularly useful metals are cadmium, chromium, copper, gold, nickel, silver, zinc, and the platinum group elements which include ruthenium rhodium, palladium, osmium, iridium and platinum as well as mixtures of alloy of any of these. Most of these metals are more electronegative than the iron starting material which property is advantageous in certain coating procedures. With other coating procedures, the metals more electropositive than iron can be useful such as chromium, zinc and cadmium.
- the useful conducting metals all have a greater corrosion resistance or resistance to aerial oxidation than does iron.
- corrosion resistance or resistance to aerial oxidation all have reference to the ability of a metal to withstand oxidative-type corrosion which impairs electrical conductivity.
- the type of corrosion which should be avoided is continuous aerial oxidation or rapid aerial oxidation which substantially reduces the electrical conductivity of a metal.
- these terms have reference to corrosion induced by exposure to air, carbon dioxide, water, ozone, etc., and do not have particular reference to the chemical attack of solutions of strong acids or bases, etc. Coatings of this type are further described in H. A. Miller US. application Ser. No. 799,967, filed Feb. 17, 1969, co-filed herewith, and entitled Highly Conductive Carrier Particles.
- the metal coated carrier particles of this invention generally have a resistance of less than 10 ohms with preferred materials having a resistance of less than 1 ohm.
- Conductive carrier as described above are excellent for use in magnetic-brush development wherein it is desired to obtain a development electrode effect thus producing solid area development. However, if solid area development is not desired, then it is necessary to suppress this development electrode effect. The simplest way to accomlish this result is through the use of highly insulating carrier particles. When insulating carrier particles are used, the development electrode effect is suppressed and fringing development occurs.
- high resistance iron carrier particles can be provided by acid washing and rinsing, as referred to above, followed by treatment to provide a uniform, adherent iron oxide surface of high resistivity on the individual particles.
- subsequent washings to remove residual acid and Waste products are conducted without the addition of any antioxidant material.
- the iron is drained to remove surplus moisture and then dried without subsequent solvent treatment.
- the drying is conducted at elevated temperatures so as to induce formation of surface oxides. Good results are obtained with drying temperatures of from about 40 to about C.
- the damp powder is mixed gently in order to keep the temperature and water content relatively uniform throughout the mass of powder. During drying, the color of the iron gradually change from gray to brown.
- the treated powder After drying, the treated powder exhibits a very high level of surface resistivity.
- the optimum drying conditions i.e., temperature, agitation, humidity, etc.
- the relative humidity of the drying air can vary widely with good results being obtained at values of 40% RH. and above.
- the drying air has a relative humidity of 60% and above.
- Oxide-coating particles can be prepared in this manner having electrical resistance ranging up to greater than about 10 ohms.
- the resultant developer composition is found to greatly reduce the development electrode effect of a magnetic brush.
- a developer composition induce fringing development with the accompanying increase in exposure latitude.
- the iron oxide coating on these carriers can also be overcoated with a thin plastic film to further increase the resistance of the carrier and thereby inducing greater fringe development.
- the particles can be overcoated with continuous, uniform layers of film-forming electrically insulating resinous material.
- the polymers or resinous material useful in overcoating the carrier particles of this invention can be selected from a variety of subtances.
- Useful resins must be film-forming and, in general, they are electrically insulating such that when coated in desired amount they will impart the requisite degree of electrical resistance to the carrier particles.
- Useful resins include those capable of being cured, hardened, or otherwise insolubilized such that when a subsequent resin layer is applied there is no substantial permeation of a resin layer into an adjacent layer.
- Suitable resins include thermosetting resins which harden upon the application of heat as Well as light sensitive resins which harden upon exposure to actinic radiation. Also combinations of resins having diverse inherent solubility characteristics can be used. The different types of useful resins can be used alone or in various combinations.
- Useful light sensitive or light-hardening resins would include polymeric derivatives of cinnamic acid such as polyvinyl cinnamate, cinnamoylated polystyrene, ethylene vinyl cinnamate copolymer, cellulose cinnamate, N- (cinnamoylphenyl)-methane derivatives of hydroxylated polymers (e.g., partially hydrolyzed polyvinyl acetate cellulose acetate, etc.), epoxy resins esterified with cinnamoyl chloride and the like.
- Polyvinyl cinnamate succinate and polyvinyl cinnamate phthalate would be particularly easy to use in that they can be coated from an aqueous solution.
- photocrosslinkable compositions comprising an unsensitive resin and a light sensitive crosslinking agent are useful. Such compositions could comprise an alcohol soluble nylon-type polyamide with, for example, benzophenone as an initiator, etc.
- thermosetting or heat-hardening resins include a wide variety of materials with formaldehyde condensation products being exemplary of readily available materials. Particularly useful materials are formaldehyde condensation products formed with urea, melamine or with various phenols such as xylenol, cresol, trimethylphenol, phenol, soligenin, etc. Other resins can also be used such as thermosetting epoxy resins, polyester-styrene resins and the like.
- cellulose resins such as cellulose nitrate, cellulose acetate butyrate, etc.
- lower alkyl methacrylate polymers having from 1 to 4 carbon atoms in the alkyl moiety, etc.
- filmforming polyesters, polyolefins, polyamides, polycarbonates, etc. can all be used provided they are applied from suitable liquid vehicles which will not soften any previously applied layer. Methods for applying multiple layers of such resins are disclosed in co-pending Miller US. application, Ser. No. 799,968, filed Feb. 17, 1969, co-filed herewith, and entitled High Resistance Carrier Particles.
- Resin overcoated particles prepared in this manner generally have an electrical resistance of greater than about ohms.
- Electroscopic developer compositions can be prepared by mixing from about 90 to about 99% by weight of the present acid-washed magnetically responsive carrier particles with from about 10 to about 1% by weight of a suitable electroscopic toner material.
- the toner used with the carrier particles of this invention can be selected from a wide variety of materials to give desired physical properties to the developed image and the proper triboelectric relationship to match the carrier particles used.
- any of the toner powders known in the art are suitable for mixing with the carrier particles of this invention to form a developer composition.
- the toner power selected is utilized with ferromagnetic carrier particles in a magnetic-brush development arrangement the toner clings to the carrier by triboelectric attraction.
- the carrier particles acquire a charge of one polarity and the toner acquires a charge of the opposite polarity.
- the toner normally acquires a positive charge and the carrier a negative charge.
- Toner powders suitable for use in this invention are typically prepared by finely grinding a resinous material and mixing with a coloring material such as a pigment or a dye. The mixture is then ball milled for several hours and heated so that the resin flows and encases the colorant. The mass is cooled, broken into small chunks and finely ground again. After this procedure the toner powder particles usually range in size from about 0.5 to about 25 microns, with an average size of about 2 to about 15 microns.
- the resin material used in preparing the toner can be selected from a wide variety of materials, including natural resins, modified natural resins and synthetic resins.
- useful natural resins are balsam resins, colophony and shellac.
- suitable modified natural resins are colophony-modified phenol resins and other resins listed below with a large proportion of colophony.
- Suitable synthetic resins are all synthetic resins known to be useful for toner purposes, for example, polymers, such as vinyl polymers including polyvinylchloride, polyvinylidene chloride, polyvinyl acetate, polyvinyl acetals, polyvinyl ether and polyacrylic and polymethacrylic esters; polystyrene and substituted polystyrenes or polycondensates, e.g., polyesters such as phthalate resin, terephthalic and isophthalic polyesters, maleinate resin and colophony-mixed esters of higher alcohols; phenolformaldehyde resins, including colophony-modified phenol formaldehyde condensates, aldehyde resins, ketone resins, polyamides and polyadducts, e.g., polyurethanes.
- polymers such as vinyl polymers including polyvinylchloride, polyvinylidene chloride, polyvinyl acetate
- polyolefins such as various polyethylenes, polypropylenes, polyisobutylenes and chlorinated rubber are suitable. Additional toner materials which are useful are disclosed in the following US. patents: 2,917,460; Re. 25,136; 2,788,288; 2,638,416; 2,618,552 and 2,659,670.
- the coloring material additives useful in suitable toners are preferably dyestuffs and colored pigments. These materials serve to color the toner and thus render it more visible. In addition, they sometimes affect, in known manner, the polarity of the toner. In principle, virtually all of the compounds mentioned in the Color Index, vol. I and II, Second edition, 1956, can be used as colorants. Included among the vast number of suitable colorants would be such materials as Nigrosin Spirit soluble (CI. 50415), I-Iansa Yellow G (CI. 11680), Chromogen Black BT00 (C.I. 14645), Rhodamine B (C.I. 45170), Solvent Black 3 (CI. 26150), Fuchsine N (CI. 42510) C.I. Basic Blue 9 (CI. 52015), etc.
- EXAMPLE 1 A 2500 g. quantity of a commercial iron powder (Glidden Iron 388, Glidden-Durkee Div. SCM Corp.) is poured into 1500 ml. of 2 N sulfuric acid solution over a 10- second period.
- the iron powder used has a particle size such that it will pass through a mesh screen and be retained by a mesh screen.
- the resistance of the iron carrier as measured in the standards resistance test referred to above is 2400 ohms.
- stirring is continued for 60 seconds whereupon the reaction mixture is diluted to 4000 ml. with cold tap water.
- the mixture is allowed to settle for 10 seconds and then, the brown, supernatant liquid is decanted along with a considerable quantity of black greasy scum on the surface. Decantation rinsing is repeated 8 more times with 2000 ml. volumes of water.
- the slurry is agitated after each addition of rinse water so as to briefly suspend all iron powder. After suspension, the powder is allowed to settle and the supernatant liquid is again decanted along with suspended dirt and other unwanted materials.
- the iron is drained and rinsed 4 times with 600 ml. volumes of anhydrous methanol with thorough mixing after each addition followed by a settling period of 10 seconds prior to decantation.
- the drained iron is suction filtered on a Biichner funnel and the resulting damp powder is dried in a thin layer inch or less) on a glass sheet.
- the powder is mixed continuously during drying with heat being provided by infrared radiation from two 250 watt infrared bulbs at a distance of about 45 cm. from the powder.
- the two infrared bulbs provide sufiicient heat to prevent the powder from being cooled excessively by evaporation of the residual methanol.
- the ambient air is at a temperature of about 21 C. and a relative humidity of slightly less than about 40%.
- the resistance of the powder was measured in the standard test referred to above and found to be 16 ohms.
- the dry powder weighs 2468 grams which represents a total loss of about 1.3% in dirt, surface oxide, pyrites, etc., as well as extremely finely divided iron powder decanted in washing.
- a magnet placed in all of the dirt, etc., removed from the starting iron attracted only a minute amount of material indicating that only very little of the material lost is actually iron.
- two magnetic brush developer compositions are prepared from the acid-washed iron and with an equal quantity of untreated starting material.
- the two carriers are each mixed with 3% by weight of a black, styrene co-polymer toner, having a particle size of from 1-5 microns.
- the toner material charges positively on the carrier particles.
- the two developer mixtures are tested in a magnetic-brush development apparatus.
- the apparatus for testing comprises a cylindrical aluminum tube arranged to rotate axially in a horizontal position about a fixed permanent magnet.
- the permanent magnet has its poles oriented such that when the magnetic particles are present, a magnetic brush is formed on top of the cylinder.
- this apparatus is run for 15 minutes with the magnetic brush in contact with an electrophotographic element comprised of a conductive support coated with a photoconductive layer of an organic photoconductor in a resin binder.
- the developer formed using the untreated carrier particles shows considerable tendency to leave a scum or deposit on the photoconductor after repeated use; whereas, the developer containing acid-treated carrier showed very little tendency to leave a scum.
- the acid-treated carrier particle when the two carrier particles are tested in the same apparatus using no toner, the acid-treated carrier particle produces no visible deposit during the test; while the untreated carrier deposits a black layer having a density of about 0.8.
- the two developer mixtures are then used to develop an electrostatic latent image carried on a photoconductive element as described above.
- the developer containing the acid-treated carrier gives better overall image quality with more solid area development while showing less sensitivity to variations in the electrical potential applied to the magnetic brush.
- EXAMPLE 2 A quantity of 454 g. of high density electrolytic iron powder (Glidden 475, Glidden-Durkee Div. SCM Corp.) is poured rapidly with stirring into 250 ml. of a 5% hydrochloric acid solution in a 1 liter beaker.
- the iron powder has a particle size such that it will pass through a 60 mesh screen and be retained by a 120 mesh screen.
- the resistance of this iron powder as measured in the standard resistance test described above is 640,000 ohms.
- the slurry of iron powder and hydrochloric acid is mixed continuously for 2 minutes at which time the reaction of the acid on the iron powder subsides.
- the acidtreated iron is then rinsed 4 times by decantation with 750 cc.
- the iron is drained and rinsed twice with anhydrous ethanol. Excess alcohol is then removed by filtration using a Biichner funnel for minutes.
- the damp powder is rapidly dried by sprinkling it repeatedly through a current of dry air at a temperature of approximately 30 C. and a relative humidity of less than 30%. The powder is fully dried within about 4 minutes. The yield is 450 grams.
- the acid-treated 10 powder is measured for resistance in the standard resistance test and found to be 0.2 ohm.
- the acid-treated carrier particles are placed in the mechanical magneticbrush apparatus as described in Example 1. The apparatus is run using the treated carrier particles for a period of 15 minutes.
- the two developer compositions are then used to develop an electrostatic latent image carried on an electrophotographic element.
- the developer containing the acid-washed carrier gives good image quality with excellent solid area development both with and without bias on the magnetic brush.
- the control developer gives some image development; however, the solid areas are developed in a very uneven manner.
- hue of the two developed images shows the image formed from the control developer to be less saturated than the image formed from the developer containing the acidwashed carrier.
- the developer containing the acid-treated carrier is then placed in an open 1 liter beaker and held for 3 weeks under average room conditions (about 20 C. and 45% relative humidity). At the end of this period, the developer is measured for resistance and found to be substantially unchanged from the resistance value at the start of the test period.
- the results obtained are substantially the same as those obtained when using a freshly prepared developer composition in accordance with this example.
- EXAMPLE 3 A 5 kilogram quantity of spherical iron particles, of a. size that will pass through a mesh screen and be retained by a 200 mesh screen, is poured into 3 liters of a 1:15 dilution of concentrated nitric acid at 20 C. The mixture is slurried for 2 minutes and then diluted to 10 liters with tap water at about 5 C. The diluted mixture is allowed to settle for about 10 seconds and the supernatant liquid and suspended contaminants are decanted. The initially black iron powder appears silver-gray in color after this acid treatment. The acid-treated iron is then subjected to 5 decantation rinses using tap water at 20 C. whereupon thesurplus water is drained from the iron powder by suction in a Btichner funnel.
- the damp iron powder is spread out to a thickness of about 1 inch in a plastic tray and allowed to dry.
- Four 250 watt infrared bulbs are positioned approximately 50 cm. from the tray to warm the powder during drying.
- the iron is turned over continuously while maintaining an average depth of about 2% cm. As the powder dries, it turns progressively more brown in color.
- the weight of the dry product is 4986 grams.
- the resistance of the material is measured and found to be 2X10 ohms as compared to 2.8 10 ohms for the starting material.
- a hand-held bar magnet is then used to attract the treated carrier material. The amount of carrier material which is picked up by the bar magnet is measured and the magnet is cleaned and repeated again using the starting iron particles.
- the bar magnet will attract 5% by Weight more of the treated carrier material than the untreated material.
- two developer compositions are prepared using the treated carrier and the control carrier. Each developer contains 4% by weight of a black toner powder having an average particle size of 2 microns and comprising a nigrosine colorant in a styrene polymeric binder. The two developer compositions are then used in the mechanical brush apparatus described in Example 1.
- the acid-treated carrier containing developer produces images of good quality with excellent fringe development being obtained.
- a wide exposure latitude is obtained with the developer containing acid-treated carrier.
- the control developer gives only very limited exposure latitude and only slight fringing development.
- iron leaflets having a particle size such that they will pass through a 60 mesh and be retained by an 80 mesh screen is placed into the bottom of a glass tube having an inside diameter of about 3 cm. and about 60 cm. long.
- One liter of trichloroacetic acid solution is pumped upward through the iron in the tube.
- the solution is circulated through the iron powder 4 times in 5 /2 minutes.
- Suspended dirt and other contaminants are trapped in a wool-felt filter before recirculation of the solution.
- the acid is then replaced with cold tap water which is forced upward through the bed of iron powder at a rate sufiicient to remove unwanted small particles of contaminants without carrying away any appreciable amount of the screened carrier material.
- the water flow rate is approximately 1 liter per 100 seconds.
- the wet material is transferred to a suction funnel to remove surplus moisture.
- the top of the funnel is provided with a plastic cap to exclude air and nitrogen is pumped into the cap at a rate sufiicient to prevent collapse of the cap.
- the nearly dried powder is removed and finally dried rapidly by sprinkling it repeatedly through a current of dry air at about C. and a relative humidity of about 40%.
- the resistance of the final product as measured in the standard test as dscribed above is 37 ohms compared to 1200 ohms for the starting material. Equal quantities of the starting material and the acidtreated material are used to prepare developer compositions, each containing 3% by weight of the black toner of Example 1.
- both developers When used to develop electrostatic latent images, both developers give solid area development in a standard magnetic brush apparatus; however, the developer with the acid-treated highly conductive carrier produces substantially better solid area fill-in and is less sensitive to changes in the electrical bias of the magnetic brush than is the control developer.
- EMMPLE 5 A 1600 g. quantity of commercial iron powder in the form of flattened grains (Glidden Iron 412, Glidden- Durkee Div. SCM Corp.) is acid-treated as follows. The
- starting iron powder has a nominal particle size such that it will pass through a 60 mesh screen and be retained by a 120 mesh screen; however, the powder has an extremely large portion (about 15%) of much more finely divided material.
- the starting material is placed on a 120 mesh plastic screen and sprayed with an acid solution comprising 200 cc. of concentrated sulfuric acid and 3 liters of tap water at about 15 C.
- the iron is spread out evenly over an area of about 700 sq. cm. and sprayed uniformly with the acid at a rate of about ml. per second under about 10 pounds pressure through a plastic spray nozzle.
- the force of the spray jet helps to separate small contaminants and force them down through the plastic screen.
- the powder is rinsed with a 0.2% solution of hydrazine sulfate.
- the material After about 10 liters of the rinse solution has been sprayed over the iron, the material is drained, rinsed free of surplus water by spraying with 2 liters of isopropanol and dried in a current of dry air at a temperature of about 32 C. and a relative humidity of about 35%,. The velocity of the air is maintained at a sufficient rate to produce continuous movement of the powder during drying. In addition, further agitation is provided by brushing the iron during the drying step with a small brush. After the iron is completely dry, the air is turned off, but manual brushing action is continued for 3 minutes to assist in sifting out any particles having a size smaller than 120 mesh.
- the resistance of the treated material is measured and found to be 7 ohms as compared to 900 ohms for the starting material.
- the carrier material is mixed with 3% by weight of a yellow, styrene base toner which charges negatively with respect to the iron carrier particles.
- the resulting developer composition is used to develop positively charged electrostatic latent images carried on an electrophotographic element. Excellent solid area development is obtained and the resultant image is of a high quality and has a brilliant yellow hue.
- the control developer is also undesirable in that it is much more sensitive to change in bias potential on the magnetic brush.
- EXAMPLE 6 Two kilograms of iron treated as in Example 1 above are coated with a thin continuous layer of nickel by electroless plating for 30 minutes at about C. in a bath of the following composition:
- the nickel-plated powder is removed from the bath and washed with six changes of cold water, rinsed three times with ethanol, suction filtered and dried at room temperature. The resistance of the dry powder is measured in the standard resistance test and found to be less than /2 ohm.
- the nickel-coated carrier is then used to prepare a developer composition as in Example 1. Electrostatic latent images developed with this developer show excellent solid area fill-in.
- EXAMPLE 7 A 700 g. quantity of a stainless steel iron powder having a particle size such that it will pass through a 200 mesh screen and be retained by a 325 mesh screen is treated with acid in the same manner as in Example 1 using 500 ml. of a 1:19 aqueous solution of sulfuric acid followed by 12 decantation rinses with 1500 ml. quantities of water at 38 C. After the last water rinse, the residual water is drained out by placing the iron in a suspended cotton sack for 15 minutes. The iron is then placed in a shallow glass tray and dried with a current of air at room temperature while keeping the level of the iron at about 1%: cm. depth and turning over the iron every two or three minutes with a hand spatula.
- the iron acquires a gray color.
- the final product is measured in the standard resistance test and found to have a resistance of 10 megohms as compared to 22,000 ohms for the starting material.
- the result carrier is used to prepare a developer composition and used to develop an electrostatic latent image as in Example 1. Good fringing development is obtained using this developer.
- a similar developer composition prepared using the control carrier and the toner of Example 1 gives neither good solid area nor good fringing development.
- EXAMPLE 8 A one kilogram quantity of iron powder as prepared in Example 3 is mixed with 300 ml. of a 7% solution of polyvinylcinnamate light sensitive resin in methyl Cellosolve acetate. The powder is spread out on a glass surface and dried at room temperature. The dried powder is then exposed to a 35 ampere arc lamp for 10 minutes while continuously stirred to insure uniform exposure. This procedure is repeated four times resulting in four distinct resin coatings on each particle. The particles are then measured in the standard resistance test and'found to have a resistance value of greater than about 10 ohms. A developer composition is prepared with this carrier and used to develop an electrostatic latent image as in Example 1. Excellent fringe developed images are obtained over a wide range of exposures.
- a process for preparing a magnetically responsive developer composition for use in developing electrostatic charge patterns comprising the steps of dispersing iron powder in a dilute aqueous mineral acid bath having a concentration of about 1 N to about 3 N, agitating the powder while in the bath, separating the powder from the bath, rinsing the powder with water, drying the wet powder in an oxygen-containing atmosphere at a temperature of from about 45 to about 70 C.
- a thin uniform layer of iron oxide is produced on the surface of the individual particles of iron powder, overcoating each particle of iron powder with at least one thin, uniform layer of an electrically insulating, filmforming polymer to form magnetically responsive carrier particles having average particle sizes from about 1200 to about 40 microns and having an electrical resistance of greater than about 10 ohms and mixing from about 90 to about 99% by weight of the resultant carrier particles with from about 10 to about 1% by weight of an electroscopic toner material having a particle size smaller than that of the carrier particles.
- a process for preparing a magnetically responsive developer composition for use in developing electrostatic charge patterns comprising the steps of dispersing iron powder comprised of particles having an average diameter of from about to 600 microns, in a dilute aqueous mineral acid bath having a concentration of about 1 N to about 3 N, agitating the powder while in the bath, separating the powder from the bath, rinsing the powder with water, drying the wet powder in an oxygen-containing atmosphere at a temperature of from about 45 to about C., whereby a thin, uniform layer of iron oxide is produced on the surface of the individual particles of iron, overcoating each particle of iron with at least one thin, uniform layer of an electrically isulating, film-forming polymer to form magnetically responsive carrier particles having an electrical resistance of greater than about 10 ohms, said polymer being selected from the group consisting of cinnamate resins, cellulose esters, polyesters, polyolefins, polyamides, polycarbonates, formaldehyde condensation products and lower alkylmethacryl
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Developing Agents For Electrophotography (AREA)
- Chemically Coating (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US79996669A | 1969-02-17 | 1969-02-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3632512A true US3632512A (en) | 1972-01-04 |
Family
ID=25177182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US799966A Expired - Lifetime US3632512A (en) | 1969-02-17 | 1969-02-17 | Method of preparing magnetically responsive carrier particles |
Country Status (4)
Country | Link |
---|---|
US (1) | US3632512A (enrdf_load_stackoverflow) |
BE (1) | BE746109A (enrdf_load_stackoverflow) |
FR (1) | FR2037385A5 (enrdf_load_stackoverflow) |
GB (1) | GB1303845A (enrdf_load_stackoverflow) |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3837912A (en) * | 1972-05-22 | 1974-09-24 | Minnesota Mining & Mfg | Environmentally stable iron-based magnetic recording medium |
US3839029A (en) * | 1971-07-08 | 1974-10-01 | Xerox Corp | Electrostatographic development with ferrite developer materials |
US3865627A (en) * | 1972-05-22 | 1975-02-11 | Minnesota Mining & Mfg | Magnetic recording medium incorporating fine acicular iron-based particles |
US3900414A (en) * | 1972-09-28 | 1975-08-19 | Memorex Corp | Electrophotographic developer |
US3914181A (en) * | 1971-07-08 | 1975-10-21 | Xerox Corp | Electrostatographic developer mixtures comprising ferrite carrier beads |
US3922381A (en) * | 1974-06-14 | 1975-11-25 | Addressorgrap Multigraph Corp | Chemically treated carrier particles for use in electrophotographic process |
US3932293A (en) * | 1972-05-22 | 1976-01-13 | Minnesota Mining And Manufacturing Company | Metallic ferromagnetic particles for use in environmentally stable magnetic recording media |
US3945823A (en) * | 1972-11-21 | 1976-03-23 | Xerox Corporation | Electrostatographic reversal development with developer comprising poly(p-xylene)-coated carrier particles |
US3958068A (en) * | 1971-05-27 | 1976-05-18 | Tdk Electronics Company, Limited | Process for the production of powdered magnetic material |
JPS51124434A (en) * | 1975-04-22 | 1976-10-29 | Ricoh Co Ltd | Duplicating method for plural sheets |
US4035520A (en) * | 1972-12-18 | 1977-07-12 | Xerox Corporation | Imaging systems |
US4042517A (en) * | 1972-12-18 | 1977-08-16 | Xerox Corporation | Electrostatographic developer mixture containing a thermoset acrylic resin coated carrier |
US4117866A (en) * | 1973-11-13 | 1978-10-03 | Gerhard Bohm | Hollow body and method of making the same |
US4223085A (en) * | 1976-04-05 | 1980-09-16 | Xerox Corporation | Semi-conductive nickel carrier particles |
US4310611A (en) * | 1979-06-29 | 1982-01-12 | Eastman Kodak Company | Electrographic magnetic carrier particles |
US4342824A (en) * | 1980-05-27 | 1982-08-03 | Imaging Systems Corporation | Developer with coated carrier material and method of making |
US4518674A (en) * | 1977-07-05 | 1985-05-21 | Konishiroku Photo Industry Co., Ltd. | Developing material for electrophotography, process for preparation |
US4554088A (en) * | 1983-05-12 | 1985-11-19 | Advanced Magnetics Inc. | Magnetic particles for use in separations |
US4751164A (en) * | 1985-06-10 | 1988-06-14 | Kanto Denka Kogyo Co., Ltd. | Method of making carrier for use in electrophotographic developers |
US5039587A (en) * | 1988-09-13 | 1991-08-13 | Basf Aktiengesellschaft | Oxide-coated carriers and preparation and use thereof |
US5069216A (en) * | 1986-07-03 | 1991-12-03 | Advanced Magnetics Inc. | Silanized biodegradable super paramagnetic metal oxides as contrast agents for imaging the gastrointestinal tract |
US5096797A (en) * | 1991-01-14 | 1992-03-17 | Eastman Kodak Company | Method for improving performance of barium and strontium ferrite carrier particles with acid wash |
US5219554A (en) * | 1986-07-03 | 1993-06-15 | Advanced Magnetics, Inc. | Hydrated biodegradable superparamagnetic metal oxides |
US5272039A (en) * | 1992-05-04 | 1993-12-21 | Eastman Kodak Company | Preparation of magnetic carrier particles |
US5332638A (en) * | 1993-03-29 | 1994-07-26 | Xerox Corporation | Developer compositions with thermoset polymer coated carrier particles |
US5385800A (en) * | 1993-12-22 | 1995-01-31 | Eastman Kodak Company | Bis and tris N-(carbonyl, carbonimidoyl, carbonothioyl)sulfonamide charge control agents, toners and developers |
US5405727A (en) * | 1993-12-22 | 1995-04-11 | Eastman Kodak Company | N-(carbonyl, carbonimidoyl, carbonothioyl) sulfonamide charge control agents and toners and developers |
US5480757A (en) * | 1994-06-08 | 1996-01-02 | Eastman Kodak Company | Two component electrophotographic developers and preparation method |
EP0690355A1 (en) | 1994-06-08 | 1996-01-03 | Eastman Kodak Company | Humidity-stabilized toners and developers |
EP0718713A1 (en) | 1994-12-21 | 1996-06-26 | Eastman Kodak Company | Quarternary ammonium salts as charge-control agents for toners and developers |
EP0718712A1 (en) | 1994-12-07 | 1996-06-26 | Eastman Kodak Company | Quaternary phosphonium trihalocuprate salts as charge-control agents for toners and developers |
EP0718710A1 (en) | 1994-12-07 | 1996-06-26 | Eastman Kodak Company | Toners and developers containing ammonium trihalozincates as charge-control agents |
EP0720066A1 (en) | 1994-12-21 | 1996-07-03 | Eastman Kodak Company | Toners and developers containing quaternary phosphonium 3,5-di-tertiary-alkyl-4-hydroxybenzenesulfonates as charge-control agents |
US5614346A (en) * | 1994-02-07 | 1997-03-25 | Basf Aktiengesellschaft | Metal oxide- and metal-coated carriers for electrophotography |
US5783346A (en) * | 1996-03-06 | 1998-07-21 | Eastman Kodak Company | Toner compositions including polymer binders with adhesion promoting and charge control monomers |
US5968700A (en) * | 1995-07-28 | 1999-10-19 | Eastman Kodak Company | Toner compositions including crosslinked polymer binders |
US6326118B1 (en) * | 2000-09-05 | 2001-12-04 | Xerox Corporation | Surface alloyed cores for electrostatographic carriers and developers |
US6369136B2 (en) | 1998-12-31 | 2002-04-09 | Eastman Kodak Company | Electrophotographic toner binders containing polyester ionomers |
US20050111891A1 (en) * | 2002-05-30 | 2005-05-26 | Jiann-Hsing Chen | Fuser member with tunable gloss level and methods and apparatus for using the same to fuse toner images |
US20070099103A1 (en) * | 2005-11-01 | 2007-05-03 | Eastman Kodak Company | Sulfone charge control agents for electrostatographic toners |
US20090000610A1 (en) * | 2004-07-14 | 2009-01-01 | Mycoal Products Corporation | Microheater and Process For Producing the Same |
US20090291274A1 (en) * | 2008-05-21 | 2009-11-26 | Dinesh Tyagi | Developer for selective printing of raised information by electrography |
-
1969
- 1969-02-17 US US799966A patent/US3632512A/en not_active Expired - Lifetime
-
1970
- 1970-02-12 GB GB684370A patent/GB1303845A/en not_active Expired
- 1970-02-17 FR FR7005516A patent/FR2037385A5/fr not_active Expired
- 1970-02-17 BE BE746109D patent/BE746109A/xx unknown
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3958068A (en) * | 1971-05-27 | 1976-05-18 | Tdk Electronics Company, Limited | Process for the production of powdered magnetic material |
US3839029A (en) * | 1971-07-08 | 1974-10-01 | Xerox Corp | Electrostatographic development with ferrite developer materials |
US3914181A (en) * | 1971-07-08 | 1975-10-21 | Xerox Corp | Electrostatographic developer mixtures comprising ferrite carrier beads |
US3865627A (en) * | 1972-05-22 | 1975-02-11 | Minnesota Mining & Mfg | Magnetic recording medium incorporating fine acicular iron-based particles |
US3837912A (en) * | 1972-05-22 | 1974-09-24 | Minnesota Mining & Mfg | Environmentally stable iron-based magnetic recording medium |
US3932293A (en) * | 1972-05-22 | 1976-01-13 | Minnesota Mining And Manufacturing Company | Metallic ferromagnetic particles for use in environmentally stable magnetic recording media |
US3900414A (en) * | 1972-09-28 | 1975-08-19 | Memorex Corp | Electrophotographic developer |
US3945823A (en) * | 1972-11-21 | 1976-03-23 | Xerox Corporation | Electrostatographic reversal development with developer comprising poly(p-xylene)-coated carrier particles |
US4035520A (en) * | 1972-12-18 | 1977-07-12 | Xerox Corporation | Imaging systems |
US4042517A (en) * | 1972-12-18 | 1977-08-16 | Xerox Corporation | Electrostatographic developer mixture containing a thermoset acrylic resin coated carrier |
US4117866A (en) * | 1973-11-13 | 1978-10-03 | Gerhard Bohm | Hollow body and method of making the same |
US3922381A (en) * | 1974-06-14 | 1975-11-25 | Addressorgrap Multigraph Corp | Chemically treated carrier particles for use in electrophotographic process |
JPS51124434A (en) * | 1975-04-22 | 1976-10-29 | Ricoh Co Ltd | Duplicating method for plural sheets |
US4223085A (en) * | 1976-04-05 | 1980-09-16 | Xerox Corporation | Semi-conductive nickel carrier particles |
US4518674A (en) * | 1977-07-05 | 1985-05-21 | Konishiroku Photo Industry Co., Ltd. | Developing material for electrophotography, process for preparation |
US4310611A (en) * | 1979-06-29 | 1982-01-12 | Eastman Kodak Company | Electrographic magnetic carrier particles |
US4342824A (en) * | 1980-05-27 | 1982-08-03 | Imaging Systems Corporation | Developer with coated carrier material and method of making |
US4554088A (en) * | 1983-05-12 | 1985-11-19 | Advanced Magnetics Inc. | Magnetic particles for use in separations |
US4751164A (en) * | 1985-06-10 | 1988-06-14 | Kanto Denka Kogyo Co., Ltd. | Method of making carrier for use in electrophotographic developers |
US5069216A (en) * | 1986-07-03 | 1991-12-03 | Advanced Magnetics Inc. | Silanized biodegradable super paramagnetic metal oxides as contrast agents for imaging the gastrointestinal tract |
US5219554A (en) * | 1986-07-03 | 1993-06-15 | Advanced Magnetics, Inc. | Hydrated biodegradable superparamagnetic metal oxides |
US5039587A (en) * | 1988-09-13 | 1991-08-13 | Basf Aktiengesellschaft | Oxide-coated carriers and preparation and use thereof |
US5096797A (en) * | 1991-01-14 | 1992-03-17 | Eastman Kodak Company | Method for improving performance of barium and strontium ferrite carrier particles with acid wash |
US5272039A (en) * | 1992-05-04 | 1993-12-21 | Eastman Kodak Company | Preparation of magnetic carrier particles |
US5332638A (en) * | 1993-03-29 | 1994-07-26 | Xerox Corporation | Developer compositions with thermoset polymer coated carrier particles |
US5405727A (en) * | 1993-12-22 | 1995-04-11 | Eastman Kodak Company | N-(carbonyl, carbonimidoyl, carbonothioyl) sulfonamide charge control agents and toners and developers |
US5523484A (en) * | 1993-12-22 | 1996-06-04 | Eastman Kodak Company | Bis and tris N-(carbonyl, carbonimidoyl, carbonothioyl) sulfonamide charge control agents, toners and developers |
US5385800A (en) * | 1993-12-22 | 1995-01-31 | Eastman Kodak Company | Bis and tris N-(carbonyl, carbonimidoyl, carbonothioyl)sulfonamide charge control agents, toners and developers |
US5616797A (en) * | 1993-12-22 | 1997-04-01 | Eastman Kodak Company | N-(carbonyl, carbonimidoyl, carbonothioyl)sulfonamide charge control agents and toners and developers |
US5614346A (en) * | 1994-02-07 | 1997-03-25 | Basf Aktiengesellschaft | Metal oxide- and metal-coated carriers for electrophotography |
US5480757A (en) * | 1994-06-08 | 1996-01-02 | Eastman Kodak Company | Two component electrophotographic developers and preparation method |
EP0690355A1 (en) | 1994-06-08 | 1996-01-03 | Eastman Kodak Company | Humidity-stabilized toners and developers |
EP0718712A1 (en) | 1994-12-07 | 1996-06-26 | Eastman Kodak Company | Quaternary phosphonium trihalocuprate salts as charge-control agents for toners and developers |
EP0718710A1 (en) | 1994-12-07 | 1996-06-26 | Eastman Kodak Company | Toners and developers containing ammonium trihalozincates as charge-control agents |
EP0718713A1 (en) | 1994-12-21 | 1996-06-26 | Eastman Kodak Company | Quarternary ammonium salts as charge-control agents for toners and developers |
EP0720066A1 (en) | 1994-12-21 | 1996-07-03 | Eastman Kodak Company | Toners and developers containing quaternary phosphonium 3,5-di-tertiary-alkyl-4-hydroxybenzenesulfonates as charge-control agents |
US5968700A (en) * | 1995-07-28 | 1999-10-19 | Eastman Kodak Company | Toner compositions including crosslinked polymer binders |
US5783346A (en) * | 1996-03-06 | 1998-07-21 | Eastman Kodak Company | Toner compositions including polymer binders with adhesion promoting and charge control monomers |
US6369136B2 (en) | 1998-12-31 | 2002-04-09 | Eastman Kodak Company | Electrophotographic toner binders containing polyester ionomers |
US6326118B1 (en) * | 2000-09-05 | 2001-12-04 | Xerox Corporation | Surface alloyed cores for electrostatographic carriers and developers |
US7211362B2 (en) | 2002-05-30 | 2007-05-01 | Eastman Kodak Company | Fuser member with tunable gloss level and methods and apparatus for using the same to fuse toner images |
US20050111891A1 (en) * | 2002-05-30 | 2005-05-26 | Jiann-Hsing Chen | Fuser member with tunable gloss level and methods and apparatus for using the same to fuse toner images |
US20090000610A1 (en) * | 2004-07-14 | 2009-01-01 | Mycoal Products Corporation | Microheater and Process For Producing the Same |
US20070099103A1 (en) * | 2005-11-01 | 2007-05-03 | Eastman Kodak Company | Sulfone charge control agents for electrostatographic toners |
US7541130B2 (en) | 2005-11-01 | 2009-06-02 | Eastman Kodak Company | Sulfone charge control agents for electrostatographic toners |
US20090291274A1 (en) * | 2008-05-21 | 2009-11-26 | Dinesh Tyagi | Developer for selective printing of raised information by electrography |
WO2009142726A1 (en) | 2008-05-21 | 2009-11-26 | Eastman Kodak Company | Developer for selective printing of raised information by electrography |
US8435712B2 (en) | 2008-05-21 | 2013-05-07 | Eastman Kodak Company | Developer for selective printing of raised information by electrography |
Also Published As
Publication number | Publication date |
---|---|
DE2007003A1 (de) | 1970-08-20 |
FR2037385A5 (enrdf_load_stackoverflow) | 1970-12-31 |
BE746109A (fr) | 1970-07-31 |
GB1303845A (enrdf_load_stackoverflow) | 1973-01-24 |
DE2007003B2 (de) | 1975-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3632512A (en) | Method of preparing magnetically responsive carrier particles | |
US3718594A (en) | Method of preparing magnetically responsive carrier particles | |
US2907674A (en) | Process for developing electrostatic image with liquid developer | |
US3345294A (en) | Developer mix for electrostatic printing | |
US4264698A (en) | Developer for electrostatic photography and process for preparation thereof | |
US4518674A (en) | Developing material for electrophotography, process for preparation | |
US3669885A (en) | Electrically insulating carrier particles | |
US4310611A (en) | Electrographic magnetic carrier particles | |
US3838054A (en) | Electrostatic developer composition containing both rough and smooth carrier particles | |
US3796664A (en) | Materials in electrophotographic process | |
DE2104554A1 (de) | Elektrostatographisches Entwicklungs Pulver sowie dessen Verwendung | |
US3155531A (en) | Meagnetic liquid developer and method for electrostatic images | |
US4251616A (en) | Magnetic toners and development process | |
US3104169A (en) | Production of printing blocks, resists, transparencies, prints and the like by electro-deposition | |
US3406063A (en) | Xerographic material containing an inorganic photoconductor and nonpolymeric crystalline organic substances and methods of using of such material | |
US4223085A (en) | Semi-conductive nickel carrier particles | |
DE2730512A1 (de) | Fluessigentwickler fuer elektrostatische ladungsbilder | |
US3654865A (en) | Method for forming dye image using an electrophotographic developer containing a gelatin toner | |
US4378420A (en) | Process for charging toner compositions | |
US4148640A (en) | Developer compositions having electrically conducting filaments in carrier particle matrix | |
US3704124A (en) | Diazo-containing material exhibits an imagewise change in triboelectric charging properties | |
DE2007003C3 (de) | Verfahren zur Herstellung eines pulverförmigen Trägers für einen elektrophotographischen Magnetbürstenentwickler | |
US4072522A (en) | Method of treating photoconductive zinc oxide | |
DE2007005C3 (de) | Pulverförmiger Träger für einen elektrophotographischen Magnetbürstenentwickler | |
US3434834A (en) | Electrophotographic materials and process of producing same |