US3629553A - Recurrent arc heating process - Google Patents

Recurrent arc heating process Download PDF

Info

Publication number
US3629553A
US3629553A US790417A US3629553DA US3629553A US 3629553 A US3629553 A US 3629553A US 790417 A US790417 A US 790417A US 3629553D A US3629553D A US 3629553DA US 3629553 A US3629553 A US 3629553A
Authority
US
United States
Prior art keywords
arc
gas
breakdown
path
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US790417A
Other languages
English (en)
Inventor
Maurice G Fey
Charles B Wolf
Frederick A Azinger Jr
George A Kemeny
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Application granted granted Critical
Publication of US3629553A publication Critical patent/US3629553A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/18Heating by arc discharge
    • H05B7/185Heating gases for arc discharge
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/48Generating plasma using an arc
    • H05H1/50Generating plasma using an arc and using applied magnetic fields, e.g. for focusing or rotating the arc

Definitions

  • Hull ABSTRACT A process for heating gas or fluid which comprises passing the gas or fluid through a gap between electrodes having an arc therebetween at a very high velocity while a system voltage is continuously maintained sufficient to cause breakdown at the gap.
  • the high-velocity gas elongates the arc until the arc voltage required for electrical conduction exceeds the breakdown voltage of the gap whereupon sparkover occurs in the gap, the are being thereafter elongated again by the gas passing through the gap until the voltage required to sustain arcing exceeds the breakdown voltage of the gap, the cycle of gap breakdown and elongation being repeated over and over again.
  • the greatlyextended arc provides for more efficient heating of the gas, better mixing and a more uniform temperature to which the gas is heated.
  • Our process may be practiced with direct current; where alternating current is employed, the periodic current zeros insure that the arc will be returned to the gap at least once each alternation.
  • the highvelocity gas keeps the gap free of ionized material thereby maintaining integrity of electrical insulation and maintaining the gap breakdown voltage at a high value.
  • FIG. I is a cross-sectional view through means forming an enclosed arcing zone suitable for practicing the process of our invention.
  • FIG. 2 is a crosssectional view through additional means forming an enclosed arcing zone suited for practicing the process of our invention wherein the width of the electrical breakdown path may be adjusted;
  • FIG. 3 is an electrical circuit diagram of the circuit supplying an are by which our inventive process is practiced by alternating current;
  • FIG. 3A is a fragmentary circuit diagram where our process is practiced with direct current
  • FIGS. 4A and 4B are oscillograms showing sample instantaneous arc voltage in a test run employing the process of our invention, the time base of both FIGS. 4A and 48 being 200 microseconds per division;
  • FIG. 5 is a view of means for automatically adjusting the width of the electrical breakdown path in accordance with a control system of our invention which utilizes the diflerence between the pressure in the area enclosing the arc zone and the pressure of the gas before it enters the arc zone to adjust the width of said breakdown path;
  • FIG. 6 is a view of a system for automatically adjusting the current in field coils which supply magnetic fields to rotate the arc within the arcing zone, it having been found that within limits the breakdown or sparkover voltage in the gap and resultant average arc voltage are functions of magnetic field strength, and that enthalpy-sensitive means measuring the temperature rise in the heated gas may be employed to automatically adjust the magnetic field current to maintain the desired arc voltage and thereby maintain optimum enthalpy of the heated gas; and
  • FIG. 7 is a graph further assisting in illustrating the processes described in connection with FIGS. 1, 2, 3, 4A and 48.
  • arc heater is essential to practicing the processes of our invention.
  • the term arc heater is employed throughout the specification and claims merely as a matter of convenience and not in a limiting sense.
  • Essential to practicing the processes of our invention are an electrical breakdown path; the gas or fluid to be heated is forced through the path at a very high velocity elongating the arc formed therein; the system voltage is maintained at a value which will cause breakdown in the breakdown path when the arc has been extended to such a length that the arc voltage exceeds the breakdown voltage; the gas to be heated is channeled through the zone of the elongated are.
  • reference numeral 11 generally designates an enclosed area herein called an arc chamber defined in part by two annular axially spaced electrodes 12 and 13 having an axial gap 14 therebetween.
  • Arc I5 is seen extending between electrodes and it is seen that each of the electrodes is fluid controlled as by passageways 16 and I7 and that each of the electrodes has a magnetic field coil therein, these being designated 18 and 19 and setting up a magnetic field transverse to the arc path while in the gap which causes the arc 15 to rotate substantially continuously around the electrodes.
  • the aforementioned passageway in electrode 12 for cooling fluid 16 is seen to communicate at the ends thereof with fluid headers 20 and 21 and the aforementioned cooling passageway 17 in electrode 13 is seen to communicate at the ends thereof with fluid headers 22 and 23.
  • the arc chamber 11 is seen to be bounded or defined in part by a heat shield generally designated 25 with a passageway 26 between the outside wall of the heat shield and the inside wall of the electrode communicating with a fluid header 27 so that gas may be injected in an annular path between the heat shield and the electrode.
  • This supplemental means for injecting gas into the arc chamber may or may not be used where the process of our invention is employed, and may be dispensed with if desired.
  • the upstream end of the chamber is seen to be closed by a plug 29, and additionally gas or fluid may be injected between the plug and the adjacent wall of the heat shield 25 in an annular path from gas header 31. Furthermore, it will be understoodthat in practicing the processes of our invention gas may or may not be injected through this last-mentioned passageway, which may be omitted if desired.
  • a downstream heat shield generally designated 33 with means which may or may not be employed in the process of our invention for injecting gas from header 34 in an annular path between heat shield 33 and electrode 13.
  • a nozzle generally designated 36 completes the structure with means which may or may not be employed if desired for injecting gas in an annular path between nozzle 36 and heat shield 33 from gas header 37. Fluid injection or other gases or solids at these locations may be used for the purpose of quenching nonequilibrium chemical reactions.
  • an arc chamber wall 39 which may be composed of insulating material, and it is seen that there are gas headers 41 and 42 at the upstream and downstream ends of the chamber wall 39 for admitting gas into the space 43 from whence it flows through the gap 14 into the arc chamber 11.
  • energizing the magnetic field coils 18 and 19 causes the are to rotate in an annular path around the electrodes, and the arc is elongated by aerodynamic forces of the high-velocity gas entering through space 14 to a position indicated by the path 15a and may travel down the sides of the electrodes 12 and 13.
  • the arc path 150 represents an elongation of the arc to a position whereat the arc voltage equals the breakdown voltage of gap 14 whereupon the gap breaks down and the arc is again initiated in the gap at path 15 and is immediately blown by the highvelocity gas toward the center of the arc chamber.
  • FIGS. 4A and 4B show oscillograms of the arc voltage in methane gas. It is seen from FIG. 4A that the are, after being ignited in the short gap, is extended to a length where the arc voltage becomes approximately 2,000 volts whereupon a sparkover occurs at the minimum gap, the sparkover being designated by the point m. It will be understood that the arc is extremely dynamic and that when it is moved by the high-velocity gas it may on occasion follow different paths, one of these paths being indicated by the path 15b of FIG. 1.
  • the breakdown voltage of the gap may be normally 2,000 volts, it will be understood that the actual breakdown at the gap is statistical and that the breakdown voltage may be at 1,200 volts, 1,500 volts or l,800 volts, and that the breakdown is very irregular. A breakdown at less than 2,000 volts is indicated by the point n" on the curve of FIG. 4a.
  • the breakdown factor may be altered by changing the electrode shape.
  • Another factor affecting the breakdown voltage of the gap is that the high-velocity gas entering through the narrow gap between electrodes may induce hot gases to recirculate back into the gap area and sparkover may not occur at the minimum gap but between some points near the minimum gap, and hence the breakdown occurs at a lower voltage than the normal breakdown voltage.
  • the arc may become so extended by the pressure of gas passing through the gap 14 at very high velocities that the arc is twisted in a spiral path and may short out a portion of itself so that the actual arc voltage returns to a value considerably higher than the sparkover voltage, such a condition being indicated by the point 0" of the graph of FIG. 4A.
  • a breakdown of the gap at a voltage less than the normal voltage appears to take place at point p; a breakdown of the gap after the arc has been elongated to where the arc voltage is 2,000 volts appears to take place at point q of FIG.
  • point r may represent a shorting out of a portion of the are by the arc itself as may point s
  • point t may represent a breakdown at the gap due to the increased conductivity of photons and point u" may result from the arc shorting out itself as it follows a twisted path as it is elongated by gas blasting through the arc gap.
  • Electrodes generally designated 12' and 13' have a gap 14 therebetween with are following paths, which are exemplary, at 15 and 15'', the field coils being designated 18 and 19' respectively.
  • Electrode 13 is connected by way of lead 55 to one terminal of a ballast reactor 50 which is connected by way of lead 47 and circuit breaker contacts 49 to one terminal 52 of an altematingcurrent generator of for example 2,300 volts AC having the other tenninal 51 thereof connected by way of circuit breaker contacts 48 and lead 46 to the aforementioned electrode 12'.
  • the aforementioned system voltage is that between leads 46 and 47.
  • the are heater of FIG. 3 is also seen to include a closure plug generally designated 29'.
  • FIG. 3A is a fragmentary circuit diagram where our process is practiced with direct current. Ballast reactor 50 is replaced by resistor 56, and terminals 51' and 52' are connected to a direct current source.
  • Electrodes 12" and 13" are seen to have annular flange portions 62 and 63 having secured thereto peripherally spaced tubes or rods which are internally threaded, two of these rods or tubes being shown at 64 and 65, and two of these tubes or rods being shown at 66 and 67; extending into the aforementioned tubes or rods 64 to 67 inclusive are threaded members 68 to 71 inclusive which in turn extend into opposite ends of two tubes or rods 73 and 74 which have secured thereto for rotation therewith the pinions 76 and 77 respectively.
  • annular gear wheel 79 Extending around the entire structure and meshing with the gears 76 and 77 is an annular gear wheel generally designated 79 which when turned in a counterclockwise direction causes the distance of the gap to change in one direction and when turned in a clockwise direction causes the gap distance to change in the other direction.
  • peripherally spaced springs 81 and 82 seated in bores 83 and 84 in members 85 and 86 slidably disposed with respect to members 87 and 88, which may be one member extending around the entire arc chamber, the peripherally spaced springs including springs 81 and 82 tending to maintain the gap between electrodes 12' and 13' at the maximum length permitted by the position of the aforementioned gears 66 and 67 and the threaded members 68, 69, 70 and 71.
  • the aforementioned gear wheel 70 may be driven by a motor, not
  • a motor may be located at the plug end of the arc heater and secured thereto with extended gearing from the motor meshing with the aforementioned gear wheel 79.
  • the gas headers 91 and 92 bring gas to the space 93 where it is forced at very high velocity through the gap 14" between the electrodes.
  • a typical elongated arc path as it might represent elongation of the arc when it had reached an arc voltage substantially equal to he breakdown voltage of the gap 14" is shown by the arc path c.
  • FIG. 5 a system for antomatically regulating the width of the gap in accordance with the difference in pressure between that inside the arc heater and that in the passageway on the outside of the gap through which as aforementioned the gas is blasted at very high speed.
  • the electrodes are shown diagrammatically at 95 and 96, the arc path being exemplified at 115; members 98 and 99 slidable with respect to each other represent means for permitting the gap length to be varied while maintaining gastight the space 100. It will be understood that at least one end of the space 100 there is a gas header, not shown for convenience of illustration, from which gas passes through the gap between electrodes at very high velocity.
  • Means for sensing the pressure in the area enclosing the arc zone is designated 101, and may be of any convenient type, and supplies a signal by lead or leads 102 to a differential pressure control, shown in block form at 103, supplying an output to a motor 104.
  • An additional sensor 106 is located within the aforementioned space 100 and supplies a signal by way of lead or leads 107 to differential pressure control block 103 so that at all times a signal corresponding to the pressure in space 100 and another signal corresponding to the pressure in the enclosed area or arc heater, are supplied to the control circuit 103.
  • the block 103 contains a power source for motor 104, or has supplied therethrough power for motor 104.
  • the aforementioned motor 104 is reversible and has a driven gear 109 meshing with gear 110 secured to a threaded member 111 which passes through threaded studs 112 and 113 attached respectively to the aforementioned annular members 98 and 99, which members it is understood are secured to the electrodes 95 and 96 so that rotation of the hear 109 in one direction causes the gap to be shortened, whereas rotation of the gear 109 in the other direction causes the gap between electrodes to be lengthened. It will be understood that such regulation of the gap length is desirable to insure that the are illustrated at 115 is successively elongated to a value at which the arc voltage exceeds the breakdown voltage of the electrode gap. Electrodes 95 and 96 may have magnetic field coils therein, not shown for convenience of illustration.
  • the electrodes are shown symbolically at 117 and 118 having outwardly extending flange portions 119 and 120 respectively with an annular insulating member 121 spacing the flange portions a predetermined distance from each other and thereby providing a gap length of predetermined distance between the annular electrodes.
  • Spacer member 121 is composed of insulating material, and defines a space 122 through which it is understood gas is brought to the gap from one or more gas headers, not shown for convenience of illustration, and passed at high velocity through the short gap between electrodes from outside the electrodes toward the inside of the arc chamber.
  • Leads 123 and 124 connect the electrodes across the source of potential.
  • the electrode 120 is shown as also enclosing the upstream end of the arc chamber 125 in which the are 126 takes place.
  • a sensing device 128 which may sense changes in the enthalpy of the gas heated in arc chamber 125.
  • sensing device 128 may be a water-cooled calorimetric probe in which the temperature rise of fluid passing through the probe is measured, this temperature rise being a function of the enthalpy of the gas.
  • Probe 128 supplies a signal by lead 129 to process control apparatus shown in block form at 130 which supplies control signals by lead or leads 131 to field coil power supply 132 shown in block form.
  • the power to field coils 135 and 136 in electrodes 117 and 118 respectively is conducted by lead means 137 extending from the field coil power supply 132 to the respective field coils. Whereas only one lead 137 is shown for simplicity of illustration and to indicate the control function of the field coil power supply it will be understood that two leads may extend from each field coil to the field coil power supply 132 to provide a complete electrical circuit.
  • Both of the systems of FIG. 5 and FIG. 6 permit in effect a self-regulating process in which the parameters of gap length and magnetic field strength are automatically adjusted to maintain optimum conditions for maximum heating of the gas blasted into the arc chamber through the short gap, and also for the most uniform heating of all portions of the gas to the same temperature.
  • Electrodes configurations other than the axially spaced annular electrodes selected for purposes of illustration, may be employed in practicing the method of our invention.
  • the process of our invention may be practiced with a pair of coaxially aligned radially spaced electrodes providing an annular breakdown path in which the are before elongation extends radially between electrodes, such an electrode configuration being described an claimed in the copending application of A. M. Bruning et al. for Cross Flow Arc Heater Apparatus and Process for the Synthesis of Carbon, Acetylene, and Other Gases, Ser. No. 507,345, filed Nov. 12, 1965, and assigned to the assignee of the instant invention.
  • the process of our invention may be practiced employing a three-phase alternating-current source in which axially spaced heat shield rings serve as electrodes, such a configuration being described and claimed in Us. Pat. No. 3,309,550 issued Mar. l4, 1967 to C. H. Wolf et al. for Multiple Annular Electrode Gas Arc Heater With A Magnetic Arc Spinner,” and assigned to the assignee of the instant invention.
  • our process includes the steps of forcing a gas to be heated through a relatively short gap between a pair of electrodes while maintaining a system voltage at all times sufficient to cause breakdown of the gap between electrodes, the very high-velocity gas causing periodic elongation of the arc to a length whereat the arc voltage exceeds the gap breakdown voltage whereupon the gap breaks down and the process of arc elongation is periodically repeated, this periodic breakdown and elongation usually occurring many times per alternation of the alternating current supplying the arc as illustrated in FIGS. 4A and 4B are at least once following current zero of the alternating current, and our process because of increased turbulence resulting from rapid power fluctuations provides for more efficient heating of the gas, better mixing and more uniform temperature to which the gas is heated.
  • the surface area of the electrodes contacted by the arc roots is greatly increasedwith a corresponding reduction in erosion, providing an increase in total electrode life.
  • Our process may employ either alternating current or direct current to produce the arc.
  • direct current operation pressure perturbations rather than periodic reversals in the direction of arc rotation produce gas stirring at mixing.
  • Process for heating gas which comprises passing gas through a breakdown path of predetermined width between two elements composed of nonferromagnetic material at opposite polarities with respect to each other while maintaining a system voltage substantially continuously between elements sufficiently high to cause breakdown in the path and initiate an arc therein, the gas passing through the path at a velocity sufficient to cause repetitive removal of the are from the breakdown path and repetitive elongation of the arc to a length where the arc voltage equals the sparkover voltage of the path and the arc is reinitiated in the path, generating a magnetic field which extends through the breakdown path and the portions of said two elements adjacent thereto for exerting a force on the are which causes the points of arc attachment on the two elements to move substantially continuously both while the arc is in the breakdown path and while said arc is elongated from the breakdown path, and channeling the gas to be heated through the zone occupied by the elongated arc to increase the heat imparted to the gas by the arc.
  • An improved process for heating a gas which comprises the steps of forming an annular electrical breakdown path between two elements composed of nonferromagnetic material and at opposite polarity with respect to each other, maintaining across said elements a substantially continuous system voltage sufficient to cause breakdown between elements at a point in said annular path, the breakdown between elements causing an arc to form, passing gas to be heated at high velocity through said path at least a plurality of peripherally spaced positions, the high-velocity gas causing the arc to be removed from the breakdown path and to become elongated, generating a magnetic field which extends through the breakdown path and the portions of the two elements adjacent thereto for exerting a force on the arc which causes the points of arc attachment on the two elements to move substantially continuously both while the arc is in the breakdown path and while said are is elongated from the breakdown path, causing the elongated arc to move substantially continuously in a path which deviates from the circular primarily because of dynamic fluctuations in the arc and changes in the arc length, channeling the gas to be
  • a process according to claim 2 further characterized in that are elongations occur in an at least partially confined area and the pressure pulsations caused by perturbations in the are power as the arc is periodically elongated provide improved mixing of that portion of the gas at lower temperature channeled through the periodically elongated arc with that portion of the gas at higher temperature channeled through the elongated arc thereby providing a more uniform temperature for the heated gas.
  • Improved process for heating gas which comprises passing gas at a predetermined high velocity through a breakdown path of predetermined width between two elements operatively connected to terminals of opposite polarity of a source of alternating current while maintaining during at least a substantial portion of each alternation of the alternating current a system voltage sufficiently high to cause breakdown in the path and initiate an arc therein, the high-velocity gas passing through the breakdown path at so great a velocity that removal of the arc from the breakdown path and elongation of the arc followed by breakdown in the path occurs at least a plurality of times per alternation of the alternating current, and channeling the gas to be heated through the zone occupied by the elongated arc to increase the heat imparted to the gas by the arc 10.
  • the process according to claim 9 including the additional step which includes creating a magnetic field which causes the elongated arc to move substantially continuously thereby substantially increasing the size of the zone of arc elongation and increasing the heat imparted to the gas by the arc.
  • the method of heating a gas which comprises producing an are between a pair of closely spaced annular electrodes composed of nonferromagnetic material and forming a chamber in which said are may be elongated, maintaining a voltage between said pair of electrodes at substantially all times sufficient to breakdown the gap at the narrowest portion thereof, passing gas through said gap from the outside thereof toward the inside of the chamber continuously at a very high velocity, generating a magnetic field which extends through said gap and portions of the electrodes adjacent the gap for exerting a force on the are which causes the points of are attachment on the electrodes to move substantially continuously both while the arc is in the gap and while said arc is elongated from the gap, the gas elongating the are within the chamber to such a length that the voltage required to sustain the arc exceeds the breakdown voltage of the gap whereupon sparkover occurs in the gap, the are being thereafter elongated again by the gas passing through the gap until the voltage required to sustain arcing exceeds the breakdown voltage of the gap, the cycle of breakdown and elongation being

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Discharge Heating (AREA)
  • Circuit Breakers (AREA)
US790417A 1969-01-10 1969-01-10 Recurrent arc heating process Expired - Lifetime US3629553A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US79041769A 1969-01-10 1969-01-10

Publications (1)

Publication Number Publication Date
US3629553A true US3629553A (en) 1971-12-21

Family

ID=25150614

Family Applications (1)

Application Number Title Priority Date Filing Date
US790417A Expired - Lifetime US3629553A (en) 1969-01-10 1969-01-10 Recurrent arc heating process

Country Status (4)

Country Link
US (1) US3629553A (de)
JP (1) JPS4823578B1 (de)
DE (1) DE2000869C3 (de)
GB (1) GB1288610A (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3689740A (en) * 1971-04-29 1972-09-05 Westinghouse Electric Corp Arc heater apparatus employing fluid-cooled electrodes having permanent magnets to drive the arc therefrom
US3806698A (en) * 1971-10-29 1974-04-23 British Titan Ltd Operation of a heating device
US3832519A (en) * 1972-08-11 1974-08-27 Westinghouse Electric Corp Arc heater with integral fluid and electrical ducting and quick disconnect facility
US3891828A (en) * 1973-10-18 1975-06-24 Westinghouse Electric Corp Graphite-lined inert gas arc heater
US4219726A (en) * 1979-03-29 1980-08-26 Westinghouse Electric Corp. Arc heater construction with total alternating current usage
DE3245826A1 (de) * 1981-12-10 1983-06-16 Tioxide Group Plc, London Elektrische entladungsanordnung
EP2736669A1 (de) * 2011-07-29 2014-06-04 Oaks Plasma, LLC Selbstzündende lange lichtbogenplasmabrenner
EP2926361A4 (de) * 2012-08-27 2016-08-24 Jh Quantum Technology Inc System und verfahren zur plasmaerzeugung
EP3383145A1 (de) * 2017-03-30 2018-10-03 Arianegroup Sas Plasmalampe

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3705975A (en) * 1970-03-02 1972-12-12 Westinghouse Electric Corp Self-stabilizing arc heater apparatus
US4631168A (en) * 1983-09-30 1986-12-23 Westinghouse Electric Corp. Nuclear reactor fuel assembly with a removable top nozzle
SE461761B (sv) * 1988-05-03 1990-03-19 Fiz Tekh Inst Ioffe Elektrisk ljusbaaganordning

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3258508A (en) * 1964-06-01 1966-06-28 Fleur Corp Heat transfer process
US3309550A (en) * 1964-03-06 1967-03-14 Westinghouse Electric Corp Multiple annular electrode gas arc heater with a magnetic arc spinner
US3445191A (en) * 1965-07-14 1969-05-20 Westinghouse Electric Corp Arc heater apparatus for chemical processing
US3461190A (en) * 1964-08-20 1969-08-12 Westinghouse Electric Corp Method of and apparatus for establishing and maintaining an atmosphere controlled as to pressure,temperature,gas content and rate of gas flow,and closed and semi-closed arc heater loop apparatus for use therein
US3522015A (en) * 1966-01-15 1970-07-28 Westinghouse Electric Corp Direct conversion chemical processing arc heater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3309550A (en) * 1964-03-06 1967-03-14 Westinghouse Electric Corp Multiple annular electrode gas arc heater with a magnetic arc spinner
US3343019A (en) * 1964-03-06 1967-09-19 Westinghouse Electric Corp High temperature gas arc heater with liquid cooled electrodes and liquid cooled chamber walls
US3258508A (en) * 1964-06-01 1966-06-28 Fleur Corp Heat transfer process
US3461190A (en) * 1964-08-20 1969-08-12 Westinghouse Electric Corp Method of and apparatus for establishing and maintaining an atmosphere controlled as to pressure,temperature,gas content and rate of gas flow,and closed and semi-closed arc heater loop apparatus for use therein
US3445191A (en) * 1965-07-14 1969-05-20 Westinghouse Electric Corp Arc heater apparatus for chemical processing
US3522015A (en) * 1966-01-15 1970-07-28 Westinghouse Electric Corp Direct conversion chemical processing arc heater

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Technical Documentary Report No. RTD-TDR-63-4055, Development of High Enthalpy, High Power Arc Air Heaters, Sarlitto et al, Air Force System Command, Wright-Patterson Air Force Base, Ohio, February 1964, pp. 72 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3689740A (en) * 1971-04-29 1972-09-05 Westinghouse Electric Corp Arc heater apparatus employing fluid-cooled electrodes having permanent magnets to drive the arc therefrom
US3806698A (en) * 1971-10-29 1974-04-23 British Titan Ltd Operation of a heating device
US3832519A (en) * 1972-08-11 1974-08-27 Westinghouse Electric Corp Arc heater with integral fluid and electrical ducting and quick disconnect facility
US3891828A (en) * 1973-10-18 1975-06-24 Westinghouse Electric Corp Graphite-lined inert gas arc heater
US4219726A (en) * 1979-03-29 1980-08-26 Westinghouse Electric Corp. Arc heater construction with total alternating current usage
DE3245826A1 (de) * 1981-12-10 1983-06-16 Tioxide Group Plc, London Elektrische entladungsanordnung
EP2736669A1 (de) * 2011-07-29 2014-06-04 Oaks Plasma, LLC Selbstzündende lange lichtbogenplasmabrenner
EP2736669A4 (de) * 2011-07-29 2015-04-01 Oaks Plasma Llc Selbstzündende lange lichtbogenplasmabrenner
EP2926361A4 (de) * 2012-08-27 2016-08-24 Jh Quantum Technology Inc System und verfahren zur plasmaerzeugung
EP3383145A1 (de) * 2017-03-30 2018-10-03 Arianegroup Sas Plasmalampe
FR3064876A1 (fr) * 2017-03-30 2018-10-05 Airbus Safran Launchers Sas Torche a plasma

Also Published As

Publication number Publication date
DE2000869B2 (de) 1978-10-19
GB1288610A (de) 1972-09-13
JPS4823578B1 (de) 1973-07-14
DE2000869C3 (de) 1979-06-21
DE2000869A1 (de) 1970-07-23

Similar Documents

Publication Publication Date Title
US3629553A (en) Recurrent arc heating process
Kalra et al. Gliding arc discharges as a source of intermediate plasma for methane partial oxidation
EP0350905B1 (de) Ozonerzeuger mit konzentrischen Rohren
KR900008075B1 (ko) 전기적 가스 가열장치
US2919370A (en) Electrodeless plasma torch and method
US3360682A (en) Apparatus and method for generating high-enthalpy plasma under high-pressure conditions
US3663792A (en) Apparatus and method of increasing arc voltage and gas enthalpy in a self-stabilizing arc heater
US3522015A (en) Direct conversion chemical processing arc heater
GB2273027A (en) Electrode arrangement in a microwave plasma generator
US2964678A (en) Arc plasma generator
US4013867A (en) Polyphase arc heater system
US3586905A (en) Plasma arc heating apparatus
US3777112A (en) Recurrent arc heating process
US3140421A (en) Multiphase thermal arc jet
US3746830A (en) Recurrent arc heating system
US3407281A (en) Plasma producing apparatus
Klementyeva et al. Experimental study of electrical discharges in gas flows under external magnetic field
US3201560A (en) Electric-arc heater
US3541379A (en) Method for initiating gaseous plasmas
US3474279A (en) Coaxial arc heater with variable arc length
US4159425A (en) Corona reaction system
Rutberg et al. Strong-current arc discharges of alternating current
US3229155A (en) Electric arc device for heating gases
US3304774A (en) Electric arc torch
US4179617A (en) Ion-nitriding apparatus