US3629533A - Arc-quenching chamber - Google Patents
Arc-quenching chamber Download PDFInfo
- Publication number
- US3629533A US3629533A US10722A US3629533DA US3629533A US 3629533 A US3629533 A US 3629533A US 10722 A US10722 A US 10722A US 3629533D A US3629533D A US 3629533DA US 3629533 A US3629533 A US 3629533A
- Authority
- US
- United States
- Prior art keywords
- plates
- arc
- chamber
- airgap
- helix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010791 quenching Methods 0.000 title claims abstract description 14
- 238000010891 electric arc Methods 0.000 claims abstract description 6
- 239000002184 metal Substances 0.000 description 8
- 210000003739 neck Anatomy 0.000 description 6
- 230000005291 magnetic effect Effects 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 2
- 239000003302 ferromagnetic material Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H9/00—Details of switching devices, not covered by groups H01H1/00 - H01H7/00
- H01H9/30—Means for extinguishing or preventing arc between current-carrying parts
- H01H9/34—Stationary parts for restricting or subdividing the arc, e.g. barrier plate
- H01H9/36—Metal parts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H9/00—Details of switching devices, not covered by groups H01H1/00 - H01H7/00
- H01H9/30—Means for extinguishing or preventing arc between current-carrying parts
- H01H9/34—Stationary parts for restricting or subdividing the arc, e.g. barrier plate
- H01H9/36—Metal parts
- H01H2009/365—Metal parts using U-shaped plates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H9/00—Details of switching devices, not covered by groups H01H1/00 - H01H7/00
- H01H9/30—Means for extinguishing or preventing arc between current-carrying parts
- H01H9/34—Stationary parts for restricting or subdividing the arc, e.g. barrier plate
- H01H9/36—Metal parts
- H01H2009/367—Metal parts defining a recurrent path, e.g. the subdivided arc is moved in a closed path between each pair of splitter plates
Definitions
- an arc-quenching chamber comprising at de-ion grid composed of spaced plates joined at one end with two straight portions and two helically bent portions lying in parallel planes; forming an airgap between the initial and end ot'the bent portions, through which any base point of a minor electric arc passes, the airgap being maintained at a minimum.
- the present invention relates to electric switching devices, and more specifically to the arc-quenching chambers of such devices, comprising metal de-ion plates.
- arc-quenching chambers incorporating spaced metal plates which make up a de-ion grid, wherein the plates are joined at a neck which extends into two straight portions lying in parallel planes.
- a specific object of the invention is to produce an arcquenching chamber of reduced size, reduced wear on the plates and shields of the chamber, with eliminated flashover across the arc-splitting plates of the de-ion grid, and simplified design owing to the changed shape of the metal plates.
- an arc-quenching chamber comprising a de-ion grid composed of a pair of spaced plates joined at one end to form a neck which extends into two straight portions lying in parallel planes, the straight portions of the plates, according to the invention, extending or curving at their free ends along a helix within the parallel planes, so that the airgap between the start and finish of the bent portion of the plate, through which the base point of the minor arc passes, is kept to minimum.
- the ends of the plates may be bent along a helix either in the same or opposite directions.
- the design of the arc-quenching chamber disclosed herein provides for a more reliable and longer operation of the chamber over a wide range of switched currents as compared with-existing chambers of this type. It is simple to fabricate and compact in layout.
- the reliable and long operation of the chamber is secured by the fact that the arc is caused repeatedly to circulate in the closed space of the chamber, so that the size of the chamber is reduced, electric wear and expulsion of flame from the chamber are cut down, and arc flashover is eliminated.
- the chamber disclosed herein may be used in DC and AC circuit breakers. It may also be successfully employed in contactors and other switching devices.
- FIG. I shows an arc-quenching chamber, fully assembled, according to the invention
- FIG. 2 shows a metal plate with the ends lying in parallel planes, bent in the same direction, according to the invention
- FIG. 3 shows the side elevation of the plate of FIG. 2, according to the invention
- FIG. 4 shows the current loops in a de-ion grid consisting of the plates of FIG. 2, according to the invention
- FIG. 5 shows a metal plate with portions bent along a helix, according to the invention
- FIG. 6 shows the current loops in a de-ion grid consisting of the plates of FIG. 5, according to the invention
- FIG. 7 shows a metal plate with the ends lying in parallel planes 4, bent along a helix in opposite direction, according to the invention
- FIG. 8 shows the current loops in a de-ion grid consisting of the plates of FIG. 7, according to the invention
- FIG. 9 shows a metal plate with the airgap offset relative to the airgap in the plate of FIG. 2, according to the invention.
- FIG. 10 shows the side elevation of a de-ion grid consisting of the alternating plates of FIGS. 2 and 9, according to the invention
- FIG. II shows a cross-sectional view through a de-ion grid with offset airgaps between the plates and the minor arcs in the grid, according to the invention
- FIG. 12 shows the side elevation of a metal plate fabricated from two separate elements by welding or any other method, according to the invention.
- an arcquenching chamber comprising a de-ion grid composed of spaced de-ion plates I joined at one end with straight portions 2 and 3, bent portions 4 and 5 lying in parallel planes, and insulating barriers 6 placed between the portions 4 and 5 of the plates 1.
- the plates 1 and the barriers 6 are fastened in the walls (shields) 7 of the chamber.
- FIG. 1 shows only two plates, the remaining plates being fabricated in a similar manner.
- the drawing also omits mounting hardware and some structural elements, since they are of no fundamental importance.
- the straight portions 2 and 3 are joined together by current-conducting necks 8 to form a generally V-shaped or U-shaped juncture, the straight portions extend into the portions 4 and 5 which are curved along a helix or circle and which lie in the same plane respectively with the portions 2 and 3.
- the airgap 9, as is shown in FIG. 1, between the start and finish of the bent portion 4, 5 is maintained at a minimum.
- the portions 2 and 3 have a dove-tail 10 in the lower part.
- the plates 1 should preferably be fabricated from a ferromagnetic material.
- the electric arc establishes base points in the airgaps between the surface 2 and 3 and is thus split into smaller arcs 11 (FIG. 4).
- the plates fabricated from a ferromagnetic material as described above facilitate the passage of the minor arcs across the gaps 9 and the formation of base points at the entrance of the arc to the grid.
- FIG. 5 shows the plates 1 with the portions 4 and 5 bent along a helix so that the start and finish of these portion overlap.
- FIG. 6 shows the current loop in the arcs II and in the plates of FIG. 5, where the arrows show the current paths.
- the magnetic field near the gaps 9 is augmented, which fact speeds up the transfer of the base points of the arc across them and minimizes the fusion of the plate surfaces.
- FIG. 7 shows the plates 1 with the portions 4 and 5 bent in opposite directions and lying in parallel planes.
- the currents in the portions 4 and 5 are in the same direction, as shown in FIG. 8, which fact augments the own magnetic field of the loop and, as a consequence, enhances the quenching of the arc.
- the airgaps 9 in the plates 1, fabricated as shown in FIG. 2, may be offset relative to the vertical axis l-I (FIG. 9).
- a de-ion grid (FIG. 10) composed of alternating plates 1 of FIGS. 2 and 9, the airgaps 9 are offset relative to one another.
- the base points of the minor arcs 11 (FIG. 11) are now offset relative to one another as they approach the gaps 9 owing to the fact that the latter are offset too.
- the offset between the adjacent gaps 9 in the slot of each minor arc produces a pi-shaped current loop with a peaked top, which fact augments the own magnetic field and minimizes the fusion of the plate surfaces.
- spaced plates 1 (FIG. 12) from two separate elements 12 and 13, each of which may be fabricated as shown in FIGS. 2, 5, and 9.
- the elements 12 and 13 may be joined together at the neck 8 by welding or any other method securing electric conduction through the neck.
- the plates 1 fabricated from two separate elements are more convenient to manufacture, since this eliminates the use of dies and punches and cuts down the waste of the source material.
- An electric arc-quenching chamber comprising, a de-ion grid formed of a pair of generally parallel plates, said plates being joined at one end so as to provide a closed neck portion, the free ends of said plates extending into a helix portion within said parallel planes, an airgap being formed between said parallel plates whereby a minor electric arc establishes base points in said airgap between said plates, and a further airgap being formed between the initial and end points of the portions through which the arc base points pass are offset relative to each other in said grid.
- a chamber as claimed in claim 2 wherein the airgaps formed between the initial and end points of each of said helix portions through which the arc base points pass are offset relative to each other in said grid.
Landscapes
- Arc-Extinguishing Devices That Are Switches (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US1072270A | 1970-02-12 | 1970-02-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3629533A true US3629533A (en) | 1971-12-21 |
Family
ID=21747082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10722A Expired - Lifetime US3629533A (en) | 1970-02-12 | 1970-02-12 | Arc-quenching chamber |
Country Status (3)
Country | Link |
---|---|
US (1) | US3629533A (enrdf_load_stackoverflow) |
FR (1) | FR2080211A5 (enrdf_load_stackoverflow) |
GB (1) | GB1297238A (enrdf_load_stackoverflow) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4041356A (en) * | 1973-12-20 | 1977-08-09 | Merlin Gerin | Air-break circuit interrupter having magnetically-assisted arc-dividing electrodes |
US5866864A (en) * | 1997-07-14 | 1999-02-02 | Eaton Corporation | Electric current switching apparatus with arc spinning extinguisher |
US5877464A (en) * | 1998-03-27 | 1999-03-02 | Eaton Corporation | Electric current switching apparatus with dual magnet arc spinning extinguisher |
EP3671787A1 (en) * | 2018-12-19 | 2020-06-24 | ABB Schweiz AG | Electrical switching system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2918552A (en) * | 1956-10-20 | 1959-12-22 | Voigt & Haeffner Ag | Circuit interrupters |
US3178544A (en) * | 1961-10-09 | 1965-04-13 | Bbc Brown Boveri & Cie | Electric switch with arc extinction in air and with magnetic blasting |
US3495056A (en) * | 1965-07-22 | 1970-02-10 | Ite Imperial Corp | Current limiting interrupter with arc-inserted non-linear resistors |
-
1970
- 1970-02-07 GB GB598470A patent/GB1297238A/en not_active Expired
- 1970-02-12 US US10722A patent/US3629533A/en not_active Expired - Lifetime
- 1970-02-26 FR FR7007039A patent/FR2080211A5/fr not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2918552A (en) * | 1956-10-20 | 1959-12-22 | Voigt & Haeffner Ag | Circuit interrupters |
US3178544A (en) * | 1961-10-09 | 1965-04-13 | Bbc Brown Boveri & Cie | Electric switch with arc extinction in air and with magnetic blasting |
US3495056A (en) * | 1965-07-22 | 1970-02-10 | Ite Imperial Corp | Current limiting interrupter with arc-inserted non-linear resistors |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4041356A (en) * | 1973-12-20 | 1977-08-09 | Merlin Gerin | Air-break circuit interrupter having magnetically-assisted arc-dividing electrodes |
US5866864A (en) * | 1997-07-14 | 1999-02-02 | Eaton Corporation | Electric current switching apparatus with arc spinning extinguisher |
EP0892415A3 (en) * | 1997-07-14 | 1999-08-18 | Eaton Corporation | Electric current switching apparatus with arc spinning extinguisher |
KR100525878B1 (ko) * | 1997-07-14 | 2005-12-21 | 이턴 코포레이션 | 전기아크소멸메카니즘및방법과전기아크소멸스플릿터플레이트 |
US5877464A (en) * | 1998-03-27 | 1999-03-02 | Eaton Corporation | Electric current switching apparatus with dual magnet arc spinning extinguisher |
EP3671787A1 (en) * | 2018-12-19 | 2020-06-24 | ABB Schweiz AG | Electrical switching system |
WO2020127401A1 (en) * | 2018-12-19 | 2020-06-25 | Abb Schweiz Ag | Electrical switching system |
CN113196432A (zh) * | 2018-12-19 | 2021-07-30 | Abb瑞士股份有限公司 | 电气开关系统 |
CN113196432B (zh) * | 2018-12-19 | 2022-04-15 | Abb瑞士股份有限公司 | 电气开关系统 |
US11335524B2 (en) | 2018-12-19 | 2022-05-17 | Abb Schweiz Ag | Electrical switching system |
Also Published As
Publication number | Publication date |
---|---|
GB1297238A (enrdf_load_stackoverflow) | 1972-11-22 |
DE2006991A1 (de) | 1971-09-02 |
FR2080211A5 (enrdf_load_stackoverflow) | 1971-11-12 |
DE2006991B2 (de) | 1973-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2750476A (en) | Method and device for extinguishing electrical arcs in circuit breakers | |
US3324270A (en) | Circuit breaker apparatus having bifurcated contact | |
US3564176A (en) | Magnetic electric arcing extinction device | |
US1927888A (en) | Circuit breaker | |
US2615109A (en) | Zigzag magnetic labyrinth arc muffler | |
US2769066A (en) | Circuit interrupters | |
US3629533A (en) | Arc-quenching chamber | |
US2356039A (en) | Arc limiting device | |
US4498068A (en) | Magnetic arc extinguished fusible elements | |
US2293487A (en) | Electric circuit breaker | |
US2707218A (en) | Air-break circuit interrupters | |
US2249499A (en) | Electric circuit interrupter | |
US3369095A (en) | Arc-extinguishing chambers for alternating current utilizing permanent magnets | |
US2180147A (en) | Electric circuit interrupter | |
US2918552A (en) | Circuit interrupters | |
US3613039A (en) | High-voltage power vacuum fuse | |
US2655578A (en) | Arc chute with notched barrier plates | |
US2015561A (en) | Switch mechanism | |
US4387281A (en) | Arc blowing chamber | |
US3511950A (en) | Arc chute | |
US2319906A (en) | Contact mechanism for electric switches | |
JPH10294036A (ja) | 回路遮断器の消弧装置 | |
US2729723A (en) | Alternating-current circuit interrupters | |
US2697154A (en) | Circuit interrupter | |
US4536630A (en) | Limiting switch |