US3629533A - Arc-quenching chamber - Google Patents

Arc-quenching chamber Download PDF

Info

Publication number
US3629533A
US3629533A US10722A US3629533DA US3629533A US 3629533 A US3629533 A US 3629533A US 10722 A US10722 A US 10722A US 3629533D A US3629533D A US 3629533DA US 3629533 A US3629533 A US 3629533A
Authority
US
United States
Prior art keywords
plates
arc
chamber
airgap
helix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US10722A
Inventor
Rostislav Sergeevic Kuznestsov
Alexandr Grigorievich Uskach
Vladimir Grigorievich Kostikov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3629533A publication Critical patent/US3629533A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/34Stationary parts for restricting or subdividing the arc, e.g. barrier plate
    • H01H9/36Metal parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/34Stationary parts for restricting or subdividing the arc, e.g. barrier plate
    • H01H9/36Metal parts
    • H01H2009/365Metal parts using U-shaped plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/34Stationary parts for restricting or subdividing the arc, e.g. barrier plate
    • H01H9/36Metal parts
    • H01H2009/367Metal parts defining a recurrent path, e.g. the subdivided arc is moved in a closed path between each pair of splitter plates

Definitions

  • an arc-quenching chamber comprising at de-ion grid composed of spaced plates joined at one end with two straight portions and two helically bent portions lying in parallel planes; forming an airgap between the initial and end ot'the bent portions, through which any base point of a minor electric arc passes, the airgap being maintained at a minimum.
  • the present invention relates to electric switching devices, and more specifically to the arc-quenching chambers of such devices, comprising metal de-ion plates.
  • arc-quenching chambers incorporating spaced metal plates which make up a de-ion grid, wherein the plates are joined at a neck which extends into two straight portions lying in parallel planes.
  • a specific object of the invention is to produce an arcquenching chamber of reduced size, reduced wear on the plates and shields of the chamber, with eliminated flashover across the arc-splitting plates of the de-ion grid, and simplified design owing to the changed shape of the metal plates.
  • an arc-quenching chamber comprising a de-ion grid composed of a pair of spaced plates joined at one end to form a neck which extends into two straight portions lying in parallel planes, the straight portions of the plates, according to the invention, extending or curving at their free ends along a helix within the parallel planes, so that the airgap between the start and finish of the bent portion of the plate, through which the base point of the minor arc passes, is kept to minimum.
  • the ends of the plates may be bent along a helix either in the same or opposite directions.
  • the design of the arc-quenching chamber disclosed herein provides for a more reliable and longer operation of the chamber over a wide range of switched currents as compared with-existing chambers of this type. It is simple to fabricate and compact in layout.
  • the reliable and long operation of the chamber is secured by the fact that the arc is caused repeatedly to circulate in the closed space of the chamber, so that the size of the chamber is reduced, electric wear and expulsion of flame from the chamber are cut down, and arc flashover is eliminated.
  • the chamber disclosed herein may be used in DC and AC circuit breakers. It may also be successfully employed in contactors and other switching devices.
  • FIG. I shows an arc-quenching chamber, fully assembled, according to the invention
  • FIG. 2 shows a metal plate with the ends lying in parallel planes, bent in the same direction, according to the invention
  • FIG. 3 shows the side elevation of the plate of FIG. 2, according to the invention
  • FIG. 4 shows the current loops in a de-ion grid consisting of the plates of FIG. 2, according to the invention
  • FIG. 5 shows a metal plate with portions bent along a helix, according to the invention
  • FIG. 6 shows the current loops in a de-ion grid consisting of the plates of FIG. 5, according to the invention
  • FIG. 7 shows a metal plate with the ends lying in parallel planes 4, bent along a helix in opposite direction, according to the invention
  • FIG. 8 shows the current loops in a de-ion grid consisting of the plates of FIG. 7, according to the invention
  • FIG. 9 shows a metal plate with the airgap offset relative to the airgap in the plate of FIG. 2, according to the invention.
  • FIG. 10 shows the side elevation of a de-ion grid consisting of the alternating plates of FIGS. 2 and 9, according to the invention
  • FIG. II shows a cross-sectional view through a de-ion grid with offset airgaps between the plates and the minor arcs in the grid, according to the invention
  • FIG. 12 shows the side elevation of a metal plate fabricated from two separate elements by welding or any other method, according to the invention.
  • an arcquenching chamber comprising a de-ion grid composed of spaced de-ion plates I joined at one end with straight portions 2 and 3, bent portions 4 and 5 lying in parallel planes, and insulating barriers 6 placed between the portions 4 and 5 of the plates 1.
  • the plates 1 and the barriers 6 are fastened in the walls (shields) 7 of the chamber.
  • FIG. 1 shows only two plates, the remaining plates being fabricated in a similar manner.
  • the drawing also omits mounting hardware and some structural elements, since they are of no fundamental importance.
  • the straight portions 2 and 3 are joined together by current-conducting necks 8 to form a generally V-shaped or U-shaped juncture, the straight portions extend into the portions 4 and 5 which are curved along a helix or circle and which lie in the same plane respectively with the portions 2 and 3.
  • the airgap 9, as is shown in FIG. 1, between the start and finish of the bent portion 4, 5 is maintained at a minimum.
  • the portions 2 and 3 have a dove-tail 10 in the lower part.
  • the plates 1 should preferably be fabricated from a ferromagnetic material.
  • the electric arc establishes base points in the airgaps between the surface 2 and 3 and is thus split into smaller arcs 11 (FIG. 4).
  • the plates fabricated from a ferromagnetic material as described above facilitate the passage of the minor arcs across the gaps 9 and the formation of base points at the entrance of the arc to the grid.
  • FIG. 5 shows the plates 1 with the portions 4 and 5 bent along a helix so that the start and finish of these portion overlap.
  • FIG. 6 shows the current loop in the arcs II and in the plates of FIG. 5, where the arrows show the current paths.
  • the magnetic field near the gaps 9 is augmented, which fact speeds up the transfer of the base points of the arc across them and minimizes the fusion of the plate surfaces.
  • FIG. 7 shows the plates 1 with the portions 4 and 5 bent in opposite directions and lying in parallel planes.
  • the currents in the portions 4 and 5 are in the same direction, as shown in FIG. 8, which fact augments the own magnetic field of the loop and, as a consequence, enhances the quenching of the arc.
  • the airgaps 9 in the plates 1, fabricated as shown in FIG. 2, may be offset relative to the vertical axis l-I (FIG. 9).
  • a de-ion grid (FIG. 10) composed of alternating plates 1 of FIGS. 2 and 9, the airgaps 9 are offset relative to one another.
  • the base points of the minor arcs 11 (FIG. 11) are now offset relative to one another as they approach the gaps 9 owing to the fact that the latter are offset too.
  • the offset between the adjacent gaps 9 in the slot of each minor arc produces a pi-shaped current loop with a peaked top, which fact augments the own magnetic field and minimizes the fusion of the plate surfaces.
  • spaced plates 1 (FIG. 12) from two separate elements 12 and 13, each of which may be fabricated as shown in FIGS. 2, 5, and 9.
  • the elements 12 and 13 may be joined together at the neck 8 by welding or any other method securing electric conduction through the neck.
  • the plates 1 fabricated from two separate elements are more convenient to manufacture, since this eliminates the use of dies and punches and cuts down the waste of the source material.
  • An electric arc-quenching chamber comprising, a de-ion grid formed of a pair of generally parallel plates, said plates being joined at one end so as to provide a closed neck portion, the free ends of said plates extending into a helix portion within said parallel planes, an airgap being formed between said parallel plates whereby a minor electric arc establishes base points in said airgap between said plates, and a further airgap being formed between the initial and end points of the portions through which the arc base points pass are offset relative to each other in said grid.
  • a chamber as claimed in claim 2 wherein the airgaps formed between the initial and end points of each of said helix portions through which the arc base points pass are offset relative to each other in said grid.

Landscapes

  • Arc-Extinguishing Devices That Are Switches (AREA)

Abstract

The present invention relates to electric switching devices, and more specifically to the arc-quenching chambers of such devices. There is an arc-quenching chamber comprising a de-ion grid composed of spaced plates joined at one end with two straight portions and two helically bent portions lying in parallel planes; forming an airgap between the initial and end of the bent portions, through which any base point of a minor electric arc passes, the airgap being maintained at a minimum.

Description

United States Patent [72] Inventors Rostlslav Sergeevich Kuznestsov ulltsa Scherbaltaltovsltaya, 40/42, ltv. 195; Alexandr Grlgorievich Usltacll, ulitsa Oktyabraskaya, 49, kv. 63; Vladimir Grigorievich Kostikov, ulltsa Davydkovskaya, 10, kv. 104, all of Moscow,
U.S.S.R [2]] Appl. No. 10,722 [22] Filed Feb. 12, I970 [45] Patented Dec.2l,197l
[54] ARC-QUENCHING CHAMBER 6 Claims, 12 Drawing Figs.
[52] US. Cl 200/144 R, 200/147 B [51] Int. Cl H0111 33/08 [50] Field of Search 200/ 147, 147 B, 144
[56] References Cited UNITED STATES PATENTS 2,918,552 12/1959 Fust 200/147 3,178,544 4/1965 Mayer..... ZOO/147 3,495,056 2/1970 Jensen 200/147 B Primary Examiner-Robert S. Macon Au0rneyWaters, Roditi, Schwartz & Nissen ABSTRACT: The present invention relates to electric switching devices. and more specifically to the nrc-qucnching chambers of such devices.
There is an arc-quenching chamber comprising at de-ion grid composed of spaced plates joined at one end with two straight portions and two helically bent portions lying in parallel planes; forming an airgap between the initial and end ot'the bent portions, through which any base point of a minor electric arc passes, the airgap being maintained at a minimum.
PATENIEDuaczmn 3.629.533
sum 2 BF 4 FIG. 2 FIG.3 FIG. 12
FIG. 5'
nc-ousscnmc CHAMBER The present invention relates to electric switching devices, and more specifically to the arc-quenching chambers of such devices, comprising metal de-ion plates.
There exist arc-quenching chambers incorporating spaced metal plates which make up a de-ion grid, wherein the plates are joined at a neck which extends into two straight portions lying in parallel planes.
Among the disadvantages of such arc-quenching chambers are that the arc may flash over the plates as it emerges from the grid; the plates and walls of the chamber are subject to excessive wear at the ends of the plates; there is a large quantity of hot gases and flame expelled from the chamber over a large distance; and the device is large in size.
It is an object of the present invention to eliminate the above-mentioned disadvantages.
A specific object of the invention is to produce an arcquenching chamber of reduced size, reduced wear on the plates and shields of the chamber, with eliminated flashover across the arc-splitting plates of the de-ion grid, and simplified design owing to the changed shape of the metal plates.
This object is accomplished by the invention which provides an arc-quenching chamber comprising a de-ion grid composed of a pair of spaced plates joined at one end to form a neck which extends into two straight portions lying in parallel planes, the straight portions of the plates, according to the invention, extending or curving at their free ends along a helix within the parallel planes, so that the airgap between the start and finish of the bent portion of the plate, through which the base point of the minor arc passes, is kept to minimum.
The ends of the plates may be bent along a helix either in the same or opposite directions.
It is preferable to offset the airgaps of the plates through which the base points of the minor arcs pass relative to one another.
The design of the arc-quenching chamber disclosed herein provides for a more reliable and longer operation of the chamber over a wide range of switched currents as compared with-existing chambers of this type. It is simple to fabricate and compact in layout.
The reliable and long operation of the chamber is secured by the fact that the arc is caused repeatedly to circulate in the closed space of the chamber, so that the size of the chamber is reduced, electric wear and expulsion of flame from the chamber are cut down, and arc flashover is eliminated.
The chamber disclosed herein may be used in DC and AC circuit breakers. It may also be successfully employed in contactors and other switching devices.
The invention will be best understood from the following description of a preferred embodiment, when read in connection with the accompanying drawing wherein:
FIG. I shows an arc-quenching chamber, fully assembled, according to the invention;
FIG. 2 shows a metal plate with the ends lying in parallel planes, bent in the same direction, according to the invention;
FIG. 3 shows the side elevation of the plate of FIG. 2, according to the invention;
FIG. 4 shows the current loops in a de-ion grid consisting of the plates of FIG. 2, according to the invention;
FIG. 5 shows a metal plate with portions bent along a helix, according to the invention;
FIG. 6 shows the current loops in a de-ion grid consisting of the plates of FIG. 5, according to the invention;
FIG. 7 shows a metal plate with the ends lying in parallel planes 4, bent along a helix in opposite direction, according to the invention;
FIG. 8 shows the current loops in a de-ion grid consisting of the plates of FIG. 7, according to the invention;
FIG. 9 shows a metal plate with the airgap offset relative to the airgap in the plate of FIG. 2, according to the invention;
FIG. 10 shows the side elevation of a de-ion grid consisting of the alternating plates of FIGS. 2 and 9, according to the invention;
FIG. II shows a cross-sectional view through a de-ion grid with offset airgaps between the plates and the minor arcs in the grid, according to the invention;
FIG. 12 shows the side elevation of a metal plate fabricated from two separate elements by welding or any other method, according to the invention.
Referring to FIGS. 1, 2, and 3, there is disclosed an arcquenching chamber comprising a de-ion grid composed of spaced de-ion plates I joined at one end with straight portions 2 and 3, bent portions 4 and 5 lying in parallel planes, and insulating barriers 6 placed between the portions 4 and 5 of the plates 1. The plates 1 and the barriers 6 are fastened in the walls (shields) 7 of the chamber.
For simplicity, FIG. 1 shows only two plates, the remaining plates being fabricated in a similar manner. The drawing also omits mounting hardware and some structural elements, since they are of no fundamental importance.
At the entrance of the arc to the chamber, the straight portions 2 and 3 are joined together by current-conducting necks 8 to form a generally V-shaped or U-shaped juncture, the straight portions extend into the portions 4 and 5 which are curved along a helix or circle and which lie in the same plane respectively with the portions 2 and 3. The airgap 9, as is shown in FIG. 1, between the start and finish of the bent portion 4, 5 is maintained at a minimum.
The portions 2 and 3 have a dove-tail 10 in the lower part.
The plates 1 should preferably be fabricated from a ferromagnetic material.
The electric arc striking between the contacts of the switching device, not shown in the drawings, is expelled between the shields 7 towards the dove-tails 10 of the de-ion grid by the action of the magnetic field.
After it comes in contact with the plates, the electric arc establishes base points in the airgaps between the surface 2 and 3 and is thus split into smaller arcs 11 (FIG. 4).
The current, flowing in series in the smaller arcs II and in the plates 1, forms V- and pi-shaped loops which are shown diagrammatically in FIG. 4, where the arrows show the direction of the current in these loops.
In response to the interaction between the magnetic fluxes established by the currents flowing in the plates and in the smaller arcs, the latter shift their base points along the surface of the portions 2, 3, and 4, 5 towards the airgaps 9. Moving on, the minor arcs ll span the gaps 9 and establish new base points, now at the ends of the portions 2 and 3.
As this happens, the minor arcs circulate on the surface of the portions 4 and 5 until the arc goes out.
It should be noted that the plates fabricated from a ferromagnetic material as described above facilitate the passage of the minor arcs across the gaps 9 and the formation of base points at the entrance of the arc to the grid.
FIG. 5 shows the plates 1 with the portions 4 and 5 bent along a helix so that the start and finish of these portion overlap.
FIG. 6 shows the current loop in the arcs II and in the plates of FIG. 5, where the arrows show the current paths. With this embodiment of the plates, the magnetic field near the gaps 9 is augmented, which fact speeds up the transfer of the base points of the arc across them and minimizes the fusion of the plate surfaces.
FIG. 7 shows the plates 1 with the portions 4 and 5 bent in opposite directions and lying in parallel planes. In such plates, the currents in the portions 4 and 5 are in the same direction, as shown in FIG. 8, which fact augments the own magnetic field of the loop and, as a consequence, enhances the quenching of the arc.
The airgaps 9 in the plates 1, fabricated as shown in FIG. 2, may be offset relative to the vertical axis l-I (FIG. 9).
In a de-ion grid (FIG. 10) composed of alternating plates 1 of FIGS. 2 and 9, the airgaps 9 are offset relative to one another. The base points of the minor arcs 11 (FIG. 11) are now offset relative to one another as they approach the gaps 9 owing to the fact that the latter are offset too. The offset between the adjacent gaps 9 in the slot of each minor arc produces a pi-shaped current loop with a peaked top, which fact augments the own magnetic field and minimizes the fusion of the plate surfaces.
It is preferred to fabricate spaced plates 1 (FIG. 12) from two separate elements 12 and 13, each of which may be fabricated as shown in FIGS. 2, 5, and 9.
The elements 12 and 13 may be joined together at the neck 8 by welding or any other method securing electric conduction through the neck.
The plates 1 fabricated from two separate elements are more convenient to manufacture, since this eliminates the use of dies and punches and cuts down the waste of the source material.
What is claimed is:
I. An electric arc-quenching chamber comprising, a de-ion grid formed of a pair of generally parallel plates, said plates being joined at one end so as to provide a closed neck portion, the free ends of said plates extending into a helix portion within said parallel planes, an airgap being formed between said parallel plates whereby a minor electric arc establishes base points in said airgap between said plates, and a further airgap being formed between the initial and end points of the portions through which the arc base points pass are offset relative to each other in said grid.
5. A chamber as claimed in claim 2, wherein the airgaps formed between the initial and end points of each of said helix portions through which the arc base points pass are offset relative to each other in said grid.
6. A chamber as claimed in claim 3, wherein the airgaps formed between the initial and end points of each of said helix portions through which the arc base points pass are offset relative to each other in said grid.

Claims (6)

1. An electric arc-quenching chamber comprising, a de-ion grid formed of a pair of generally parallel plates, said plates being joined at one end so as to provide a closed neck portion, the free ends of said plates extending into a helix portion within said parallel planes, an airgap being formed between said parallel plates whereby a minor electric arc establishes base points in said airgap between said plates, and a further airgap being formed between the initial and end points of the helix portions of said plates through which the arc base points pass, said further airgap being maintained at a minimum dimension.
2. A chamber as claimed in claim 1, wherein the free ends of each of said parallel plates form a helix extending in the same direction.
3. A chamber as claimed in claim 1, wherein the free end of each of said parallel plates forms a helix extending in opposite directions to each other.
4. A chamber as claimed in claim 1, wherein the air gaps formed between the initial and end points of each of said helix portions through which the arc base points pass are offset relative to each other in said grid.
5. A chamber as claimed in claim 2, wherein the airgaps formed between the initial and end points of each of said helix portions through which the arc base points pass are offset relative to each other in said grid.
6. A chamber as claimed in claim 3, wherein the airgaps formed between the initial and end points of each of said helix portions through which the arc base points pass are offset relative to each other in said grid.
US10722A 1970-02-12 1970-02-12 Arc-quenching chamber Expired - Lifetime US3629533A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US1072270A 1970-02-12 1970-02-12

Publications (1)

Publication Number Publication Date
US3629533A true US3629533A (en) 1971-12-21

Family

ID=21747082

Family Applications (1)

Application Number Title Priority Date Filing Date
US10722A Expired - Lifetime US3629533A (en) 1970-02-12 1970-02-12 Arc-quenching chamber

Country Status (3)

Country Link
US (1) US3629533A (en)
FR (1) FR2080211A5 (en)
GB (1) GB1297238A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041356A (en) * 1973-12-20 1977-08-09 Merlin Gerin Air-break circuit interrupter having magnetically-assisted arc-dividing electrodes
EP0892415A2 (en) * 1997-07-14 1999-01-20 Eaton Corporation Electric current switching apparatus with arc spinning extinguisher
US5877464A (en) * 1998-03-27 1999-03-02 Eaton Corporation Electric current switching apparatus with dual magnet arc spinning extinguisher
EP3671787A1 (en) * 2018-12-19 2020-06-24 ABB Schweiz AG Electrical switching system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2918552A (en) * 1956-10-20 1959-12-22 Voigt & Haeffner Ag Circuit interrupters
US3178544A (en) * 1961-10-09 1965-04-13 Bbc Brown Boveri & Cie Electric switch with arc extinction in air and with magnetic blasting
US3495056A (en) * 1965-07-22 1970-02-10 Ite Imperial Corp Current limiting interrupter with arc-inserted non-linear resistors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2918552A (en) * 1956-10-20 1959-12-22 Voigt & Haeffner Ag Circuit interrupters
US3178544A (en) * 1961-10-09 1965-04-13 Bbc Brown Boveri & Cie Electric switch with arc extinction in air and with magnetic blasting
US3495056A (en) * 1965-07-22 1970-02-10 Ite Imperial Corp Current limiting interrupter with arc-inserted non-linear resistors

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041356A (en) * 1973-12-20 1977-08-09 Merlin Gerin Air-break circuit interrupter having magnetically-assisted arc-dividing electrodes
EP0892415A2 (en) * 1997-07-14 1999-01-20 Eaton Corporation Electric current switching apparatus with arc spinning extinguisher
US5866864A (en) * 1997-07-14 1999-02-02 Eaton Corporation Electric current switching apparatus with arc spinning extinguisher
EP0892415A3 (en) * 1997-07-14 1999-08-18 Eaton Corporation Electric current switching apparatus with arc spinning extinguisher
KR100525878B1 (en) * 1997-07-14 2005-12-21 이턴 코포레이션 Electric current switching apparatus with arc spinning extinguisher
US5877464A (en) * 1998-03-27 1999-03-02 Eaton Corporation Electric current switching apparatus with dual magnet arc spinning extinguisher
EP3671787A1 (en) * 2018-12-19 2020-06-24 ABB Schweiz AG Electrical switching system
WO2020127401A1 (en) * 2018-12-19 2020-06-25 Abb Schweiz Ag Electrical switching system
CN113196432A (en) * 2018-12-19 2021-07-30 Abb瑞士股份有限公司 Electrical switching system
CN113196432B (en) * 2018-12-19 2022-04-15 Abb瑞士股份有限公司 Electrical switching system
US11335524B2 (en) 2018-12-19 2022-05-17 Abb Schweiz Ag Electrical switching system

Also Published As

Publication number Publication date
GB1297238A (en) 1972-11-22
FR2080211A5 (en) 1971-11-12
DE2006991B2 (en) 1973-03-29
DE2006991A1 (en) 1971-09-02

Similar Documents

Publication Publication Date Title
US2750476A (en) Method and device for extinguishing electrical arcs in circuit breakers
US3564176A (en) Magnetic electric arcing extinction device
US3324270A (en) Circuit breaker apparatus having bifurcated contact
US2769066A (en) Circuit interrupters
US2615109A (en) Zigzag magnetic labyrinth arc muffler
US3629533A (en) Arc-quenching chamber
US2356039A (en) Arc limiting device
US4498068A (en) Magnetic arc extinguished fusible elements
US2293487A (en) Electric circuit breaker
US2707218A (en) Air-break circuit interrupters
US2249499A (en) Electric circuit interrupter
US3369095A (en) Arc-extinguishing chambers for alternating current utilizing permanent magnets
US2180147A (en) Electric circuit interrupter
US3613039A (en) High-voltage power vacuum fuse
US2918552A (en) Circuit interrupters
US2015561A (en) Switch mechanism
US4387281A (en) Arc blowing chamber
US3511950A (en) Arc chute
US3575635A (en) Magnetic arc blowout device
US2319906A (en) Contact mechanism for electric switches
US2729723A (en) Alternating-current circuit interrupters
US2697154A (en) Circuit interrupter
US3139503A (en) Extinguishing device for electrical arcs
US4536630A (en) Limiting switch
US3632931A (en) Arc-quenching chamber