US3627206A - Dip-tube liquid vaporizers - Google Patents

Dip-tube liquid vaporizers Download PDF

Info

Publication number
US3627206A
US3627206A US3627206DA US3627206A US 3627206 A US3627206 A US 3627206A US 3627206D A US3627206D A US 3627206DA US 3627206 A US3627206 A US 3627206A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
piston
cylinder
vaporizer
delivery tube
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Michel Boris
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STEP SOC Tech PULVERISATION
Original Assignee
STEP SOC Tech PULVERISATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit, i.e. unitary, hand-held apparatus comprising a container and a discharge nozzle attached thereto, in which flow of liquid or other fluent material is produced by the muscular energy of the operator at the moment of use or by an equivalent manipulator independent from the apparatus
    • B05B11/30Single-unit, i.e. unitary, hand-held apparatus comprising a container and a discharge nozzle attached thereto, in which flow of liquid or other fluent material is produced by the muscular energy of the operator at the moment of use or by an equivalent manipulator independent from the apparatus the flow being effected by a pump
    • B05B11/3001Piston pumps
    • B05B11/3023Piston pumps having an outlet valve opened by deformation or displacement of the piston relative to its actuating stem

Abstract

A dip-tube vaporizer has a cylinder in which a piston member is slidable. The interior of the cylinder communicates through a slide-valve-controlled opening with a chamber formed between the piston and the cylinder wall. The chamber is filled by a previous stroke so that when a plunger rod is depressed a shoulder thereon engages the piston and the latter acts to pressurize the liquid in the chamber and thus to deliver it through a passage in the plunger rod to an atomizer nozzle. As the plunger rod rises it draws up liquid through the dip tube and delivers it to the chamber ready for the next dispensing stroke of the plunger.

Description

'nite States aten 1 13,627,206

[72] Inventor MlchelBorlii [56] References Cited Paris, France UNITED STATES PATENTS I 1 APPLNO- 1 3,249,259 5/1966 Corsette 222/321x 1221 Hled July'I. l 3,362,344 1 1968 Duda 222/321X pmimcd 3,399,836 9/1968 Pechstein.... 417/549x [73] 5mmTechmquemmvemmm 3,463,093 8/1969 Pfeifferetal. 417/547 lPnrlsJrnnce [32] Priorities July 7,1969 Primary ExaminerM.Henson Wood,Jr.

[33] France Assistant Examiner-Michael Y. Mar

[31 1 6922664; Attorney-Arnold Robinson Mar. 26, 11970, France, No. 7M 11073 ABSTRACT: A dip-tube vaporizer has a cylinder in which a piston member is slidable. The interior of the cylinder commu' nicates through a slide-valve-controlled opening with a chamber formed between the piston and the cylinder wall. The chamber is filled by a previous stroke so that when a [54] DRIP-TUBE lLllQlUlllD VAPORIZERS lll (Ilnims, 8 Drawing Figs.

[52] US. Cl 239/321, plunger rod is depressed a shoulder thereon engages the piston 222/321, 222/385, 239/349, 417/549 and the latter acts to pressurize the liquid in the chamber and [51] Int. Cl 1805b 9/04 thus to deliver it through a passage in the plunger rod to an [50] Field oil Search 239/320, atomizer nozzle. As the plunger rod rises it draws up liquid 32], 337, 349, 350,354, 355, 361; 222/321, 378, through the dip tube and delivers it to the chamber ready for 382, 383, 384, 385; 417/546, 547, 549, 552 the next dispensing stroke oftheplunger.

PNEWEDDEEMIHYI anmazo sumeum BACKGROUND OF THE INVENTION 1. Field of the invention This invention relates to dip-tube liquid Vaporizers.

2. Description of the prior art Piston vaporizers have been proposed in which the dip-tube immersed in the container that holds the liquid to be vaporized is connected to an atomizer nozzle through a pistonand-cylinder unit fitted with valves so as to constitute a suclion and delivery pump. At least one of these valves generally consists of a ball held to its seating by force of gravity. Consequently, such Vaporizers operate only when vertical, with the nozzle higher than the container; for if, in particular, the container be turned upside down and the vaporizer be operated, it is possible for all the liquid contained in the diptube and cylinder to leak out through the nozzle.

The object of the present invention is a vaporizer improved so as to overcome this difficulty.

SUMMARY OF THE INVENTION According to the present invention there is provided a vaporizer comprising a first cylinder containing a first sliding piston, a second cylinder containing a second hollow piston and forming an extension of the first cylinder while itself being extended by a dip-tube, an operating member bearing an atomizer nozzle and fixed to a delivery tube in communication with the nozzle and leading to the interior of the first piston, and a component such as a valve for closing the outlet from the said tube, together with a spring or the like for holding the valve in its closed position, the vaporizer being characterized by the fact that the second piston is extended into the first cylinder by a tubular liquid inlet, which is in communication with the second cylinder and forms one wall of an annular pump chamber within the first cylinder, that the first piston is linked by dead movement to the delivery tube, so that the latter can move axially in relation to the former, and that the vaporizer includes a distribution system, operated by the displacement of the delivery tube and tubular inlet in relation to the first piston, whereby the annular pump chamber is placed in communication either with the said tubular inlet or with the delivery tube.

When the operating member is actuated, the result is to isolate the annular chamber from the dip-tube, to connect that chamber to the atomizer nozzle and then to move the first piston so that the liquid contained in the annular chamber is supplied to the nozzle.

During the recovery movement of the operating member, communication is broken between the annular chamber and the atomizer nozzle and is reestablished between the said chamber and the dip-tube; then the annular piston returns to its initial position, thereby lowering the pressure in the chamber, so that the chamber is filled with liquid through the dip-tube.

BRIEF DESCRIPTION OF THE DRAWINGS Three embodiments of Vaporizers embodying the present invention will now be described, by way of example, with reference to the accompanying diagrammatic drawings, in which:

FIG. I is a longitudinal section of a first embodiment of vaporizer;

FIGS. 2 to d are similar sections to that of FIG. 1 and show various stages of operation;

FIG. 5 is a section of a second embodiment;

FIG. 6 is a similar section to FIG. 5 and shows a different stage of operation; and

FIGS. 7 and 8 are longitudinal sections of the third embodiment of a vaporizer, showing two different stages of operation.

DESCRIPTION OF THE PREFERRED EMBODIMENT The vaporizer, as shown in the drawings, has a cylindrical body I, which has a screw thread for screwing on to the top portion 2 of a bottle or other container holding liquid that is to be vaporized.

In the underside of the body I is .a recess coaxial with the body, housing one flange 3a, fixed to a cylindrical sleeve 3, and another flange 4a, fixed to a cylinder 4, which is fitted over the sleeve 3 and has its bottom edge extended to form a cylinder 5 of smaller diameter. A dip-tube 6, is fitted into this cylinder 5.

A rod 7, which is fixed to an operating push-member d, and has an axial bore 9, slides within the sleeve 3. At the top (as illustrated the bore 9 is in communication with an atomizer nozzle I0, fitted into the push'member 8.

The rod 7 has a portion 7a, which is larger in cross section, its diameter being substantially the same as the inside diameter of the sleeve 3, the flange Ilaon which, however, has an inside diameter smaller than the portion 7a of the rod 7, so that it restricts the upward movement of the rod.

The portion 7a of the rod 7 is followed (moving downwardly) by a portion of smaller cross section 7b, on which the top IIa of a piston II, working in the cylinder 4, forms a sliding fit. The bore 9 terminates in a cavity 9a, in the bottom end face of the portion 712.

The diameter of the upper part IIa, of the piston II is smaller than the inside diameter of the sieeve 3 and is joined to the piston II proper by a frustoconical portion, Illb. Upwards movement of the piston II is thus limited by the frustoconical portion IIb coming to bear against the end of the sleeve 3. The cylinder 4 is pierced by an opening I2, which lies opposite the frustoconical portion of the piston II when this is at the top of its stroke. A guide portion I311, on a tubular member I3, can be engaged with a certain amount of play in the bottom end of the piston I I. This tubular member I3 forms an extension of a second hollow piston I3d, which moves in the cylinder 5; and since the diameter of the member I3 is smaller than that of the cylinder 4, there is an annular space within the cylinder, around the member I3.

The tubular member I3 contains a'slide valve 15, the top end of which is extended to form a shank 150, which forms a sliding fit in the guide portion I3a of the member I3 and is longer than the guide portion. The tubular member I3 contains a side opening I6, which lies below the valve I5 when this is in its raised position and which serves to place the annular chamber 14 in communication with the interior of the member I3 and hence with the cylinder 5.

A spring I7, is interposed between the slide valve I5 and the end of the cylinder 5. This spring biases the valve I5 to the remote end of the member'IZI, to bring the shoulder on the member I3 to bear on the piston II, thereby cutting off the cavity within that piston, and to apply the portion IIb of the piston II against the bottom end of the sleeve 3; it also seeks, through the shank I511 of the valve IE, to thrust the rod 7 upwards, together with the push-member 8 secured thereto. The various members, when at rest, thus occupy the positions shown in FIG. I.

As will be seen hereinafter, the purpose of the opening 12 is to allow air to enter the container to which the body 1 is screwed, to replace the volume of liquid vaporized; but this opening I2 is closed when the frustocolnical portion III) of the piston meets the bottom end of the sleeve 3. Again, when the vaporizer has been in use, the chamber 14 is filled with liquid for evaporation, but this chamber is cut off from the outside by virtue of the shoulder on the tubular member I3 bearing against the underside of the piston II. [It will thus be seen that the vaporizer is fully sealed when at rest and cannot leak.

When the push-member R is thrust towards the body as indicated by the arrow 18, the rod 7 moves within the piston Ill and exerts a thrust on the valve I5, which thus closes the opening I6, so that the chamber I4 is cut ofi'from the cylinder 5 (FIG. 2).

Then the end of the rod 7 meets the guide portion 13a of the member 13 and drives it down until the wide-sectioned portion 7a of the rod meets the top I la of the piston 11.

As the push-member 8 continues to move, the result is that the piston 11 is thrust downwards in the cylinder 4 (FIG. 3). The liquid contained in the chamber 14 flows through the clearance existing between the central opening in the piston II and the guide portion 13a and is driven through the bore 9 to the nozzle 10, where it is vaporized.

Moreover, air can enter the container through the clearance between the rod 7 and the sleeve 3 and through the opening I2.

When the push-member 8 is released, the spring 17 raises the slide valve 15, which moves clear of the opening 16 and comes to bear against the rear of the member 13. The shoulder on the latter then comes to bear against the underside of the piston 11,-isolating the chamber 14 from the outside (FIG. 4).

From that moment, the various working parts, namely the push-member 8, the rod 7, the piston 11, the slide valve 15 and the tubular member 13, move as a single unit. The piston 11 rises within the cylinder 4, thereby lowering the pressure in the chamber 12, which causes liquid to rise from the container, up the dip-tube 6. From this dip-tube, the liquid passes into the cylinder and flows through the opening 16 into the chamber 14, which becomes filled with liquid.

When the cycle is complete, the moving parts have resumed their positions shown in FIG. 1. The chamber I4 is full of liquid, which cannot pass down into the container again through the dip-tube 6, because the opening 16 is at the top of the chamber.

The vaporizer is thus ready for further action.

It will be noted that the vaporizerjust described has no nonretum valve. It can therefore work in any position, provided, of course, that the free end of the dip-tube 6 is immersed in the liquid to be vaporized.

In the embodiment illustrated in FIGS. 5 and 6, the valve 15 and the opening 16 have been dispensed with. The extension 13a of the tubular member 13 bears against the end of the rod 7 and contains an axial passage 13b, extending into a transverse passage I3c, which, when at rest, lies opposite a passage He, in the piston 11. Again, the axial bore 9 in the rod 7 does not extend to the end of the rod and is in communication with a transverse passage 9b, which lies opposite the passage H6 in the piston 11 when the shoulder 71: of the rod is in contact with that piston. The spring 17 is interposed between the bottom of the cylinder 5 and the member 13.

In FIG. 5, the vaporizer is at rest and the chamber 14 is full of liquid to be vaporized.

When pressure is applied to the push-member 8, the rod 7 moves within the piston 11 and exerts a thrust on the tubular member 13, so that communication is broken between the chamber 14 and the cylinder 5. Then the shoulder 7a comes into contact with the top Ila of the piston 11; the passage 912 then lies opposite the passage llc.

As the push-member 8 continues moving, the piston 11 is thrust downwards in the cylinder 4 and the liquid contained in the chamber 14 is driven to the nozzle by way of the passages He and 9b and the bore 9 (FIG. 6).

When the push-member 8 is released, the spring 17 raises the tubular member 13, which exerts a thrust on therod 7, the shoulder on which abuts against the underside of the piston II. The passage He is thus opposite the passage 13c once more and the chamber I4 is in communication with the cylinder 5. The piston 11, as it rises in the cylinder 4, lowers the pressure within the chamber 14, which thereupon fills the liquid.

The embodiment shown in FIGS. 7 and 8 again has its tubular member 13 with the collar 13d forming a piston sliding in the cylinder 5. When the vaporizer is at rest, however, the distance between the shoulder 7a on the rod 7 and the top 110 of the piston ll is at most equal to the distance by which the shank a projects in relation to the guide portion 130 of the member l3.

That being so, when the push-member 8 is pressed, the rod 7 moves within the piston 11 and exerts a thrust on the valve 15, which covers the opening 16, thereby isolating the chamber 14 from the cylinder 5. The shoulder 7a on the rod 7 makes contact with the top 1 la of the piston 11, however, before the end of the rod 7 has been able to exert a thrust on the guide portion of the tubular piston extension 13 (FIG. 7).

When pressure on the push-member 8 is continued, the piston II is driven into the annular chamber 14 without this having been placed in communication with the atomizer nozzle 10; the effect of this is that-the liquid contained in this chamber 14 is brought under pressure.

The pressure produced in the chamber causes the piston 13d to be driven into the cylinder 5 and the shoulder 13b at the top of the member 13 comes away from the underside of the piston 11, thereby establishing communication between the annular chamber 14 and the nozzle 10 (FIG. 8); the liquid precompressed within the chamber thereupon escapes and passes to the nozzle, where it is vaporized. During this movement, the shank 15a of the slide valve 15 continues to bear against the end of the rod 7, so that the member I3 moves in relation to the valve, but the extent of this movement is insufficient to free the opening 16, so that the annular chamber 14 remains cut off from the cylinder 5.

vaporization takes place for as long as the piston 11 descends. The, when the push-member 8 is released, the various moving parts rise and resume their initial positions, while liquid is being drawn into the cylinder 5 through the dip-tube The invention should naturally not be regarded as limited to the embodiment described and illustrated, but includes all modifications thereof. In particular, the rod 7 and the valve 15 could be made in one piece.

I claim:

1. A vaporizer comprising a first cylinder,

a first piston slidable in the first cylinder,

a second cylinder,

a second, hollow, piston slidable in the second cylinderwhich cylinder forms an extension ofthe first cylinder, a dip-tube forming an extension of the second cylinder, an operating member carrying means defining an atomizing nozzle, a delivery tube communicating with the nozzle and with the interior of the first piston, means for closing the outlet from the delivery tube, and means for biasing the closure means to the closed position, means defining a tubular liquid inlet extending from the second piston into the first cylinder, said inlet being in communication with the second cylinder,

an annular pump chamber within the first cylinder defied, in

part, by said tubular liquid inlet,

means defining a lost motion connection between the first piston and the delivery tube, whereby the first piston can move axially relative to the delivery tube, and

means defining a distribution system operated by displacement of the delivery tube and the tubular inlet in relation to the first piston whereby the annular pump chamber is selectively placed in communication either with the tubular inlet or with the delivery tube.

2. A vaporizer as claimed in claim 1, in which the first cylinder is mounted so as to slide in relation to the delivery tube.

3. A vaporizer as claimed in claim 2, in which the delivery tube has an external shoulder arranged to abut with the annular piston once the rod has moved a certain distance.

4. A vaporizer as claimed in claim 2, in which the inlet passage has, in the vicinity of the end remote from the diptube, one or more openings by which the pump chamber can be placed in communication with the second cylinder and hence with the dip-tube and further comprising a valve which bears against the delivery tube and is capable of closing the said openings, and is a sliding fit within the tubular inlet,

the end portion of that tubular inlet remote from the diptube being arranged to abut the underside of the first piston, thereby breaking communication between the annular chamber and the atomizer tube.

5. A vaporizer as claimed in claim t, comprising a lost motion linkage between the tubular inlet and the delivery tube, the lost motion of that linkage being less than that of the said lost motion linkage between the delivery tube and the first piston.

6 A vaporizer as claimed in claim 41, in which the lost motion of the lost motion linkage between the delivery tube and the first piston is at most equal to the distance existing, in a rest position, between the end of the delivery tube and the tubular inlet.

7. A vaporizer as claimed in claim 4, in which the valve has a shank abutting the delivery tube and is extendable upwards in relation to that end of the tubular inlet which is remote from the dip-tube when that end is bearing against the underside of the first piston.

d. A vaporizer as claimed in claim 2, in which that end of the tubular inlet which is remote from the dip-tube abuts against the delivery tube and the first piston has a passage leading into the annular chamber and communicating selectively, according to the piston of the piston, with a passage in the tubular inlet or with a passage in the delivery tube.

9. A vaporizer as claimed in claim ll, comprising a sleeve fitted within the first cylinder, the first piston having a frustoconical portion arranged to abut against the interior edge of the sleeve end.

110. A vaporizer as claimed in claim l, in which the first cylinder has an opening by which the interior of the vaporizer can be placed in communication with atmosphere, and in which the first piston, when at rest, closes that opening.

llll. A vaporizer as claimed in claim 10, in which the opening is made substantially level with the said edge of the sleeve.

Claims (10)

1. A vaporizer comprising a first cylinder, a first piston slidable in the first cylinder, a second cylinder, a second, hollow, piston slidable in the second cylinder which cylinder forms an extension of the first cylinder, a dip-tube forming an extension of the second cylinder, an operating member carrying means defining an atomizing nozzle, a delivery tube communicating with the nozzle and with the interior of the first piston, means for closing the outlet from the delivery tube, and means for biasing the closure means to the closed position, means defining a tubular liquid inlet extending from the second piston into the first cylinder, said inlet being in communication with the second cylinder, an annular pump chamber within the first cylinder defined, in part, by said tubular liquid Inlet, means defining a lost motion connection between the first piston and the delivery tube, whereby the first piston can move axially relative to the delivery tube, and means defining a distribution system operated by displacement of the delivery tube and the tubular inlet in relation to the first piston whereby the annular pump chamber is selectively placed in communication either with the tubular inlet or with the delivery tube.
2. A vaporizer as claimed in claim 1, in which the first cylinder is mounted so as to slide in relation to the delivery tube.
3. A vaporizer as claimed in claim 2, in which the delivery tube has an external shoulder arranged to abut with the annular piston once the rod has moved a certain distance.
4. A vaporizer as claimed in claim 2, in which the inlet passage has, in the vicinity of the end remote from the dip-tube, one or more openings by which the pump chamber can be placed in communication with the second cylinder and hence with the dip-tube and further comprising a valve which bears against the delivery tube and is capable of closing the said openings, and is a sliding fit within the tubular inlet, the end portion of that tubular inlet remote from the dip-tube being arranged to abut the underside of the first piston, thereby breaking communication between the annular chamber and the atomizer tube.
5. A vaporizer as claimed in claim 4, comprising a lost motion linkage between the tubular inlet and the delivery tube, the lost motion of that linkage being less than that of the said lost motion linkage between the delivery tube and the first piston. 6 A vaporizer as claimed in claim 4, in which the lost motion of the lost motion linkage between the delivery tube and the first piston is at most equal to the distance existing, in a rest position, between the end of the delivery tube and the tubular inlet.
7. A vaporizer as claimed in claim 4, in which the valve has a shank abutting the delivery tube and is extendable upwards in relation to that end of the tubular inlet which is remote from the dip-tube when that end is bearing against the underside of the first piston.
8. A vaporizer as claimed in claim 2, in which that end of the tubular inlet which is remote from the dip-tube abuts against the delivery tube and the first piston has a passage leading into the annular chamber and communicating selectively, according to the position of the piston, with a passage in the tubular inlet or with a passage in the delivery tube.
9. A vaporizer as claimed in claim 1, comprising a sleeve fitted within the first cylinder, the first piston having a frustoconical portion arranged to abut against the interior edge of the sleeve end.
10. A vaporizer as claimed in claim 1, in which the first cylinder has an opening by which the interior of the vaporizer can be placed in communication with atmosphere, and in which the first piston, when at rest, closes that opening.
11. A vaporizer as claimed in claim 10, in which the opening is made substantially level with the said edge of the sleeve.
US3627206A 1969-07-07 1970-07-07 Dip-tube liquid vaporizers Expired - Lifetime US3627206A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR6922664A FR2054453A1 (en) 1969-07-07 1969-07-07
FR7011073A FR2081279A6 (en) 1970-03-26 1970-03-26

Publications (1)

Publication Number Publication Date
US3627206A true US3627206A (en) 1971-12-14

Family

ID=26215146

Family Applications (1)

Application Number Title Priority Date Filing Date
US3627206A Expired - Lifetime US3627206A (en) 1969-07-07 1970-07-07 Dip-tube liquid vaporizers

Country Status (6)

Country Link
US (1) US3627206A (en)
JP (1) JPS5016007B1 (en)
BE (1) BE752932A (en)
DE (1) DE2033658A1 (en)
GB (1) GB1304903A (en)
NL (1) NL7010044A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3761022A (en) * 1972-04-04 1973-09-25 H Kondo A spring pressure accumulative spray device
US3762647A (en) * 1971-08-26 1973-10-02 T Tada Sprayer
US3770206A (en) * 1971-12-07 1973-11-06 T Tada Single hand operated sprayer
US3774849A (en) * 1971-08-19 1973-11-27 Step Soc Tech Pulverisation Atomisers for perfume and other liquids
US3923250A (en) * 1974-02-08 1975-12-02 Step Soc Tech Pulverisation Liquid perfume atomizers
US3949906A (en) * 1975-03-19 1976-04-13 The Risdon Manufacturing Company Liquid dispensing pump selectively sealable against leakage
JPS5258111A (en) * 1975-11-08 1977-05-13 Mitani Valve Co Ltd Sprayers of pressure accumulating type
US4063854A (en) * 1976-06-01 1977-12-20 Vca Corporation Spray pump assembly
US4117957A (en) * 1977-04-11 1978-10-03 George Duffey Atomizer valve assembly
US4173297A (en) * 1978-01-30 1979-11-06 The Risdon Manufacturing Company Non-throttling manually reciprocated plunger pump for consumer-type liquid dispensing containers
US4273268A (en) * 1977-12-13 1981-06-16 Seaquist Valve Co., Div. Of Pittway Fluid spray pump
US4305530A (en) * 1978-01-23 1981-12-15 Yoshino Kogyosho Co., Ltd. Liquid atomizer
US4607765A (en) * 1984-04-19 1986-08-26 S.A.R. S.P.A. Manually operated pump for the delivery under pressure of liquid substances
US4941595A (en) * 1988-10-10 1990-07-17 Monturas A.S. Spray pump
US4986453A (en) * 1989-05-15 1991-01-22 The Pittway Corporation Atomizing pump
US5102018A (en) * 1989-07-04 1992-04-07 Societe Francaise D'aerosols Et De Bouchage Miniature dispenser having a venting groove in the pump housing
US5199167A (en) * 1989-07-04 1993-04-06 Societe Francaise D/Aerosols Et De Bouchage Method of manufacture of miniature dispenser
US5341956A (en) * 1992-11-05 1994-08-30 Risdon Corporation Method for assembling a dispensing container
WO1997011007A1 (en) * 1995-09-22 1997-03-27 Jose Manuel Navarro Bonet Pumping through a variable volume plunger chamber
US5655688A (en) * 1994-10-19 1997-08-12 Aptargroup, Inc. Atomizing pump with high stroke speed enhancement and valve system therefor
US5839617A (en) * 1997-07-29 1998-11-24 Owens-Illinois Closure Inc. Pump dispenser
US5850948A (en) * 1996-09-13 1998-12-22 Valois S.A. Finger-operable pump with piston biasing post
US5899363A (en) * 1997-12-22 1999-05-04 Owens-Illinois Closure Inc. Pump dispenser having a locking system with detents
US6036059A (en) * 1998-06-16 2000-03-14 Risdon/Ams Usa, Inc. Low profile and low force actuation dispensing pump
US20030209567A1 (en) * 2002-03-15 2003-11-13 L'oreal Assembly for packaging and dispensing a product, especially in the form of a sample
EP1525922A2 (en) 2003-10-24 2005-04-27 MICROSPRAY DELTA S.p.A. Simplified invertible pump for dispensing atomized liquids
US6948639B2 (en) * 2003-05-16 2005-09-27 L'oreal Device for packaging and dispensing a product, notably in the form of a sample
US20060261083A1 (en) * 2005-05-20 2006-11-23 Heiner Ophardt Foaming pump with improved air inlet valve
US20070283885A1 (en) * 2006-06-03 2007-12-13 Applied Materials Gmbh & Co. Kg Device for vaporizing materials with a vaporizer tube
CN104903005A (en) * 2012-11-06 2015-09-09 分配技术有限公司 Systems and methods to precisely control output pressure in buffered sprayers ("DUO1")
DE102014221393A1 (en) * 2014-10-21 2016-04-21 F. Holzer Gmbh Pump head for a dosing device, dosing and uses

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2133259A5 (en) * 1971-04-08 1972-11-24 Step
JPS52160766U (en) * 1976-05-31 1977-12-06
US4435135A (en) * 1981-04-03 1984-03-06 Seaquist Valve Company Pump assembly with improved seal
DE3832852A1 (en) * 1988-09-28 1990-03-29 Oeco Tech Entwicklung & Vertri automatic aerosol
US5335830A (en) * 1992-10-21 1994-08-09 Bespak Plc Pump dispenser for lotions and/or large doses of product
FR2704524B1 (en) * 1993-04-29 1995-07-28 Step Portable device for dispensing a fluid substance.
CA2186614C (en) 1995-01-27 2003-12-30 Shinji Shimada Liquid jet pump
GB2531997B (en) * 2014-10-20 2018-08-01 Rieke Packaging Systems Ltd Pump dispenser with deformable pump chamber wall

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3774849A (en) * 1971-08-19 1973-11-27 Step Soc Tech Pulverisation Atomisers for perfume and other liquids
US3762647A (en) * 1971-08-26 1973-10-02 T Tada Sprayer
US3770206A (en) * 1971-12-07 1973-11-06 T Tada Single hand operated sprayer
US3761022A (en) * 1972-04-04 1973-09-25 H Kondo A spring pressure accumulative spray device
US3923250A (en) * 1974-02-08 1975-12-02 Step Soc Tech Pulverisation Liquid perfume atomizers
US3949906A (en) * 1975-03-19 1976-04-13 The Risdon Manufacturing Company Liquid dispensing pump selectively sealable against leakage
JPS5258111A (en) * 1975-11-08 1977-05-13 Mitani Valve Co Ltd Sprayers of pressure accumulating type
US4063854A (en) * 1976-06-01 1977-12-20 Vca Corporation Spray pump assembly
US4117957A (en) * 1977-04-11 1978-10-03 George Duffey Atomizer valve assembly
US4273268A (en) * 1977-12-13 1981-06-16 Seaquist Valve Co., Div. Of Pittway Fluid spray pump
US4305530A (en) * 1978-01-23 1981-12-15 Yoshino Kogyosho Co., Ltd. Liquid atomizer
US4173297A (en) * 1978-01-30 1979-11-06 The Risdon Manufacturing Company Non-throttling manually reciprocated plunger pump for consumer-type liquid dispensing containers
US4607765A (en) * 1984-04-19 1986-08-26 S.A.R. S.P.A. Manually operated pump for the delivery under pressure of liquid substances
US4941595A (en) * 1988-10-10 1990-07-17 Monturas A.S. Spray pump
US4986453A (en) * 1989-05-15 1991-01-22 The Pittway Corporation Atomizing pump
US5102018A (en) * 1989-07-04 1992-04-07 Societe Francaise D'aerosols Et De Bouchage Miniature dispenser having a venting groove in the pump housing
US5199167A (en) * 1989-07-04 1993-04-06 Societe Francaise D/Aerosols Et De Bouchage Method of manufacture of miniature dispenser
US5341956A (en) * 1992-11-05 1994-08-30 Risdon Corporation Method for assembling a dispensing container
US5655688A (en) * 1994-10-19 1997-08-12 Aptargroup, Inc. Atomizing pump with high stroke speed enhancement and valve system therefor
US6024540A (en) * 1995-09-22 2000-02-15 Navarro Bonet; Jose Manuel Pump for pumping through a variable volume plunger chamber having a pair of plungers disposed in a stepped cylinder with a slide valve
ES2117936A1 (en) * 1995-09-22 1998-08-16 Navarro Bonet Jose Manuel Plungers pumping chamber of variable volume.
WO1997011007A1 (en) * 1995-09-22 1997-03-27 Jose Manuel Navarro Bonet Pumping through a variable volume plunger chamber
US5850948A (en) * 1996-09-13 1998-12-22 Valois S.A. Finger-operable pump with piston biasing post
US5839617A (en) * 1997-07-29 1998-11-24 Owens-Illinois Closure Inc. Pump dispenser
EP0894538A2 (en) 1997-07-29 1999-02-03 Owens-Illinois Closure Inc. Pump dispenser
US5899363A (en) * 1997-12-22 1999-05-04 Owens-Illinois Closure Inc. Pump dispenser having a locking system with detents
US6065647A (en) * 1997-12-22 2000-05-23 Owens-Illinois Closure Inc. Pump dispenser having a locking system with detents
US6036059A (en) * 1998-06-16 2000-03-14 Risdon/Ams Usa, Inc. Low profile and low force actuation dispensing pump
US20030209567A1 (en) * 2002-03-15 2003-11-13 L'oreal Assembly for packaging and dispensing a product, especially in the form of a sample
US6932246B2 (en) * 2002-03-15 2005-08-23 L'oreal Assembly for packaging and dispensing a product, especially in the form of a sample
US6948639B2 (en) * 2003-05-16 2005-09-27 L'oreal Device for packaging and dispensing a product, notably in the form of a sample
EP1525922A2 (en) 2003-10-24 2005-04-27 MICROSPRAY DELTA S.p.A. Simplified invertible pump for dispensing atomized liquids
US20060261083A1 (en) * 2005-05-20 2006-11-23 Heiner Ophardt Foaming pump with improved air inlet valve
US7337930B2 (en) 2005-05-20 2008-03-04 Gotohti.Com Inc. Foaming pump with improved air inlet valve
US20070283885A1 (en) * 2006-06-03 2007-12-13 Applied Materials Gmbh & Co. Kg Device for vaporizing materials with a vaporizer tube
CN104903005A (en) * 2012-11-06 2015-09-09 分配技术有限公司 Systems and methods to precisely control output pressure in buffered sprayers ("DUO1")
DE102014221393A1 (en) * 2014-10-21 2016-04-21 F. Holzer Gmbh Pump head for a dosing device, dosing and uses

Also Published As

Publication number Publication date Type
DE2033658A1 (en) 1971-01-21 application
JPS5016007B1 (en) 1975-06-10 grant
BE752932A (en) 1970-12-16 grant
BE752932A1 (en) grant
NL7010044A (en) 1971-01-11 application
GB1304903A (en) 1973-01-31 application

Similar Documents

Publication Publication Date Title
US3326469A (en) Spraying dispenser with separate holders for material and carrier fluid
US3221946A (en) Dispenser for pressurized reservoir of the aerosol variety
US3463093A (en) Simply operating push plunger pump housed in a container
US3239151A (en) Plunger tube vapouriser
US4489861A (en) Manual liquid dispensing device
US4175704A (en) Non-aerosol continuous spray dispenser
US4067499A (en) Non-aerosol continuous spray dispenser
US4274560A (en) Atomizing pump dispenser
US4892232A (en) Unit dose dispenser
US3907174A (en) Dispensing pump construction with foldable discharge nozzle
US4083476A (en) Snap device for manually actuated liquid-atomizing pumps
US6729500B1 (en) Twirling dip tube
US5417258A (en) Rechargeable device for spraying a fluid
US3797534A (en) Power operated means for filling aerosol cans
US4174056A (en) Pump type dispenser with continuous flow feature
US3790034A (en) Rechargeable sprayer
US2704690A (en) Spray gun
US5638996A (en) Precompression pump sprayer
US5873530A (en) Liquid atomizing spray gun
US4527741A (en) Trigger pump sprayer
US3685739A (en) Liquid dispensing apparatus
US4050860A (en) Spray pump assembly
US5038965A (en) Pump dispenser for delivering a predetermined dosage regardless of method of actuation
US4109832A (en) Pumping system having a pressure release
US4154374A (en) Finger operated spray pump