US3619539A - Fluid heated roll - Google Patents
Fluid heated roll Download PDFInfo
- Publication number
- US3619539A US3619539A US39834A US3619539DA US3619539A US 3619539 A US3619539 A US 3619539A US 39834 A US39834 A US 39834A US 3619539D A US3619539D A US 3619539DA US 3619539 A US3619539 A US 3619539A
- Authority
- US
- United States
- Prior art keywords
- heating
- roll
- heat
- fluid
- tapered surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 47
- 238000010438 heat treatment Methods 0.000 claims abstract description 45
- 230000004907 flux Effects 0.000 claims description 27
- 239000000696 magnetic material Substances 0.000 claims description 6
- 239000012141 concentrate Substances 0.000 claims description 3
- 239000000835 fiber Substances 0.000 abstract description 13
- 239000004753 textile Substances 0.000 abstract description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06C—FINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
- D06C15/00—Calendering, pressing, ironing, glossing or glazing textile fabrics
- D06C15/08—Rollers therefor
Definitions
- a roll for continuously heating an article of indefinite length such as a textile filament or fiber is disclosed.
- a source of heating is localized at a fluid filled chamber so the fluid can be boiled off and condensed on a tapered surface that is in heat exchange relationship with the exterior working surface of the roller means.
- the interior tapered surface acts to return the condensed fluid under the centrifugal action caused by the rotating roll means.
- This closed cycle fluid heating arrangement provides for uniform application of heat as it is removed from the surface of the heated roll, either by windage losses or by transfer to the moving article that is being heat treated.
- the present invention is directed to a self compensating type of heating arrangement for a heated roll so that the surface temperature remains uniform regardless of the type of filament being drawn around the roll or the windage losses at the surface of the roll. This is accomplished by utilizing a fluid and vapor fill within the roll and a tapered cylindrical configuration of the internal surface so that the centrifugal force operating on the fluid concentrates the fluid in a confined area so that it can be'boiled to generate a vapor that transfers heat uniformly as needed to the internal surface of the heated roll.
- This type of an arrangement is self-compensating compensating in that as the surface of the roll is cooled more fluid condenses on the surface opposite the cooled portion thereby transferring more heat.
- the condensed fluid is centrifugally driven back to a concentrated heating area by the tapered configuration of the internal surface and the cycle continues or begins again.
- the heat necessary for operating the heated roll can be concentrated at the point of collection of the fluid itself, and provides for an exceedingly simple structure that is self-compensating in its operation.
- FIG. I is a cross section of a preferred embodiment which utilizes a single cylindrical fluid chamber that is tapered so that the condensate is concentrated at a heated zone, and;
- FIG. 2 is a partial cross section similar to FIG. 1 but which uses a slightly different magnetic circuit for the inductive heater.
- a heated roll is generally shown at and includes a generally cylindrically shaped shell which has an outer surface 12 that is the work surface upon which a number of turns 13 of a filament or fiber are represented in phantom.
- the filament [3 usually is close to its melting temperature and this puts a premium on uniform heating of surface 12.
- the internal surface 14 of the shell 11 is tapered from a smallest diameter 15 at an end 16 to a largest diameter 17 at an end plate 20.
- the two end plates 16 and 20 along with the shell 11 form a completely enclosed fluidtight chamber 21 that contains a heat exchange fluid 22 which is shown concentrated at the interior tapered surface having the largest diameter near the end plate 20.
- the type of heat exchange fluid 22 selected depends on the temperature of operation of the heated roll 10 and could be selected so that when the heated roll 10 is operating at a proper temperature, the vapor pressure within the chamber 21 would be slightly below atmospheric so that the external atmospheric pressure on the shell 11 would cause it to be in a slight state of compression. This allows the shell II to be of a minimum thickness.
- the wall thickness and vapor pressure can be selected over a wide range to suit the function desired. Vapor pressures over a wide range of both positive and negative with respect to atmospheric could be used.
- the chamber 21 is filled by means of a tapered hole 23 and is sealed by a ball 24. Before the ball 24 is put into place, the chamber 21 is evacuated and filled with the desired amount of the heat exchange liquid or fluid 22. Fluid 22 normally is a liquid that can be partially vaporized by heat. The ball 24 is then driven into a tapered hole 23 which seals chamber 21 in a fluidtight manner.
- a hub 25 Formed integrally with the end plate 20 is a hub 25 that is integrally attached to a shaft 26 that is mounted in a bearing 27.
- the bearing 27 in turn is mounted in a mounting means 30 that has extensions 31 and 32 that mount the shaft 26 and the heated roll 10 from a work surface 33.
- the work surface 33 is part of a larger work surface upon which are mounted a number of heated rolls, depending on the type of machine desired.
- the shaft 26 is driven by an external motor or drive mechanism, not shown, and is not material to the present invention.
- the drive shaft 26 can be coupled to any number of other heated rolls 10 or can be individually driven.
- the normal type of driving mechanism for shaft 26 would be an individual synchronous motor.
- a primary winding 35 connected by conductors 36 and 37 to an alternating current source of potential or provided.
- a magnetic structure 40 which is Ushaped in general cross section.
- a ring 41 is placed around the shell 11 and is of a magnetic material thereby providing a magnetic circuit with a pair of small air gaps 43 and 44.
- a ring of conductive material such as copper 45 is placed in intimate contact with the magnetic ring 41. It is obvious that flux device the generated in coil 35 passes around the magnetic circuit made up of the U- shaped member 40, the leg 4], and the two air gaps 43 and 44.
- This flux encircles or links the copper or conductive ring 45, thereby generating a substantial amount of current in the ring. Since this is a short circuited ring, the current flows freely and generates heat as a result of the current. This heat is transferred through the shell 11 at 46 to the heat exchange fluid 22, boiling the fluid and creating a vapor of the fluid 22 in chamber 21. This vapor condenses on the internal wall 14 as is needed to meet the heat load caused by the windage loss of the rotation of the heated roll 10, by conduction to other parts of the device or by the heat being transferred to the filament 13.
- the spinning action of the heated roll 10 causes the fluid to travel back along the taper to he heat exchange fluid 22 which is ccntrifugally held against the interior tapered surface 14 in the area directly opposite the heating ring 45 interior of the shell 11 at 46.
- the fluid is then revaporized and sent out as a vapor to condense again thereby continuously providing heat transfer in a closed fluid circuit.
- more vapor or less vapor condenses on the cylindrical internal tapered surface 14 to maintain a uniform heat flow so that the filament 13 can be beat treated at a constant temperature regardless of the varying load caused by external cooling forces on the heated roll 10.
- the heated roller has a shell 11' made of a magnetic material. This allows the elimination of the magnetic ring 41 that had been previously used.
- the copper or conductive ring 45 is directly in contact with the shell 11'. This allows a more intimate and rapid heat transfer from the ring 45 to the fluid 22 and further allows the magnetic air gaps 43 and 44 to be from the core member 40 the shell 1 l itself.
- the present invention it is possible to provide a heated roll that is exceedingly simple in construction and which provides for a uniform heating of the external surface of the heated roll with varying loads and windage.
- the arrangement is self-compensating and is dependent on the taper of the interior surface for return of the condensed vapor back to a heated zone adjacent the conductive ring 45.
- the means of heating the fluid can be varied from that disclosed to other heating means such as conventional electric heaters mounted internally of the shell 11 or by radiant heat applied to a localized zone opposite the fluid fill 22. Since there are many possible variations of the mode of carrying the present invention out, and in the shape of the fluidtight chamber, the applicant wishes to be limited in the scope of his invention solely by the scope of the appended claims.
- a heated roll constructed for heating a moving article of indeterminate length, comprising: roll means having an exterior surface for heat treating said moving article of indeterminate length and including drive means adapted to be rotated to rotate said roll means; said roll means having an interior tapered surface in heat exchange relationship with said exterior surface; fluidtight chamber means having a heat exchange fluid partially filling said chamber means and including said tapered interior surface as a portion thereof to centrifugally concentrate said fluid at the largest diameter of said interior tapered surface; and heating means for concentrating heat at said largest diameter of said tapered surface to transfer heat to said fluid to boil some of said fluid into a vapor thereby transferring heat to said interior tapered surface by said vapor condensing on said interior tapered surface to give upheat to uniformly heat said roll means, said condensed fluid being returned to said largest diameter by centrifugal action of the rotation of said roll means and the interior tapered surface.
- a heated roll constructed for heating a moving article as described in claim 1 wherein said heating means includes a flux generating structure which when energized with alternating current generates an alternating magnetic flux; and a shorted conductive ring linked by said alternating magnetic flux to have a heating current induced in said ring to heat said fluid.
- a heated roll constructed for heating a moving article as described in claim 2 wherein said flux generating structure and said shorted conductive ring encircle said roll means adjacent the said largest diameter of said interior tapered surface.
- a heated roll constructed for heating a moving article as described in claim 3 wherein said roll means is of a magnetic material and forms part of an alternating magnetic flux path for said flux generating structure.
- a heated roll constructed for heating a moving article as described in claim 1 wherein said cylindrical interior tapered surface has a uniform taper and is closed by a pair of generally parallel plates to form a single cylindrical fluidtight chamber.
- a heated roll constructed for heating a moving article as described in claim 5 wherein said heating means includes a flux generating structure which when energized with alternating current generates an alternating magnetic flux; and a shorted conductive ring linked by said alternating magnetic flux to have a heating current induced in said ring to heat said uid.
- a heated roll constructed for heating a moving article as described in claim 6 wherein said flux generating structure and said shorted conductive ring encircle said roll means adjacent said largest diameter of said interior tapered surface.
- a heated roll constructed for heating a moving article as described in claim 7 wherein said roll means is of a magnetic material and forms part of an alternating magnetic flux path for said flux generating structure.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- General Induction Heating (AREA)
- Treatment Of Fiber Materials (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US3983470A | 1970-05-22 | 1970-05-22 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3619539A true US3619539A (en) | 1971-11-09 |
Family
ID=21907576
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US39834A Expired - Lifetime US3619539A (en) | 1970-05-22 | 1970-05-22 | Fluid heated roll |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US3619539A (enExample) |
| CH (1) | CH522056A (enExample) |
| DE (1) | DE2121295A1 (enExample) |
| FR (1) | FR2091435A5 (enExample) |
| GB (1) | GB1343614A (enExample) |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3771591A (en) * | 1971-07-08 | 1973-11-13 | Buehler Ag Geb | Method and device for regulating the temperature of rotating grinding rolls having a hollow interior |
| US3999400A (en) * | 1970-07-10 | 1976-12-28 | Gray Vernon H | Rotating heat pipe for air-conditioning |
| US4519778A (en) * | 1982-12-06 | 1985-05-28 | Rieter Machine Works, Ltd. | Heatable godet |
| US4526533A (en) * | 1981-10-02 | 1985-07-02 | A. Monforts Gmbh & Co. | Cylinder for guiding a web of textile material |
| US4616474A (en) * | 1985-04-25 | 1986-10-14 | Wrap & Roll, Inc. | Mobile film wrapping apparatus |
| US4644668A (en) * | 1985-08-28 | 1987-02-24 | E. I. Du Pont De Nemours And Company | Dryer roll |
| US5119886A (en) * | 1989-10-25 | 1992-06-09 | The Texas A&M University System | Heat transfer cylinder |
| US5254070A (en) * | 1991-02-26 | 1993-10-19 | Barmag Ag | Godet |
| US5611394A (en) * | 1990-11-27 | 1997-03-18 | Mitsubishi Jukogyo Kabushiki Kaisha | Roll charged with heat transfer medium |
| US5665043A (en) * | 1994-11-10 | 1997-09-09 | Barmag Ag | Godet for heating and advancing yarns |
| US6095237A (en) * | 1997-02-27 | 2000-08-01 | Voith Sulzer Finishing Gmbh | Roll arrangement and method for cooling a roll |
| US6580896B2 (en) * | 2000-12-22 | 2003-06-17 | Samsung Electronics Co., Ltd. | Fusing roller assembly for electrophotographic image forming apparatus |
| US20040196632A1 (en) * | 2003-04-01 | 2004-10-07 | Chin-Ming Chen | Heat dissipation module |
| US20050006059A1 (en) * | 2003-06-03 | 2005-01-13 | Nicolai Tarasinski | Heat exchanger |
| US20170145559A1 (en) * | 2015-11-20 | 2017-05-25 | Sumitomo Chemical Company, Limited | Heating roller and film production method |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102023004245A1 (de) * | 2023-10-21 | 2025-04-24 | Oerlikon Textile Gmbh & Co. Kg | Galettenmantel und Galette |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2273423A (en) * | 1939-06-23 | 1942-02-17 | Budd Industion Heating Inc | Electrically heated roll |
| US2330121A (en) * | 1940-10-04 | 1943-09-21 | Jack & Heintz Inc | Motor cooling system |
| US3185816A (en) * | 1963-08-30 | 1965-05-25 | Du Pont | Temperature controlled device |
| US3448233A (en) * | 1967-09-26 | 1969-06-03 | Pillar Corp | Induction heating assembly |
-
1970
- 1970-05-22 US US39834A patent/US3619539A/en not_active Expired - Lifetime
-
1971
- 1971-04-19 GB GB2568171*A patent/GB1343614A/en not_active Expired
- 1971-04-30 DE DE19712121295 patent/DE2121295A1/de active Pending
- 1971-04-30 CH CH645271A patent/CH522056A/de not_active IP Right Cessation
- 1971-05-11 FR FR7116924A patent/FR2091435A5/fr not_active Expired
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2273423A (en) * | 1939-06-23 | 1942-02-17 | Budd Industion Heating Inc | Electrically heated roll |
| US2330121A (en) * | 1940-10-04 | 1943-09-21 | Jack & Heintz Inc | Motor cooling system |
| US3185816A (en) * | 1963-08-30 | 1965-05-25 | Du Pont | Temperature controlled device |
| US3448233A (en) * | 1967-09-26 | 1969-06-03 | Pillar Corp | Induction heating assembly |
Non-Patent Citations (1)
| Title |
|---|
| The Rotating Heat Pipe A Wickless, Hollow Shaft for Transferring High Heat Fluxes, Vernon H. Gray, Aug. 3, 1969, Publication Number 69 HT 19, American Society of Mechanical Engineers * |
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3999400A (en) * | 1970-07-10 | 1976-12-28 | Gray Vernon H | Rotating heat pipe for air-conditioning |
| US3771591A (en) * | 1971-07-08 | 1973-11-13 | Buehler Ag Geb | Method and device for regulating the temperature of rotating grinding rolls having a hollow interior |
| US4526533A (en) * | 1981-10-02 | 1985-07-02 | A. Monforts Gmbh & Co. | Cylinder for guiding a web of textile material |
| US4519778A (en) * | 1982-12-06 | 1985-05-28 | Rieter Machine Works, Ltd. | Heatable godet |
| US4616474A (en) * | 1985-04-25 | 1986-10-14 | Wrap & Roll, Inc. | Mobile film wrapping apparatus |
| US4644668A (en) * | 1985-08-28 | 1987-02-24 | E. I. Du Pont De Nemours And Company | Dryer roll |
| US5119886A (en) * | 1989-10-25 | 1992-06-09 | The Texas A&M University System | Heat transfer cylinder |
| US5611394A (en) * | 1990-11-27 | 1997-03-18 | Mitsubishi Jukogyo Kabushiki Kaisha | Roll charged with heat transfer medium |
| US5254070A (en) * | 1991-02-26 | 1993-10-19 | Barmag Ag | Godet |
| US5665043A (en) * | 1994-11-10 | 1997-09-09 | Barmag Ag | Godet for heating and advancing yarns |
| US6095237A (en) * | 1997-02-27 | 2000-08-01 | Voith Sulzer Finishing Gmbh | Roll arrangement and method for cooling a roll |
| US6580896B2 (en) * | 2000-12-22 | 2003-06-17 | Samsung Electronics Co., Ltd. | Fusing roller assembly for electrophotographic image forming apparatus |
| US20040196632A1 (en) * | 2003-04-01 | 2004-10-07 | Chin-Ming Chen | Heat dissipation module |
| US20050006059A1 (en) * | 2003-06-03 | 2005-01-13 | Nicolai Tarasinski | Heat exchanger |
| US20170145559A1 (en) * | 2015-11-20 | 2017-05-25 | Sumitomo Chemical Company, Limited | Heating roller and film production method |
| CN106965356A (zh) * | 2015-11-20 | 2017-07-21 | 住友化学株式会社 | 加热辊以及膜制造方法 |
| US10563299B2 (en) * | 2015-11-20 | 2020-02-18 | Sumitomo Chemical Company, Limited | Heating roller and film production method |
| CN106965356B (zh) * | 2015-11-20 | 2020-11-20 | 住友化学株式会社 | 加热辊以及膜制造方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| GB1343614A (en) | 1974-01-16 |
| CH522056A (de) | 1972-04-30 |
| FR2091435A5 (enExample) | 1972-01-14 |
| DE2121295A1 (de) | 1971-12-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3619539A (en) | Fluid heated roll | |
| GB2086875B (en) | Manufacturing an electrically conductive coating | |
| US4717338A (en) | Heater drum for manufacturing process | |
| EP3288339B1 (en) | Induction heating roller | |
| US3772492A (en) | Induction heater for fiber processing roll | |
| US3448233A (en) | Induction heating assembly | |
| JPH0148409B2 (enExample) | ||
| CN105155006A (zh) | 高速旋转热管式热辊及其传热加工方法 | |
| US1121014A (en) | Electrical apparatus. | |
| US4497626A (en) | Heatable godet and a method of heating a godet | |
| US2541416A (en) | Heated drying roller | |
| JP3222812U (ja) | 電磁誘導加熱式熱媒体油循環装置 | |
| US5902503A (en) | Heated godet for the heating of synthetic yarn | |
| JPH0749192A (ja) | ロール装置 | |
| FR2368547A2 (fr) | Procede et appareil pour le traitement thermique de zone de longues pieces en alliage de zirconium | |
| CN212335372U (zh) | 一种高速旋转铝合金热辊 | |
| JPWO2019077864A1 (ja) | 加熱ローラ及び紡糸延伸装置 | |
| JPS5836839B2 (ja) | 発熱回転筒による加熱装置 | |
| GB570373A (en) | Improvements in and relating to the treatment of tubing | |
| GB1237308A (en) | A temperature control device for a rotary heating roll | |
| JPS624918A (ja) | 誘導発熱ロ−ラ装置 | |
| WO2019077899A1 (ja) | 誘導加熱ローラ及び紡糸延伸装置 | |
| JPS6031097Y2 (ja) | 熱媒封入型加熱装置 | |
| GB879485A (en) | Improvements in means for heat treating thermoplastic yarns | |
| SU66187A1 (ru) | Приспособление дл индукционного нагрева токами высокой частоты кулачков кулачкового вала и т.п. |