US3617360A - High temperature metallic diffusion coating and method - Google Patents

High temperature metallic diffusion coating and method Download PDF

Info

Publication number
US3617360A
US3617360A US780177A US3617360DA US3617360A US 3617360 A US3617360 A US 3617360A US 780177 A US780177 A US 780177A US 3617360D A US3617360D A US 3617360DA US 3617360 A US3617360 A US 3617360A
Authority
US
United States
Prior art keywords
coating
percent
mixture
metallic
article surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US780177A
Other languages
English (en)
Inventor
David J Levine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Application granted granted Critical
Publication of US3617360A publication Critical patent/US3617360A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/02Pretreatment of the material to be coated

Definitions

  • the particulate mixture includes, along with the alloy and an inert filler, about 0.l-l weight percent of a halide salt activator which will react with a metallic element in the ternary alloy to form a halide of such metallic element under sufficient time and temperature conditions in a nonoxidizing atmosphere.
  • a halide salt activator which will react with a metallic element in the ternary alloy to form a halide of such metallic element under sufficient time and temperature conditions in a nonoxidizing atmosphere.
  • chlorides and fluorides of ammonium and of the alkali metals of Group I A of the Periodic Table of Elements Specifically preferred is about 0.l-2 percent of halides selected from NaF, KF, NH,C1 and N H F.
  • Another object is to provide such an improved coating having an outer portion which will act as an interdiffusion barrier between oxidizing and sulfidizing environments around a coated article and the article basis metal.
  • an improved combination of oxidation and sulfidation resistance can be obtained in a diffusion bonded coating of about 1-5 mils as measured in the ascoated condition by embedding in an outer portion of the coating, such as the one described in the above identified copending application, about 5-50 volume percent of entrapped oxide particles of about lmicrons in size and thermally stable to at least about 2000 F.
  • Such dispersion in the outer portion can be accomplished, according to the method form of the present invention, by first applying to a surface of an article to be coated an interim coating of about 1-25 mils in thickness of such oxide particles in a nonfused, loosely held, vapor permeable condition and of a type which will not enter into the reaction of the metallic diffusion coating.
  • the metallic diffusion coating such as defined by the aboveidentified copending application, penetrates through the particles of the interim coating entrapping the particles in the coating outer portion during the heating cycle. Because the oxide particles are about 1-20 microns in size and thus are larger than a size which would allow them to move interstitially into the basis metal or alloy, the oxide particles are confined to the coating outer portion.
  • the useful life of metallic diffusion coatings applied to high temperature operating components such as of a gas turbine engine is dependent in a significant amount on the stability of the interface between the coating and the basis metal to which it has been applied.
  • coating life is further dependent upon coating surface degradation resulting from contact with erosive, corrosive or oxidizing environments.
  • inhibition of diffusion through the coating of oxidizing and sulfidizing agents toward the coating basis metal interface can significantly lengthen the useful life of the coating.
  • the present invention recognizes that the introduction of the above defined oxide particles in an outer portion of the coating results in such a barrier to that undesirable migration.
  • one form of the above described ternary alloy powder used in the evaluation of the present invention consisted nominally, by weight, of 61 percent Ti, 34 percent Al, and about 4.5 percent combined carbon.
  • This ternary alloy in powder form will be hereinafter identified as Alloy C.”
  • Alloy C a ternary alloy in powder form
  • a blend of about 40 weight percent Alloy C powder and about 60 weight percent AI,O, powder was mixed with about 0.2 weight percent NHJ.
  • the Algoa powder acts to inhibit sintering of the Alloy C powders but does not enter into the coating process.
  • the method of the present invention contemplates the application to the surface of an article to be diffusion coated of oxide particles, stable both to the processing temperature and mechanism, as an interim or preliminary coating in a nonfused, loosely held vapor permeable condition.
  • This can be and was in this example accomplished by first making a slurry of the oxide particles and a liquid binder which will decompose without residue upon heating.
  • a slurry of the oxide particles and a liquid binder which will decompose without residue upon heating.
  • an acrylic resin in toluene or acetone can be used.
  • the thickness of the interim coating is not critical. Therefore, the slurry can be adjusted in concentration to provide, for example, from about l25 mils of oxide on the surface. However, from a practical viewpoint no more than about l5 mils is necessary.
  • the oxide particles are no more than about 20 microns in size, it is preferred that a variety in size of particles be present rather than particles all of the same size.
  • TIOg or A1 0 or their mixtures in particle sizes of about 1-20 microns be used in the present invention when coating surfaces based on one of the elements Fe, Ni or C0.
  • the slurry can be applied to the article surface by a variety of methods such as brushing, dipping, spraying, etc.
  • a paint spray gun was used with a slurry to apply a coating of a powder mixture of about 50 weight percent each of AIgog and After application of the oxide coating to the article surface to be coated, the article was placed in a container, such as retort, along with the previously described particulate mixture. including powdered Alloy C. It should be recognized, however, that as indicated before, the Ase, in the particulate mix is included as a filler and does not enter into the coating reaction. Therefore, if a method such as is described in copending application Ser. No.
  • the retort enclosing the particulate mixture and the article surface including the interim oxide coating was provided with a nonoxidizing atmosphere, in this example hydrogen, and was heated in the range of l400-2 F. for 1-4 hours, for example, about 1950" F. for 3-4 hours. This time and temperature was sufficient to allow deposition of such elements as aluminum and titanium from powdered ternary Alloy C, through their halide vapor state, onto the article surface by first penetrating through and subsequently entrapping the particles of the oxide of the interim coating. The time and temperature selected must be sufficient to allow further interdiffusion between the deposited elements and the article surface.
  • the treated article surface was removed from the retort. Loosely adhering excess powders either from the particulate mix, if the article contacted such mix, or from the interim oxide coating, or both, were removed from the coated surface. It has been found that although relatively thick interim coatings of oxides can be applied to the surface, the titanium or aluminum or both from the ternary alloy powder will penetrate through the excess oxides to leave them only loosely adherent and readily removable from the surface after processing. Thus a reasonable excess thickness of the interim coating is not critical. It is preferred that about 2-10 mils of oxide be applied as the loosely adherent, nonfused, vapor permeable particles comprising the interim coating.
  • Practice of the method of the present invention provides an article surface, particularly one based on Fe, Ni or Co, with a diffusion bonded, two portion coating: a coating outer portion and a coating inner interdifi'usion portion.
  • Each portion includes primarily intermetallics formed from the basis element, for example, Ni, Co or Fe, and certain of any alloying elements of the article surface, with metallic diffusion coating elements such as titanium, aluminum, etc.
  • the interrnetallics result from interdiffusion between elements of the coating and of the basis metal or alloy.
  • the entrapped oxide particles in the coating outer portion because of their size in the range of about 1-20 microns, cannot move interstitially with respect to the basis metal in the formation of coating inner diffusion portion between the outer portion of the coating and the article surface. Therefore only the coating outer portion includes, in addition to the intermetallics, entrapped oxide particles.
  • the coating inner interdiffusion portion and the coating outer portion together in the as-coated condition must represent a thickness no greater than about mils. Thicknesses in excess of that amount result in coatings having poor adherence properties.
  • the present invention contemplates a coating the outer portion of which includes, in addition to the above described intermetallics and diffusion products, about 5-50 volume percent of dispersed oxides.
  • the oxides preferred for dispersion in the outer portion of the coating in the practice of the method of the present invention in coating Fe, Ni or C0 base alloys include A1 0 or TiO or their mixtures. if such a mixture of oxides is used, it has been found that about 50 percent by weight of each is a satisfactory mixture and that a varied size mixture of particles is preferred in the range of l-l 0 microns.
  • the type of diffusion coating with which this invention is particularly concerned can be applied to alloy surfaces based on elements selected from Ni, Co and Fe.
  • Typical of data generated in the evaluation of the present invention is that relating to high temperature nickel base superalloys, the compositions for which are shown in the following Table I as including such alloying elements as Cr, Co, Mo, W, Al, Ti, Fe, etc.
  • Specimens of each of the nickel base alloys listed in Table l were coated in the manner described in the above specific example: A mixture of 50 percent by volume each of A1 0 and of 'liO of particle size in the range of l-lO microns was applied as an interim coating by spraying from a slurry of the oxide particles and acrylic resin in acetone. The coating 'method was conducted at about l950 F. for 3-4 hours in a TABLE ll STATIC OXIDATION: 2 1 00 F.-l00 hrs.
  • the life of the coating of the present invention is significantly better than the same coating without entrapped oxides, even though both coatings were capable of withstanding more than 100 hours under oxidizing conditions alone as shown by the data from which table ll was selected.
  • the oxide particles are oxides selected from the group consisting of oxides of Al, Ti and their mixtures; and the metallic diffusion coating is applied by:
  • a ternary alloy consisting essentially of, by weight, about 50-70 percent Ti, 20-48 percent Al and 0.5-9 percent combined carbon, the alloy having a dispersion of Ti AlC complex carbide in a matrix selected from the group consisting of Ti, Al and their alloys, and
  • a halide salt activator which will react with a metallic element in the ternary alloy to form a halide of the metallic ele- 3 and then heating the surface and the mixture in the nonoxidizing atmosphere at a temperature and for a time sufficient 1) to form a halide vapor of at least one metallic component of the ternary alloy, (2) to allow penetration of the vapor through the interim coating to the metallic article surface to deposit the metallic component on the surface and (3) to allow both i. diffusion of the deposited metallic component with the article surface and ii. entrapment of particles of the interim coating by the deposited metallic component to provide the metallic coating comprising a coating outer portion including the entrapped oxides and a coating inner interdiffusion portion intermediate of and diffusion bonded with both the article surface and the coating outer portion.
  • the basis element is Ni
  • the interim coating is about l-l5 mils in thickness
  • the halide salt activator is selected from the group consisting of chlorides and fluorides of ammonium and of the alkali metals of Group I A of the Periodic Table of Elements;
  • the article surface and mixture are heated at a temperature of about 1400-2100F. for about [-4 hours.
  • the mixture consists essentially of, by weight:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Catalysts (AREA)
US780177A 1968-11-29 1968-11-29 High temperature metallic diffusion coating and method Expired - Lifetime US3617360A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US78017768A 1968-11-29 1968-11-29

Publications (1)

Publication Number Publication Date
US3617360A true US3617360A (en) 1971-11-02

Family

ID=25118868

Family Applications (1)

Application Number Title Priority Date Filing Date
US780177A Expired - Lifetime US3617360A (en) 1968-11-29 1968-11-29 High temperature metallic diffusion coating and method

Country Status (9)

Country Link
US (1) US3617360A (enrdf_load_stackoverflow)
BE (1) BE736134A (enrdf_load_stackoverflow)
CH (1) CH543595A (enrdf_load_stackoverflow)
DE (1) DE1939115C3 (enrdf_load_stackoverflow)
ES (1) ES370956A1 (enrdf_load_stackoverflow)
FR (1) FR2024462A1 (enrdf_load_stackoverflow)
GB (1) GB1250247A (enrdf_load_stackoverflow)
IL (1) IL32374A (enrdf_load_stackoverflow)
SE (1) SE350536B (enrdf_load_stackoverflow)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997027965A1 (en) * 1996-01-16 1997-08-07 Drexel University Synthesis of h-phase products
US6309699B2 (en) * 1998-02-20 2001-10-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Method of producing a metallic part exhibiting excellent oxidation resistance
US20020092583A1 (en) * 2001-01-16 2002-07-18 Pelton Alan R. Medical devices, particularly stents, and methods for their manufacture
EP1939318A2 (en) 2006-12-27 2008-07-02 General Electric Company Carburization process for stabilizing nickel-based superalloys

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3415672A (en) * 1964-11-12 1968-12-10 Gen Electric Method of co-depositing titanium and aluminum on surfaces of nickel, iron and cobalt
US3477831A (en) * 1966-01-27 1969-11-11 United Aircraft Corp Coated nickel-base and cobalt-base alloys having oxidation and erosion resistance at high temperatures

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3415672A (en) * 1964-11-12 1968-12-10 Gen Electric Method of co-depositing titanium and aluminum on surfaces of nickel, iron and cobalt
US3477831A (en) * 1966-01-27 1969-11-11 United Aircraft Corp Coated nickel-base and cobalt-base alloys having oxidation and erosion resistance at high temperatures

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997027965A1 (en) * 1996-01-16 1997-08-07 Drexel University Synthesis of h-phase products
US6309699B2 (en) * 1998-02-20 2001-10-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Method of producing a metallic part exhibiting excellent oxidation resistance
US20020092583A1 (en) * 2001-01-16 2002-07-18 Pelton Alan R. Medical devices, particularly stents, and methods for their manufacture
EP1939318A2 (en) 2006-12-27 2008-07-02 General Electric Company Carburization process for stabilizing nickel-based superalloys

Also Published As

Publication number Publication date
IL32374A0 (en) 1969-08-27
DE1939115B2 (de) 1978-11-23
IL32374A (en) 1973-03-30
BE736134A (enrdf_load_stackoverflow) 1969-12-16
CH543595A (de) 1973-10-31
FR2024462A1 (enrdf_load_stackoverflow) 1970-08-28
ES370956A1 (es) 1972-01-01
SE350536B (enrdf_load_stackoverflow) 1972-10-30
DE1939115C3 (de) 1979-07-26
DE1939115A1 (de) 1970-06-11
GB1250247A (enrdf_load_stackoverflow) 1971-10-20

Similar Documents

Publication Publication Date Title
US3961098A (en) Coated article and method and material of coating
US3415672A (en) Method of co-depositing titanium and aluminum on surfaces of nickel, iron and cobalt
US3649225A (en) Composite coating for the superalloys
US3598638A (en) Diffusion metallic coating method
US3955935A (en) Ductile corrosion resistant chromium-aluminum coating on superalloy substrate and method of forming
US4145481A (en) Process for producing elevated temperature corrosion resistant metal articles
US4070507A (en) Platinum-rhodium-containing high temperature alloy coating method
US3978251A (en) Aluminide coatings
US3748110A (en) Ductile corrosion resistant coating for nickel base alloy articles
US5688607A (en) Platinum group silicide modified aluminide coated metal superalloy body
US3741791A (en) Slurry coating superalloys with fecraiy coatings
US3896244A (en) Method of producing plasma sprayed titanium carbide tool steel coatings
DE1700136A1 (de) Dichtelement
US3837901A (en) Diffusion-coating of nickel-base superalloy articles
US4241113A (en) Process for producing protective coatings on metals and metal alloys for use at high temperatures
US3779720A (en) Plasma sprayed titanium carbide tool steel coating
US4141760A (en) Stainless steel coated with aluminum
JP2002504628A (ja) 耐腐蝕及び酸化スラリ層の作成方法
US3764373A (en) Diffusion coating of metals
US3620693A (en) Ductile, high-temperature oxidation-resistant composites and processes for producing same
US3573963A (en) Method of coating nickel base alloys with a mixture of tungsten and aluminum powders
US3617360A (en) High temperature metallic diffusion coating and method
US2924004A (en) Refractory metal bodies
US3647497A (en) Masking method in metallic diffusion coating
US3718962A (en) High temperature metallic diffusion coating