US3617360A - High temperature metallic diffusion coating and method - Google Patents
High temperature metallic diffusion coating and method Download PDFInfo
- Publication number
- US3617360A US3617360A US780177A US3617360DA US3617360A US 3617360 A US3617360 A US 3617360A US 780177 A US780177 A US 780177A US 3617360D A US3617360D A US 3617360DA US 3617360 A US3617360 A US 3617360A
- Authority
- US
- United States
- Prior art keywords
- coating
- percent
- mixture
- metallic
- article surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 93
- 239000011248 coating agent Substances 0.000 title claims abstract description 85
- 238000009792 diffusion process Methods 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims description 16
- 239000002245 particle Substances 0.000 claims abstract description 31
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 15
- 239000000956 alloy Substances 0.000 claims abstract description 15
- 239000000203 mixture Substances 0.000 claims description 39
- 229910002058 ternary alloy Inorganic materials 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 229910052719 titanium Inorganic materials 0.000 claims description 10
- 239000012190 activator Substances 0.000 claims description 7
- -1 halide salt Chemical class 0.000 claims description 7
- 150000004820 halides Chemical class 0.000 claims description 7
- 239000000945 filler Substances 0.000 claims description 6
- 239000006185 dispersion Substances 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 3
- 229910052783 alkali metal Inorganic materials 0.000 claims description 3
- 150000001340 alkali metals Chemical class 0.000 claims description 3
- 150000001805 chlorine compounds Chemical group 0.000 claims description 3
- 150000004673 fluoride salts Chemical class 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 230000000737 periodic effect Effects 0.000 claims description 3
- 230000035515 penetration Effects 0.000 claims description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 abstract description 13
- 229910052759 nickel Inorganic materials 0.000 abstract description 9
- 229910052742 iron Inorganic materials 0.000 abstract description 8
- 230000003647 oxidation Effects 0.000 abstract description 6
- 238000007254 oxidation reaction Methods 0.000 abstract description 6
- 238000005486 sulfidation Methods 0.000 abstract description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract 2
- 239000010941 cobalt Substances 0.000 abstract 1
- 229910017052 cobalt Inorganic materials 0.000 abstract 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 abstract 1
- 239000010936 titanium Substances 0.000 description 13
- 239000000843 powder Substances 0.000 description 9
- 239000002184 metal Substances 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000001464 adherent effect Effects 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 229910000765 intermetallic Inorganic materials 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229910002065 alloy metal Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C10/00—Solid state diffusion of only metal elements or silicon into metallic material surfaces
- C23C10/02—Pretreatment of the material to be coated
Definitions
- the particulate mixture includes, along with the alloy and an inert filler, about 0.l-l weight percent of a halide salt activator which will react with a metallic element in the ternary alloy to form a halide of such metallic element under sufficient time and temperature conditions in a nonoxidizing atmosphere.
- a halide salt activator which will react with a metallic element in the ternary alloy to form a halide of such metallic element under sufficient time and temperature conditions in a nonoxidizing atmosphere.
- chlorides and fluorides of ammonium and of the alkali metals of Group I A of the Periodic Table of Elements Specifically preferred is about 0.l-2 percent of halides selected from NaF, KF, NH,C1 and N H F.
- Another object is to provide such an improved coating having an outer portion which will act as an interdiffusion barrier between oxidizing and sulfidizing environments around a coated article and the article basis metal.
- an improved combination of oxidation and sulfidation resistance can be obtained in a diffusion bonded coating of about 1-5 mils as measured in the ascoated condition by embedding in an outer portion of the coating, such as the one described in the above identified copending application, about 5-50 volume percent of entrapped oxide particles of about lmicrons in size and thermally stable to at least about 2000 F.
- Such dispersion in the outer portion can be accomplished, according to the method form of the present invention, by first applying to a surface of an article to be coated an interim coating of about 1-25 mils in thickness of such oxide particles in a nonfused, loosely held, vapor permeable condition and of a type which will not enter into the reaction of the metallic diffusion coating.
- the metallic diffusion coating such as defined by the aboveidentified copending application, penetrates through the particles of the interim coating entrapping the particles in the coating outer portion during the heating cycle. Because the oxide particles are about 1-20 microns in size and thus are larger than a size which would allow them to move interstitially into the basis metal or alloy, the oxide particles are confined to the coating outer portion.
- the useful life of metallic diffusion coatings applied to high temperature operating components such as of a gas turbine engine is dependent in a significant amount on the stability of the interface between the coating and the basis metal to which it has been applied.
- coating life is further dependent upon coating surface degradation resulting from contact with erosive, corrosive or oxidizing environments.
- inhibition of diffusion through the coating of oxidizing and sulfidizing agents toward the coating basis metal interface can significantly lengthen the useful life of the coating.
- the present invention recognizes that the introduction of the above defined oxide particles in an outer portion of the coating results in such a barrier to that undesirable migration.
- one form of the above described ternary alloy powder used in the evaluation of the present invention consisted nominally, by weight, of 61 percent Ti, 34 percent Al, and about 4.5 percent combined carbon.
- This ternary alloy in powder form will be hereinafter identified as Alloy C.”
- Alloy C a ternary alloy in powder form
- a blend of about 40 weight percent Alloy C powder and about 60 weight percent AI,O, powder was mixed with about 0.2 weight percent NHJ.
- the Algoa powder acts to inhibit sintering of the Alloy C powders but does not enter into the coating process.
- the method of the present invention contemplates the application to the surface of an article to be diffusion coated of oxide particles, stable both to the processing temperature and mechanism, as an interim or preliminary coating in a nonfused, loosely held vapor permeable condition.
- This can be and was in this example accomplished by first making a slurry of the oxide particles and a liquid binder which will decompose without residue upon heating.
- a slurry of the oxide particles and a liquid binder which will decompose without residue upon heating.
- an acrylic resin in toluene or acetone can be used.
- the thickness of the interim coating is not critical. Therefore, the slurry can be adjusted in concentration to provide, for example, from about l25 mils of oxide on the surface. However, from a practical viewpoint no more than about l5 mils is necessary.
- the oxide particles are no more than about 20 microns in size, it is preferred that a variety in size of particles be present rather than particles all of the same size.
- TIOg or A1 0 or their mixtures in particle sizes of about 1-20 microns be used in the present invention when coating surfaces based on one of the elements Fe, Ni or C0.
- the slurry can be applied to the article surface by a variety of methods such as brushing, dipping, spraying, etc.
- a paint spray gun was used with a slurry to apply a coating of a powder mixture of about 50 weight percent each of AIgog and After application of the oxide coating to the article surface to be coated, the article was placed in a container, such as retort, along with the previously described particulate mixture. including powdered Alloy C. It should be recognized, however, that as indicated before, the Ase, in the particulate mix is included as a filler and does not enter into the coating reaction. Therefore, if a method such as is described in copending application Ser. No.
- the retort enclosing the particulate mixture and the article surface including the interim oxide coating was provided with a nonoxidizing atmosphere, in this example hydrogen, and was heated in the range of l400-2 F. for 1-4 hours, for example, about 1950" F. for 3-4 hours. This time and temperature was sufficient to allow deposition of such elements as aluminum and titanium from powdered ternary Alloy C, through their halide vapor state, onto the article surface by first penetrating through and subsequently entrapping the particles of the oxide of the interim coating. The time and temperature selected must be sufficient to allow further interdiffusion between the deposited elements and the article surface.
- the treated article surface was removed from the retort. Loosely adhering excess powders either from the particulate mix, if the article contacted such mix, or from the interim oxide coating, or both, were removed from the coated surface. It has been found that although relatively thick interim coatings of oxides can be applied to the surface, the titanium or aluminum or both from the ternary alloy powder will penetrate through the excess oxides to leave them only loosely adherent and readily removable from the surface after processing. Thus a reasonable excess thickness of the interim coating is not critical. It is preferred that about 2-10 mils of oxide be applied as the loosely adherent, nonfused, vapor permeable particles comprising the interim coating.
- Practice of the method of the present invention provides an article surface, particularly one based on Fe, Ni or Co, with a diffusion bonded, two portion coating: a coating outer portion and a coating inner interdifi'usion portion.
- Each portion includes primarily intermetallics formed from the basis element, for example, Ni, Co or Fe, and certain of any alloying elements of the article surface, with metallic diffusion coating elements such as titanium, aluminum, etc.
- the interrnetallics result from interdiffusion between elements of the coating and of the basis metal or alloy.
- the entrapped oxide particles in the coating outer portion because of their size in the range of about 1-20 microns, cannot move interstitially with respect to the basis metal in the formation of coating inner diffusion portion between the outer portion of the coating and the article surface. Therefore only the coating outer portion includes, in addition to the intermetallics, entrapped oxide particles.
- the coating inner interdiffusion portion and the coating outer portion together in the as-coated condition must represent a thickness no greater than about mils. Thicknesses in excess of that amount result in coatings having poor adherence properties.
- the present invention contemplates a coating the outer portion of which includes, in addition to the above described intermetallics and diffusion products, about 5-50 volume percent of dispersed oxides.
- the oxides preferred for dispersion in the outer portion of the coating in the practice of the method of the present invention in coating Fe, Ni or C0 base alloys include A1 0 or TiO or their mixtures. if such a mixture of oxides is used, it has been found that about 50 percent by weight of each is a satisfactory mixture and that a varied size mixture of particles is preferred in the range of l-l 0 microns.
- the type of diffusion coating with which this invention is particularly concerned can be applied to alloy surfaces based on elements selected from Ni, Co and Fe.
- Typical of data generated in the evaluation of the present invention is that relating to high temperature nickel base superalloys, the compositions for which are shown in the following Table I as including such alloying elements as Cr, Co, Mo, W, Al, Ti, Fe, etc.
- Specimens of each of the nickel base alloys listed in Table l were coated in the manner described in the above specific example: A mixture of 50 percent by volume each of A1 0 and of 'liO of particle size in the range of l-lO microns was applied as an interim coating by spraying from a slurry of the oxide particles and acrylic resin in acetone. The coating 'method was conducted at about l950 F. for 3-4 hours in a TABLE ll STATIC OXIDATION: 2 1 00 F.-l00 hrs.
- the life of the coating of the present invention is significantly better than the same coating without entrapped oxides, even though both coatings were capable of withstanding more than 100 hours under oxidizing conditions alone as shown by the data from which table ll was selected.
- the oxide particles are oxides selected from the group consisting of oxides of Al, Ti and their mixtures; and the metallic diffusion coating is applied by:
- a ternary alloy consisting essentially of, by weight, about 50-70 percent Ti, 20-48 percent Al and 0.5-9 percent combined carbon, the alloy having a dispersion of Ti AlC complex carbide in a matrix selected from the group consisting of Ti, Al and their alloys, and
- a halide salt activator which will react with a metallic element in the ternary alloy to form a halide of the metallic ele- 3 and then heating the surface and the mixture in the nonoxidizing atmosphere at a temperature and for a time sufficient 1) to form a halide vapor of at least one metallic component of the ternary alloy, (2) to allow penetration of the vapor through the interim coating to the metallic article surface to deposit the metallic component on the surface and (3) to allow both i. diffusion of the deposited metallic component with the article surface and ii. entrapment of particles of the interim coating by the deposited metallic component to provide the metallic coating comprising a coating outer portion including the entrapped oxides and a coating inner interdiffusion portion intermediate of and diffusion bonded with both the article surface and the coating outer portion.
- the basis element is Ni
- the interim coating is about l-l5 mils in thickness
- the halide salt activator is selected from the group consisting of chlorides and fluorides of ammonium and of the alkali metals of Group I A of the Periodic Table of Elements;
- the article surface and mixture are heated at a temperature of about 1400-2100F. for about [-4 hours.
- the mixture consists essentially of, by weight:
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Catalysts (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US78017768A | 1968-11-29 | 1968-11-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3617360A true US3617360A (en) | 1971-11-02 |
Family
ID=25118868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US780177A Expired - Lifetime US3617360A (en) | 1968-11-29 | 1968-11-29 | High temperature metallic diffusion coating and method |
Country Status (9)
Country | Link |
---|---|
US (1) | US3617360A (enrdf_load_stackoverflow) |
BE (1) | BE736134A (enrdf_load_stackoverflow) |
CH (1) | CH543595A (enrdf_load_stackoverflow) |
DE (1) | DE1939115C3 (enrdf_load_stackoverflow) |
ES (1) | ES370956A1 (enrdf_load_stackoverflow) |
FR (1) | FR2024462A1 (enrdf_load_stackoverflow) |
GB (1) | GB1250247A (enrdf_load_stackoverflow) |
IL (1) | IL32374A (enrdf_load_stackoverflow) |
SE (1) | SE350536B (enrdf_load_stackoverflow) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997027965A1 (en) * | 1996-01-16 | 1997-08-07 | Drexel University | Synthesis of h-phase products |
US6309699B2 (en) * | 1998-02-20 | 2001-10-30 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Method of producing a metallic part exhibiting excellent oxidation resistance |
US20020092583A1 (en) * | 2001-01-16 | 2002-07-18 | Pelton Alan R. | Medical devices, particularly stents, and methods for their manufacture |
EP1939318A2 (en) | 2006-12-27 | 2008-07-02 | General Electric Company | Carburization process for stabilizing nickel-based superalloys |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3415672A (en) * | 1964-11-12 | 1968-12-10 | Gen Electric | Method of co-depositing titanium and aluminum on surfaces of nickel, iron and cobalt |
US3477831A (en) * | 1966-01-27 | 1969-11-11 | United Aircraft Corp | Coated nickel-base and cobalt-base alloys having oxidation and erosion resistance at high temperatures |
-
1968
- 1968-11-29 US US780177A patent/US3617360A/en not_active Expired - Lifetime
-
1969
- 1969-06-09 GB GB1250247D patent/GB1250247A/en not_active Expired
- 1969-06-11 IL IL32374A patent/IL32374A/xx unknown
- 1969-07-15 BE BE736134D patent/BE736134A/xx not_active IP Right Cessation
- 1969-08-01 DE DE1939115A patent/DE1939115C3/de not_active Expired
- 1969-08-19 CH CH1263969A patent/CH543595A/de not_active IP Right Cessation
- 1969-08-28 SE SE11941/69A patent/SE350536B/xx unknown
- 1969-08-28 FR FR6929541A patent/FR2024462A1/fr active Pending
- 1969-08-28 ES ES370956A patent/ES370956A1/es not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3415672A (en) * | 1964-11-12 | 1968-12-10 | Gen Electric | Method of co-depositing titanium and aluminum on surfaces of nickel, iron and cobalt |
US3477831A (en) * | 1966-01-27 | 1969-11-11 | United Aircraft Corp | Coated nickel-base and cobalt-base alloys having oxidation and erosion resistance at high temperatures |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997027965A1 (en) * | 1996-01-16 | 1997-08-07 | Drexel University | Synthesis of h-phase products |
US6309699B2 (en) * | 1998-02-20 | 2001-10-30 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Method of producing a metallic part exhibiting excellent oxidation resistance |
US20020092583A1 (en) * | 2001-01-16 | 2002-07-18 | Pelton Alan R. | Medical devices, particularly stents, and methods for their manufacture |
EP1939318A2 (en) | 2006-12-27 | 2008-07-02 | General Electric Company | Carburization process for stabilizing nickel-based superalloys |
Also Published As
Publication number | Publication date |
---|---|
IL32374A0 (en) | 1969-08-27 |
DE1939115B2 (de) | 1978-11-23 |
IL32374A (en) | 1973-03-30 |
BE736134A (enrdf_load_stackoverflow) | 1969-12-16 |
CH543595A (de) | 1973-10-31 |
FR2024462A1 (enrdf_load_stackoverflow) | 1970-08-28 |
ES370956A1 (es) | 1972-01-01 |
SE350536B (enrdf_load_stackoverflow) | 1972-10-30 |
DE1939115C3 (de) | 1979-07-26 |
DE1939115A1 (de) | 1970-06-11 |
GB1250247A (enrdf_load_stackoverflow) | 1971-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3961098A (en) | Coated article and method and material of coating | |
US3415672A (en) | Method of co-depositing titanium and aluminum on surfaces of nickel, iron and cobalt | |
US3649225A (en) | Composite coating for the superalloys | |
US3598638A (en) | Diffusion metallic coating method | |
US3955935A (en) | Ductile corrosion resistant chromium-aluminum coating on superalloy substrate and method of forming | |
US4145481A (en) | Process for producing elevated temperature corrosion resistant metal articles | |
US4070507A (en) | Platinum-rhodium-containing high temperature alloy coating method | |
US3978251A (en) | Aluminide coatings | |
US3748110A (en) | Ductile corrosion resistant coating for nickel base alloy articles | |
US5688607A (en) | Platinum group silicide modified aluminide coated metal superalloy body | |
US3741791A (en) | Slurry coating superalloys with fecraiy coatings | |
US3896244A (en) | Method of producing plasma sprayed titanium carbide tool steel coatings | |
DE1700136A1 (de) | Dichtelement | |
US3837901A (en) | Diffusion-coating of nickel-base superalloy articles | |
US4241113A (en) | Process for producing protective coatings on metals and metal alloys for use at high temperatures | |
US3779720A (en) | Plasma sprayed titanium carbide tool steel coating | |
US4141760A (en) | Stainless steel coated with aluminum | |
JP2002504628A (ja) | 耐腐蝕及び酸化スラリ層の作成方法 | |
US3764373A (en) | Diffusion coating of metals | |
US3620693A (en) | Ductile, high-temperature oxidation-resistant composites and processes for producing same | |
US3573963A (en) | Method of coating nickel base alloys with a mixture of tungsten and aluminum powders | |
US3617360A (en) | High temperature metallic diffusion coating and method | |
US2924004A (en) | Refractory metal bodies | |
US3647497A (en) | Masking method in metallic diffusion coating | |
US3718962A (en) | High temperature metallic diffusion coating |