US3609470A - Semiconductor devices with lines and electrodes which contain 2 to 3 percent silicon with the remainder aluminum - Google Patents
Semiconductor devices with lines and electrodes which contain 2 to 3 percent silicon with the remainder aluminum Download PDFInfo
- Publication number
- US3609470A US3609470A US739992*A US3609470DA US3609470A US 3609470 A US3609470 A US 3609470A US 3609470D A US3609470D A US 3609470DA US 3609470 A US3609470 A US 3609470A
- Authority
- US
- United States
- Prior art keywords
- silicon
- aluminum
- percent
- electrode
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 28
- 229910052710 silicon Inorganic materials 0.000 title claims description 100
- 239000010703 silicon Substances 0.000 title claims description 100
- 229910052782 aluminium Inorganic materials 0.000 title claims description 92
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims description 92
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 99
- 239000004020 conductor Substances 0.000 claims description 22
- 229910045601 alloy Inorganic materials 0.000 claims description 16
- 239000000956 alloy Substances 0.000 claims description 16
- 239000010408 film Substances 0.000 claims description 14
- 238000000576 coating method Methods 0.000 claims description 12
- 239000011248 coating agent Substances 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 6
- 239000010409 thin film Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 abstract description 11
- 239000002184 metal Substances 0.000 abstract description 11
- 239000000463 material Substances 0.000 abstract description 8
- 238000000034 method Methods 0.000 description 20
- 238000009792 diffusion process Methods 0.000 description 18
- 238000001704 evaporation Methods 0.000 description 13
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 11
- 238000000151 deposition Methods 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 238000005275 alloying Methods 0.000 description 7
- 230000008021 deposition Effects 0.000 description 7
- 230000008020 evaporation Effects 0.000 description 7
- 229920002120 photoresistant polymer Polymers 0.000 description 6
- 230000005496 eutectics Effects 0.000 description 5
- 230000035515 penetration Effects 0.000 description 5
- 229910000676 Si alloy Inorganic materials 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- MIMUSZHMZBJBPO-UHFFFAOYSA-N 6-methoxy-8-nitroquinoline Chemical compound N1=CC=CC2=CC(OC)=CC([N+]([O-])=O)=C21 MIMUSZHMZBJBPO-UHFFFAOYSA-N 0.000 description 1
- DNXHEGUUPJUMQT-CBZIJGRNSA-N Estrone Chemical compound OC1=CC=C2[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1 DNXHEGUUPJUMQT-CBZIJGRNSA-N 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/018—Compensation doping
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/02—Contacts, special
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S228/00—Metal fusion bonding
- Y10S228/903—Metal to nonmetal
Definitions
- This invention relates generally to the semiconductor devices and more particularly to semiconductor devices having electrode contacts which do not deleteriously affect the devices semiconductor material.
- silicon planar devices with aluminum lands, some surface passivations of silicon planar devices, e.g., glass coating, require heat exposure of the device to a temperature just below the silicon-aluminum eutectic temperature. Under some conditions, silicon from the wafer will be dissolved in the aluminum at a temperature as much as below the eutectic temperature, thereby resulting in higher land resistances and an unreliable device.
- Another object of the invention is to provide a technique for depositing aluminum lands on a silicon device in such a fashion that subsequent glassing will not cause the silicon of the device to be dissolved into the aluminum and an exchange in the other direction also.
- An object of the invention is to provide an improved method of evaporating aluminum on a silicon device comprising the evaporation of a small amount of silicon during the aluminum evaporation.
- a further object of the invention is to furnish an advanced method of evaporating a 23 percent proportion by weight of silicon with aluminum to furnish a conduction line or layer on a silicon device, said silicon being evaporated close to the aluminum-silicon interface in the range of 5 distance of 300-1 ,500 A.
- Another object of the invention is the provision of a glass coated silicon device with embedded aluminum conductor lines and lands over an oxide pattern, said aluminum being a prepassivated alloy of aluminum and silicon.
- Another object of the invention is the provision of improved contacts to silicon devices, said contacts being adapted for processes involving heating for longer times and/or at higher temperatures than heretofore.
- Another object of the invention is the provision of alternative control in the process of codeposition of contact aluminum and silicon disclosed herein.
- the alternative process comprises comparatively early and fast deposition of the silicon over a land area and adjacent oxide, resulting in a discrete layer of silicon or silicon rich alloy between a flash aluminum film and a second bulk aluminum layer. This causes the sandwiching of a layer of silicon between two pure aluminum layers for subsequent diffusion of silicon into the con tact aluminum prior to and during passivation to form an alloy without causing dissolution of silicon from the device proper.
- An object is also the provision of an ohmic contact of aluminum silicon alloy to a silicon device.
- a still further object of the invention is the provision of conductor terminal lines of an alloy of 97-98 percent aluminum and 2-3 percent silicon embedded between patterns and coatings of SiO, on silicon semiconductor device.
- the present method of attaching electrical connections to silicon planar surfaces comprises the step of codepositing or evaporating a small amount of silicon close to the silicon device surface at the time of evaporating an aluminum film on the surface for the conductive connections.
- the problem to be overcome is peculiar mainly to transistors which have aluminum conductor lands extending from the contact holes to remote areas over the oxide coating on the doped silicon surface.
- the difficulty is not so pronounced in the cases of diodes or transistors without extended land areas.
- the specific problem site is at the edge of an emitter or base contact .hole where the first small segment of aluminum conductor stripe drops from the surface of the oxide to the surface of the doped silicon.
- Prior to glassing there is no diffusion problem in this particular region. After the glass firing however, the difiiculties resulting from aluminum exchange diffusion at the oxide stepdown are readily observed electrically and' also visually. Electrically, the exchange may result in an "open" if the exchange is extreme enough to break the stripe at the stepdown.
- a short may result instead if vertical alloying is deep enough tov pass through a diffused junction although the stripe continuity is not broken at the step. Shorts and opens due to exchange diffusion are both undesirable from the viewpoint of reducing yield of manufacture. A worse condition is the case of a partial alloying condition in which a transistor is almost open or almost short because such a device constitutes a reliability risk. Visually, the detrimental exchange diffusion actions may be observed after glassing as dark depressions seem immediately inside the oxide steps and only at the ends of the contact holes where the lands extend over the oxide. There are also observable instances of horizontal protrusion of the aluminum alloy just below the oxide around the region adjacent to the stepdown from the elevated land extension over the oxide.
- the conductor stripe which is over oxide has no source of free silicon. Therefore, early in the glassing cycle, the conductor stripe is partly aluminum silicon alloy over the contact hole and partly pure aluminum over the oxide. Because such a state of unstable equilibrium cannot continue, silicon begins to diffuse from the aluminumsilicon alloy up the step and into the pure aluminum over the oxide. The aluminum-silicon solution over the contact hole then becomes depleted in silicon content to a level below that demanded by the equilibrium state and therefore more silicon must come from the bulk area.
- the segment of the aluminumsilicon alloy stripe which will again be first to lose to the pure aluminum by the aforementioned diffusion mechanism is that segment adjacent to the oxide step. Silicon replacement from the bulk will therefore take place from below this segment first. As time passes, the aluminum continues to penetrate into the silicon below it and the first aluminum segment next to the stepdown becomes deeper and wider. The degree of aluminum penetration, then, is a function of the volume of pure aluminum over the oxide, the glassing temperature and the time at temperature.
- FIG. 1 a prior art form of semiconductor device is shown with its attendant problem of necking down" and penetration by aluminum at the site 9. Such a device is to have contact regions formed upon it in an improved fashion as shown in FIGS. 2 and 3 in accordance with the teachings of this invention.
- the semiconductor device is fabricated from a wafer of a semiconductor material, for example P-type silicon.
- a plurality of surface junction regions 12 may be formed on discrete areas of the surface of wafer 10 by conventional techniques.
- a suitable technique comprises difiusing impurities of the opposite conductivity type N through a mask into discrete areas of wafer 10.
- PN junctions are formed at surface junction regions 12. It is to be understood that the disclosed processes of this invention apply as well when the reversed type junction is present with a region 12 of a type P.
- a silicon dioxide layer 14 is grown upon the entire upper surface of wafer 10.
- .layer 14 may be about 9,000 A in thickness.
- a preferred oxide technique comprises placing the wafer 10 in an oxidizing atmosphere at an elevated temperature and adding H O vapors to the oxidizing atmosphere so as to expedite the growth of layer 14.
- Layer 14 aids in maintaining the surface of wafer 10 free from ambient impurities and provides an insulation layer over which conductive material may rest other than at depressed land contact areas, one such area 11 being to the left of the stepdown" of layer 14.
- the land hole areas in layer 14 are prepared for etching by first placing a pattern of photoresist material over it.
- a pho toresist material is one which upon exposure to light becomes resistant to the action of certain chemicals in selected portions.
- the photoresist is applied in a conventional manner on all upper surfaces.
- a mask comprising a transparent material with opaque areas thereon, is placed over the wafer 10. Light is passed through the transparent areas of the mask and exposes the photoresist thereunder so that when a developer is applied, the nonexposed portion is washed away, leaving precisely dimensioned holes in the resist above layer 14.
- an etchant is used to attack the silicon dioxide layer 14 in land areas without affecting the surface junction region 12 of the silicon wafer thereunder.
- the exposed area of layer 14 is removed by submerging the device in an etchant such as an ammonium bifluoride buffered solution of hydrofluoric acid.
- an etchant such as an ammonium bifluoride buffered solution of hydrofluoric acid.
- the remaining resist pattern serves to mask the surface of the silicon dioxide layer 14 so as to insure the removal of only the predetermined areas of layer 14.
- Holes 20 are usually elongated and of connected V or E shapes to provide greater contact area of the surface junction region 12.
- steps may be taken to deposit a pattern of resist to define areas other than contact areas and conductor lead lines and terminals connected thereto. After these steps, a contact metal is deposited on the device.
- FIG. 1 shows an ordinary form of pure aluminum 22 deposited onto the surface junction region 12 and leading therefrom.
- the usual deposition process consists of coating the entire upper surface of the device, as well as the resist thereon with the aluminum contact metal 22 of thickness of from 5,000 A to 10,000 A and then selectively removing the portions of the metal over the resist pattern with the pattern.
- the resist is attacked by a solvent which softens and loosens it so that the contact metal 22 adherent thereto may be peeled away.
- a deposit of contact metal 22 is left on the surface junction region 12.
- the entire device is placed in a nitrogen atmosphere and heated. A temperature of about 577 C. is necessary to form a eutectic aluminum-silicon alloy.
- the entire device surface is passivated with a glass film 23.
- the glass is applied as a fine frit which must be fused or fired at high temperatures to form a continuous, protective film and this is where ordinarily the diffusion exchange problem is generated as shown in FIG. 1. It is usually required that two 0.75 coats be applied and fired for 8 and 12 minutes, respectively. Temperatures lower than 559 C. are inadequate because they result in poor fusion of the frit; temperatures higher than 568 C. magnify the exchange alloying problems at the stepdown 9, FIG. 1. where it is seen that at best the negative results include necking down and possible opening of the conductor 22, at point 9, and beneath said point, the alloying of or the junction region 12 with the aluminum to the extent of a possible short.
- the aluminum alloy contact formation is by means of evaporating a continuous film prior to photoetching.
- a typical aluminum contact land 22, 24 or 240 is about 5,000 A to 7,000 A in thickness. The widths of such lands may vary from 0.3 to 1.4 mils, depending on the type of the transistor.
- the aluminum is ordinarily deposited above in a blanket film using one of several varieties of the high-low evaporation processes. In this procedure, a thin flash of aluminum is put onto the wafer which is heated to a very high temperature of 300 to 600 C. to enhance the formation of a positive metallurgical bond to the silicon. The bulk of the aluminum is put on the wafer after it has cooled to a lower temperature of about 100 to 200 C.
- Low temperature deposition of the bulk of the aluminum insures a fine-grained metal film which may be etched with greater definition through a photoresist process.
- the exchange diffusion problems do not occur during the application of the aluminum, but it is quite definite that the reactions between aluminum and silicon are a direct consequence of the glassing heat cycle.
- a remedy for this diffusion problem is found by application of the present invention wherein a small amount of silicon is deposited and evaporated concurrently with either or both of the aluminum deposition steps at high heat and at low temperature.
- the application of evaporated silicon is carried on by causing the holder for the heated silicon to be brought very closely to the surface of the doped silicon which is concurrently receiving the evaporated aluminum.
- the codeposition of aluminum and silicon from two different sources spaced differentially to blend the evaporants on the substrate is a successful method of avoiding the stepdown penetration alloying mentioned hereinbefore.
- the timing of the approach of the silicon evaporant holder to the silicon surface is gauged during the 8- and 12-minute periods of aluminum deposition and in this fashion so that the time of codeposition is arranged to cause an alloying of 2 to 3 percent of silicon with the aluminum deposition.
- the silicon is codeposited continuously slowly and uniformly to arrive at the alloy forpercent by weight of the final conductor thickness 240 which IS more than ample for the aluminum exchange needs.
- the bulk conductor aluminum deposition 27 which is about 5,000 A.
- the intermediate silicon film 26 serves as a silicon source to satisfy the solid solubility requirements of all segments of the aluminum contacts, stripes and terminals while preserving the conductivity thereof.
- the coating is subjected to a photoresist and etching process for removal of all conductive material except that which serves as lands, terminals and conductor lines.
- a photoresist and etching process for removal of all conductive material except that which serves as lands, terminals and conductor lines.
- the whole effective area is glassed.
- the glass is usually applied as a fine frit which is fused or fired at a high temperature to form a continuous protective film. Now, as shown in FIGS. 2 and 3, there is no diffusion exchange problem during glassing.
- a circuit substrate comprising silicon devices and printed circuit lines and electrodes evaporated thereon, said lines and electrodes consisting essentially of about 97 to 98 percent of aluminum and 2 to 3 percent of silicon.
- a silicon semiconductor device having an ohmic contact electrode thereon, said electrode being a prepassivated alloy of aluminum and silicon having a plurality of planar regions which are connected by necklike portions of said electrodes, where at least one of said regions contacts said silicon semiconductor device, said regions being thin films of thickness at least about 5,000 A, said electrode consisting essentially of uniformly distributed silicon in an amount of 2-3 percent by weight of said electrode and 97-98 percent aluminum by weight.
- a semiconductor device having a conductor line thereat, said device having an improved ohmic contact comprising:
- said electrode being a prepassivated homogeneous alloy of aluminum and silicon having a portion extending to ohmically contact said device and consisting essentially of 2-3 percent by weight silicon and 97-98 percent by weight aluminum, said silicon being uniformly distributed in said electrode.
- a semiconductor substrate containing devices and having an insulative coating thereon said substrate having electrodes located on said coating which have necklike portions extending through said coating to ohmically contact said semiconductor devices, said electrodes being thin film homogeneous alloys of aluminum and silicon consisting essentially of 2-3 percent silicon by weight and 97-98 percent aluminum by weight, said silicon being uniformly distributed in said film.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
This is a semiconductor device provided with an electrode which contains a small percentage of the semiconductor material with the remainder of the electrode being metal.
Description
United States Patent Inventor Lubertus L. Kuiper Flshklll, N.Y. App]. No. 739,992 Filed Feb. 19, 1968 Division of Ser. No. 474,074, July 22, 1965, Patent No 3,382,568 Patented Sept. 28, 1971 Assignee International Business Machines Corporation SEMICONDUCTOR DEVICES WITH LINES AND ELECTRODES WHICH CONTAIN 2 TO 3 PERCENT SILICON WITH THE REMAINDER ALUMINUM 4 Claims, 3 Drawing Eigs.
US. Cl 317/234 R,
PRESENT METHOD Primary Examiner-John W. Huckert Assistant Examiner-B. Estrin AttarneysHanifin and Jancin and John W. Armbruster ABSTRACT: This is a semiconductor device provided with an electrode which contains a small percentage of the semiconductor material with the remainder of the electrode being metal.
(GLASS) PATENTEflsEPzslsn 3.509'470 PRIOR ART FIG. i
ALTERNATIVE METHOD DEPOSITIONS BEFORE GLASSING Has (PURE ALUMINUM) I N VliN TOR. LUBERTUS L KUIPER A a/km Um ATTORNEY SEMICONDUCTOR DEVICES WITH LINES AND ELECTRODES WHICH CONTAIN 2 TO 3 PERCENT SILICON WITH THE REMAINDER ALUMINUM This application is a division of copending application Ser. No. 474,074, filed July 22, 1965, now US. Pat. No. 3,382,568.
BACKGROUND OF THE INVENTION Field of the Invention This invention relates generally to the semiconductor devices and more particularly to semiconductor devices having electrode contacts which do not deleteriously affect the devices semiconductor material.
In the fabrication of silicon devices, with aluminum lands, some surface passivations of silicon planar devices, e.g., glass coating, require heat exposure of the device to a temperature just below the silicon-aluminum eutectic temperature. Under some conditions, silicon from the wafer will be dissolved in the aluminum at a temperature as much as below the eutectic temperature, thereby resulting in higher land resistances and an unreliable device.
One hypothesis is that a stress mechanism between SiO, and Si plays a part in this effect. Aluminum and silicon in intimate contact fonn a eutectic, a liquid alloy, at approximately 577 C. and therefore, glassing is restricted to temperatures below 577 C. When a silicon device has lands running from a contact hole in the oxide to a distant point on the oxide over the oxide, and the device is glassed at 570 C., problems arise at the stepdown where the aluminum contact stripe traverses from the oxide to the silicon. The problems are phenomena such as necking down or breaking of the stripe and deep vertical or lateral penetrations of the silicon by the aluminum. The electrical consequences of such behavior are, in the former instance, high-resistance points which burn out and open under electrical load, or in the latter case, short circuiting ofthe junction. The foregoing shortcomings are overcome according to the present invention by evaporating a small amount of silicon with the aluminum during the evaporation step for the formation of conductors, contacts and lands on the silicon device. It is required that the silicon be evaporated quite close to the plane of aluminum-silicon contact. The small amounts of silicon thus mixed with the aluminum prevent subsequent diffusion of further amounts of silicon into the aluminum lands, lines and stepdown portions therebetween. Although the contact resistance is slightly greater than that of a pure aluminum contact, the increase is small and a predictable value.
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a semiconductor device having an improved electrode in contact with the semiconductor material of the device.
Another object of the invention is to provide a technique for depositing aluminum lands on a silicon device in such a fashion that subsequent glassing will not cause the silicon of the device to be dissolved into the aluminum and an exchange in the other direction also.
An object of the invention is to provide an improved method of evaporating aluminum on a silicon device comprising the evaporation of a small amount of silicon during the aluminum evaporation.
A further object of the invention is to furnish an advanced method of evaporating a 23 percent proportion by weight of silicon with aluminum to furnish a conduction line or layer on a silicon device, said silicon being evaporated close to the aluminum-silicon interface in the range of 5 distance of 300-1 ,500 A.
Another object of the invention is the provision of a glass coated silicon device with embedded aluminum conductor lines and lands over an oxide pattern, said aluminum being a prepassivated alloy of aluminum and silicon.
Another object of the invention is the provision of improved contacts to silicon devices, said contacts being adapted for processes involving heating for longer times and/or at higher temperatures than heretofore.
Another object of the invention is the provision of alternative control in the process of codeposition of contact aluminum and silicon disclosed herein. The alternative process comprises comparatively early and fast deposition of the silicon over a land area and adjacent oxide, resulting in a discrete layer of silicon or silicon rich alloy between a flash aluminum film and a second bulk aluminum layer. This causes the sandwiching of a layer of silicon between two pure aluminum layers for subsequent diffusion of silicon into the con tact aluminum prior to and during passivation to form an alloy without causing dissolution of silicon from the device proper. Thus there is later prevented an exchange of elements with the underlying land area upon passivation, because the need is satisfied from the prearranged plural aluminum silicon contact laminations.
An object is also the provision of an ohmic contact of aluminum silicon alloy to a silicon device.
A still further object of the invention is the provision of conductor terminal lines of an alloy of 97-98 percent aluminum and 2-3 percent silicon embedded between patterns and coatings of SiO, on silicon semiconductor device.
The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention as illustrated in the accompanying drawing.
DESCRIPTION OF THE DRAWING DESCRIPTION OF THE PREFERRED EMBODIMENTS For further reference to prior art techniques for forming glass layers and other layers, the processes taught in a patent and copending application assigned to common assignee are US. Pat. No. 3,247,428, Ser. No. 141,669, filed Sept. 29, 196l, and patent application Ser. No. 291,322, filed June 28, 1963.
Briefly, the present method of attaching electrical connections to silicon planar surfaces comprises the step of codepositing or evaporating a small amount of silicon close to the silicon device surface at the time of evaporating an aluminum film on the surface for the conductive connections. Thus there is prevented the aluminum conductor land diffusion exchange problem which arises during the glassing of devices such as transistors.
The problem to be overcome is peculiar mainly to transistors which have aluminum conductor lands extending from the contact holes to remote areas over the oxide coating on the doped silicon surface. The difficulty is not so pronounced in the cases of diodes or transistors without extended land areas. The specific problem site is at the edge of an emitter or base contact .hole where the first small segment of aluminum conductor stripe drops from the surface of the oxide to the surface of the doped silicon. Prior to glassing there is no diffusion problem in this particular region. After the glass firing however, the difiiculties resulting from aluminum exchange diffusion at the oxide stepdown are readily observed electrically and' also visually. Electrically, the exchange may result in an "open" if the exchange is extreme enough to break the stripe at the stepdown. A short may result instead if vertical alloying is deep enough tov pass through a diffused junction although the stripe continuity is not broken at the step. Shorts and opens due to exchange diffusion are both undesirable from the viewpoint of reducing yield of manufacture. A worse condition is the case of a partial alloying condition in which a transistor is almost open or almost short because such a device constitutes a reliability risk. Visually, the detrimental exchange diffusion actions may be observed after glassing as dark depressions seem immediately inside the oxide steps and only at the ends of the contact holes where the lands extend over the oxide. There are also observable instances of horizontal protrusion of the aluminum alloy just below the oxide around the region adjacent to the stepdown from the elevated land extension over the oxide.
It is known that the maximum solid solubility of silicon in aluminum is 1.59 percent at the eutectic temperature (577 C.) and at 550 to 568 C. (the usual range of glassing temperatures), the solubility is reduced only slightly to about 1.4 percent. A reasonable explanation for the troublesome aluminum diffusion problems during glassing may be given. It may be presumed that in the 20-minute interim heating cycle at the glassing temperature there is much diffusion between silicon'and aluminum which takes place until the equilibrium conditions are satisfied. The aluminum land area directly over the contact hole on the doped silicon has a ready source of silicon in the bulk upon which it is deposited. Therefore a uniform planar layer of silicon is dissolved from each hole to satisfy the equilibrium needs of the area of aluminum directly over the hole. However the aluminum conductor stripe which is over oxide, has no source of free silicon. Therefore, early in the glassing cycle, the conductor stripe is partly aluminum silicon alloy over the contact hole and partly pure aluminum over the oxide. Because such a state of unstable equilibrium cannot continue, silicon begins to diffuse from the aluminumsilicon alloy up the step and into the pure aluminum over the oxide. The aluminum-silicon solution over the contact hole then becomes depleted in silicon content to a level below that demanded by the equilibrium state and therefore more silicon must come from the bulk area. The segment of the aluminumsilicon alloy stripe which will again be first to lose to the pure aluminum by the aforementioned diffusion mechanism is that segment adjacent to the oxide step. Silicon replacement from the bulk will therefore take place from below this segment first. As time passes, the aluminum continues to penetrate into the silicon below it and the first aluminum segment next to the stepdown becomes deeper and wider. The degree of aluminum penetration, then, is a function of the volume of pure aluminum over the oxide, the glassing temperature and the time at temperature.
The immediate foregoing section of this specification deals mainly with the problems and difficulties surrounding the placement of aluminum lands on silicon devices and the following section is concerned more with the actual prior art and present fabrication of such devices.
Referring generally to FIG. 1, a prior art form of semiconductor device is shown with its attendant problem of necking down" and penetration by aluminum at the site 9. Such a device is to have contact regions formed upon it in an improved fashion as shown in FIGS. 2 and 3 in accordance with the teachings of this invention.
The semiconductor device is fabricated from a wafer of a semiconductor material, for example P-type silicon. A plurality of surface junction regions 12 may be formed on discrete areas of the surface of wafer 10 by conventional techniques. A suitable technique comprises difiusing impurities of the opposite conductivity type N through a mask into discrete areas of wafer 10. Thus, PN junctions are formed at surface junction regions 12. It is to be understood that the disclosed processes of this invention apply as well when the reversed type junction is present with a region 12 of a type P.
After the wafer areas are prepared, a silicon dioxide layer 14 is grown upon the entire upper surface of wafer 10. For purposes of illustration,.layer 14 may be about 9,000 A in thickness. Although other conventional methods may be employed, a preferred oxide technique comprises placing the wafer 10 in an oxidizing atmosphere at an elevated temperature and adding H O vapors to the oxidizing atmosphere so as to expedite the growth of layer 14. Layer 14 aids in maintaining the surface of wafer 10 free from ambient impurities and provides an insulation layer over which conductive material may rest other than at depressed land contact areas, one such area 11 being to the left of the stepdown" of layer 14.
The land hole areas in layer 14 are prepared for etching by first placing a pattern of photoresist material over it. A pho toresist material is one which upon exposure to light becomes resistant to the action of certain chemicals in selected portions. The photoresist is applied in a conventional manner on all upper surfaces. When dry, a mask, comprising a transparent material with opaque areas thereon, is placed over the wafer 10. Light is passed through the transparent areas of the mask and exposes the photoresist thereunder so that when a developer is applied, the nonexposed portion is washed away, leaving precisely dimensioned holes in the resist above layer 14.
Then an etchant is used to attack the silicon dioxide layer 14 in land areas without affecting the surface junction region 12 of the silicon wafer thereunder. The exposed area of layer 14 is removed by submerging the device in an etchant such as an ammonium bifluoride buffered solution of hydrofluoric acid. During the etching step, the remaining resist pattern serves to mask the surface of the silicon dioxide layer 14 so as to insure the removal of only the predetermined areas of layer 14. The result is that a hole 20 is extended down to the top 11 of the effective regions. Holes 20 are usually elongated and of connected V or E shapes to provide greater contact area of the surface junction region 12. Once the remaining resist is dissolved by a solvent and the surface junction region 12 is exposed through layer 14, steps may be taken to deposit a pattern of resist to define areas other than contact areas and conductor lead lines and terminals connected thereto. After these steps, a contact metal is deposited on the device.
FIG. 1 shows an ordinary form of pure aluminum 22 deposited onto the surface junction region 12 and leading therefrom. The usual deposition process consists of coating the entire upper surface of the device, as well as the resist thereon with the aluminum contact metal 22 of thickness of from 5,000 A to 10,000 A and then selectively removing the portions of the metal over the resist pattern with the pattern. After the metal coating step, the resist is attacked by a solvent which softens and loosens it so that the contact metal 22 adherent thereto may be peeled away. A deposit of contact metal 22 is left on the surface junction region 12. In order to alloy the contact metal 22 to surface junction region 12, the entire device is placed in a nitrogen atmosphere and heated. A temperature of about 577 C. is necessary to form a eutectic aluminum-silicon alloy.
When there is no underlying pattern of resist, an alternate procedure is used to photoetch the aluminum by a pattern of resist placed thereover and chemically treated to produce the desired conductor and land pattern.
After the aluminum pattern 22 is defined, the entire device surface is passivated with a glass film 23. The glass is applied as a fine frit which must be fused or fired at high temperatures to form a continuous, protective film and this is where ordinarily the diffusion exchange problem is generated as shown in FIG. 1. It is usually required that two 0.75 coats be applied and fired for 8 and 12 minutes, respectively. Temperatures lower than 559 C. are inadequate because they result in poor fusion of the frit; temperatures higher than 568 C. magnify the exchange alloying problems at the stepdown 9, FIG. 1. where it is seen that at best the negative results include necking down and possible opening of the conductor 22, at point 9, and beneath said point, the alloying of or the junction region 12 with the aluminum to the extent of a possible short. Another shortcoming not illustrated in FIG. 1, but encountered in prior art procedures is the horizontal exchange diffusion of the aluminum with the silicon under the silicon dioxide layer 14 and extending out of the contact hole area 20 and out beyond the aluminum stripe 22. Such horizontal diffusion of aluminum adds to the difficulty caused by the vertical diffusion and is part of the necking down" loss of aluminum. An explanation for the troublesome exchange problems during glassing are given hereinabove and now there may be presented the remedy residing mainly in providing the aluminum silicon alloy conductor material 24, FIG. 2, and 24a, FIG. 3, instead of the pure aluminum conductor 22 of FIG. 1. Otherwise, the manner of preparing the wafer and the films thereon is the same as set forth with regard to the showing in FIG. 1.
The aluminum alloy contact formation is by means of evaporating a continuous film prior to photoetching. A typical aluminum contact land 22, 24 or 240 is about 5,000 A to 7,000 A in thickness. The widths of such lands may vary from 0.3 to 1.4 mils, depending on the type of the transistor. The aluminum is ordinarily deposited above in a blanket film using one of several varieties of the high-low evaporation processes. In this procedure, a thin flash of aluminum is put onto the wafer which is heated to a very high temperature of 300 to 600 C. to enhance the formation of a positive metallurgical bond to the silicon. The bulk of the aluminum is put on the wafer after it has cooled to a lower temperature of about 100 to 200 C. Low temperature deposition of the bulk of the aluminum insures a fine-grained metal film which may be etched with greater definition through a photoresist process. The exchange diffusion problems do not occur during the application of the aluminum, but it is quite definite that the reactions between aluminum and silicon are a direct consequence of the glassing heat cycle. A remedy for this diffusion problem is found by application of the present invention wherein a small amount of silicon is deposited and evaporated concurrently with either or both of the aluminum deposition steps at high heat and at low temperature. The application of evaporated silicon is carried on by causing the holder for the heated silicon to be brought very closely to the surface of the doped silicon which is concurrently receiving the evaporated aluminum. By depositing an homogeneous alloy of aluminum containing the small amount of silicon, the equilibrium state is presatisfied at the glassing temperature and does not require further solution of bulk silicon and hence there is no penetration. Since aluminum has a vapor pressure higher than silicon, there is a preferential distillation of aluminum before silicon as in FIG. 3 which must be taken care of to achieve the results of FIG. 2 so that the resultant product is not essentially a layer of silicon upon a layer of aluminum. This is taken care of partly by the closeness with which the silicon holder is positioned to cause direct evaporation upon the silicon surface and controlled evaporation to be not too early or too fast. The codeposition of aluminum and silicon from two different sources spaced differentially to blend the evaporants on the substrate is a successful method of avoiding the stepdown penetration alloying mentioned hereinbefore. The timing of the approach of the silicon evaporant holder to the silicon surface is gauged during the 8- and 12-minute periods of aluminum deposition and in this fashion so that the time of codeposition is arranged to cause an alloying of 2 to 3 percent of silicon with the aluminum deposition.
In order to provide well-controlled sources for the aluminum and silicon, it is desirous that the evaporation of the silicon be prevented from being too early or too fast; and also prevent it from being too late or too slow.
Although in one mode of control the silicon is codeposited continuously slowly and uniformly to arrive at the alloy forpercent by weight of the final conductor thickness 240 which IS more than ample for the aluminum exchange needs. Along with the silicon deposition and thereover is the bulk conductor aluminum deposition 27 which is about 5,000 A. During the step of alloying the contact metal 25 to the surface junction region 12 there will be some diffusion exchange between layers 25, 26, and 27. However, it is later during the glassing step that exchange between films 25, 26, and 27 prevents the exterior exchanges as at point 9 in FIG. 1, and thus overcomes the shortcomings of the prior art. The intermediate silicon film 26 serves as a silicon source to satisfy the solid solubility requirements of all segments of the aluminum contacts, stripes and terminals while preserving the conductivity thereof.
After the aluminum film has been deposited, the coating is subjected to a photoresist and etching process for removal of all conductive material except that which serves as lands, terminals and conductor lines. Once the aluminum areas have been defined, the whole effective area is glassed. The glass is usually applied as a fine frit which is fused or fired at a high temperature to form a continuous protective film. Now, as shown in FIGS. 2 and 3, there is no diffusion exchange problem during glassing.
While the invention has been particularly shown and described with reference to preferred embodiments, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention.
What is claimed is:
l. A circuit substrate comprising silicon devices and printed circuit lines and electrodes evaporated thereon, said lines and electrodes consisting essentially of about 97 to 98 percent of aluminum and 2 to 3 percent of silicon.
2. A silicon semiconductor device having an ohmic contact electrode thereon, said electrode being a prepassivated alloy of aluminum and silicon having a plurality of planar regions which are connected by necklike portions of said electrodes, where at least one of said regions contacts said silicon semiconductor device, said regions being thin films of thickness at least about 5,000 A, said electrode consisting essentially of uniformly distributed silicon in an amount of 2-3 percent by weight of said electrode and 97-98 percent aluminum by weight.
3. A semiconductor device having a conductor line thereat, said device having an improved ohmic contact comprising:
a thin electrode located between. said conductor line and said semiconductor device, said electrode being a prepassivated homogeneous alloy of aluminum and silicon having a portion extending to ohmically contact said device and consisting essentially of 2-3 percent by weight silicon and 97-98 percent by weight aluminum, said silicon being uniformly distributed in said electrode.
4. A semiconductor substrate containing devices and having an insulative coating thereon, said substrate having electrodes located on said coating which have necklike portions extending through said coating to ohmically contact said semiconductor devices, said electrodes being thin film homogeneous alloys of aluminum and silicon consisting essentially of 2-3 percent silicon by weight and 97-98 percent aluminum by weight, said silicon being uniformly distributed in said film.
Claims (3)
- 2. A silicon sEmiconductor device having an ohmic contact electrode thereon, said electrode being a prepassivated alloy of aluminum and silicon having a plurality of planar regions which are connected by necklike portions of said electrodes, where at least one of said regions contacts said silicon semiconductor device, said regions being thin films of thickness at least about 5,000 A, said electrode consisting essentially of uniformly distributed silicon in an amount of 2-3 percent by weight of said electrode and 97-98 percent aluminum by weight.
- 3. A semiconductor device having a conductor line thereat, said device having an improved ohmic contact comprising: a thin electrode located between said conductor line and said semiconductor device, said electrode being a prepassivated homogeneous alloy of aluminum and silicon having a portion extending to ohmically contact said device and consisting essentially of 2-3 percent by weight silicon and 97-98 percent by weight aluminum, said silicon being uniformly distributed in said electrode.
- 4. A semiconductor substrate containing devices and having an insulative coating thereon, said substrate having electrodes located on said coating which have necklike portions extending through said coating to ohmically contact said semiconductor devices, said electrodes being thin film homogeneous alloys of aluminum and silicon consisting essentially of 2-3 percent silicon by weight and 97-98 percent aluminum by weight, said silicon being uniformly distributed in said film.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US73999268A | 1968-02-19 | 1968-02-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3609470A true US3609470A (en) | 1971-09-28 |
Family
ID=24974619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US739992*A Expired - Lifetime US3609470A (en) | 1968-02-19 | 1968-02-19 | Semiconductor devices with lines and electrodes which contain 2 to 3 percent silicon with the remainder aluminum |
Country Status (1)
Country | Link |
---|---|
US (1) | US3609470A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3754674A (en) * | 1970-03-03 | 1973-08-28 | Allis Chalmers Mfg Co | Means for providing hermetic seals |
JPS4973083A (en) * | 1972-11-13 | 1974-07-15 | ||
US4151545A (en) * | 1976-10-29 | 1979-04-24 | Robert Bosch Gmbh | Semiconductor electric circuit device with plural-layer aluminum base metallization |
US4291322A (en) * | 1979-07-30 | 1981-09-22 | Bell Telephone Laboratories, Incorporated | Structure for shallow junction MOS circuits |
US4321104A (en) * | 1979-06-18 | 1982-03-23 | Hitachi, Ltd. | Photoetching method |
US4333100A (en) * | 1978-05-31 | 1982-06-01 | Harris Corporation | Aluminum Schottky contacts and silicon-aluminum interconnects for integrated circuits |
DE3214893A1 (en) * | 1981-04-29 | 1982-11-18 | Naamloze Vennootschap Philips' Gloeilampenfabrieken, 5621 Eindhoven | SEMICONDUCTOR ARRANGEMENT |
US4500904A (en) * | 1979-11-30 | 1985-02-19 | Hitachi, Ltd. | Semiconductor device |
US4520554A (en) * | 1983-02-10 | 1985-06-04 | Rca Corporation | Method of making a multi-level metallization structure for semiconductor device |
US4527184A (en) * | 1982-12-01 | 1985-07-02 | Siemens Aktiengesellschaft | Integrated semiconductor circuits with contact interconnect levels comprised of an aluminum/silicon alloy |
EP0167231A1 (en) * | 1984-05-02 | 1986-01-08 | Energy Conversion Devices, Inc. | Photoresponsive device incorporating improved back reflector |
US4724471A (en) * | 1985-04-08 | 1988-02-09 | Sgs Semiconductor Corporation | Electrostatic discharge input protection network |
US4916397A (en) * | 1987-08-03 | 1990-04-10 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device with bonding pad |
US5178319A (en) * | 1991-04-02 | 1993-01-12 | At&T Bell Laboratories | Compression bonding methods |
WO1999052131A1 (en) * | 1998-04-03 | 1999-10-14 | Zetex Plc | Semiconductor contact fabrication method |
GB2341278A (en) * | 1998-04-03 | 2000-03-08 | Zetex Plc | Semiconductor contact fabrication method |
-
1968
- 1968-02-19 US US739992*A patent/US3609470A/en not_active Expired - Lifetime
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3754674A (en) * | 1970-03-03 | 1973-08-28 | Allis Chalmers Mfg Co | Means for providing hermetic seals |
JPS4973083A (en) * | 1972-11-13 | 1974-07-15 | ||
US4151545A (en) * | 1976-10-29 | 1979-04-24 | Robert Bosch Gmbh | Semiconductor electric circuit device with plural-layer aluminum base metallization |
US4333100A (en) * | 1978-05-31 | 1982-06-01 | Harris Corporation | Aluminum Schottky contacts and silicon-aluminum interconnects for integrated circuits |
US4321104A (en) * | 1979-06-18 | 1982-03-23 | Hitachi, Ltd. | Photoetching method |
US4291322A (en) * | 1979-07-30 | 1981-09-22 | Bell Telephone Laboratories, Incorporated | Structure for shallow junction MOS circuits |
US4500904A (en) * | 1979-11-30 | 1985-02-19 | Hitachi, Ltd. | Semiconductor device |
DE3214893A1 (en) * | 1981-04-29 | 1982-11-18 | Naamloze Vennootschap Philips' Gloeilampenfabrieken, 5621 Eindhoven | SEMICONDUCTOR ARRANGEMENT |
US4527184A (en) * | 1982-12-01 | 1985-07-02 | Siemens Aktiengesellschaft | Integrated semiconductor circuits with contact interconnect levels comprised of an aluminum/silicon alloy |
US4520554A (en) * | 1983-02-10 | 1985-06-04 | Rca Corporation | Method of making a multi-level metallization structure for semiconductor device |
EP0167231A1 (en) * | 1984-05-02 | 1986-01-08 | Energy Conversion Devices, Inc. | Photoresponsive device incorporating improved back reflector |
US4724471A (en) * | 1985-04-08 | 1988-02-09 | Sgs Semiconductor Corporation | Electrostatic discharge input protection network |
US4916397A (en) * | 1987-08-03 | 1990-04-10 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device with bonding pad |
US5178319A (en) * | 1991-04-02 | 1993-01-12 | At&T Bell Laboratories | Compression bonding methods |
WO1999052131A1 (en) * | 1998-04-03 | 1999-10-14 | Zetex Plc | Semiconductor contact fabrication method |
GB2341278A (en) * | 1998-04-03 | 2000-03-08 | Zetex Plc | Semiconductor contact fabrication method |
GB2341278B (en) * | 1998-04-03 | 2003-06-25 | Zetex Plc | Semiconductor fabrication method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3567509A (en) | Metal-insulator films for semiconductor devices | |
US3609470A (en) | Semiconductor devices with lines and electrodes which contain 2 to 3 percent silicon with the remainder aluminum | |
US3493820A (en) | Airgap isolated semiconductor device | |
US3413157A (en) | Solid state epitaxial growth of silicon by migration from a silicon-aluminum alloy deposit | |
US3753774A (en) | Method for making an intermetallic contact to a semiconductor device | |
US3429029A (en) | Semiconductor device | |
US4023197A (en) | Integrated circuit chip carrier and method for forming the same | |
US3918149A (en) | Al/Si metallization process | |
US3498833A (en) | Double masking technique for integrated circuit | |
US3632436A (en) | Contact system for semiconductor devices | |
US3241931A (en) | Semiconductor devices | |
GB1572768A (en) | Semiconductor devices | |
US3427708A (en) | Semiconductor | |
US3654526A (en) | Metallization system for semiconductors | |
US3849270A (en) | Process of manufacturing semiconductor devices | |
US3988762A (en) | Minority carrier isolation barriers for semiconductor devices | |
US3244555A (en) | Semiconductor devices | |
GB1514370A (en) | Semiconductor integrated circuit devices and method of preparing the same | |
US3541676A (en) | Method of forming field-effect transistors utilizing doped insulators as activator source | |
US3431636A (en) | Method of making diffused semiconductor devices | |
US3490943A (en) | Method of forming juxtaposed metal layers separated by a narrow gap on a substrate and objects manufactured by the use of such methods | |
US3303071A (en) | Fabrication of a semiconductive device with closely spaced electrodes | |
US3359467A (en) | Resistors for integrated circuits | |
US3271636A (en) | Gallium arsenide semiconductor diode and method | |
US3698077A (en) | Method of producing a planar-transistor |