US3607251A - Molybdenum in carbon containing niobium-base alloys - Google Patents

Molybdenum in carbon containing niobium-base alloys Download PDF

Info

Publication number
US3607251A
US3607251A US817559A US3607251DA US3607251A US 3607251 A US3607251 A US 3607251A US 817559 A US817559 A US 817559A US 3607251D A US3607251D A US 3607251DA US 3607251 A US3607251 A US 3607251A
Authority
US
United States
Prior art keywords
molybdenum
niobium
alloy
carbides
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US817559A
Inventor
Friedrick G Ostermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSTERMANN FRIEDRICH G
Original Assignee
OSTERMANN FRIEDRICH G
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSTERMANN FRIEDRICH G filed Critical OSTERMANN FRIEDRICH G
Application granted granted Critical
Publication of US3607251A publication Critical patent/US3607251A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum

Definitions

  • the molybdenum causes carbon to be free to react with zirconium, hafnium, titanium, or mixtures thereof and form desirable carbides with those elements during a second heat treatment.
  • the alloys of this invention are useful where strong, lightweight materials are needed such as in the manufacture of jet engine turbines.
  • tungsten is a more efficient solid solution strengthener of niobium than molybdenum and most niobium-base alloy work turned to the niobium-tungsten system.
  • the tungsten containing alloys have too high a density to be useful. Therefore, in the recent past, interest in niobium-base alloys containing molybdenum has been rekindled. Also, in such operations as jet engine turbine manufacture, workability of the alloy at room temperature is not always necessary, i.e. turbine blades can be cast or worked at higher temperatures.
  • niobium-base alloys have created a problem in the past.
  • the preparation of niobium-base alloys generally involves a heat treatment at about l,700 C., cooling to room temperature, followed by a second heat treatment at about 1,200 to l,300 C.
  • the carbon forms undesirable carbides with niobium which are present in the final product in the form of coarse, unstable needles.
  • Quenching with liquid tin has been used as a means for preventing the formation of large carbide needles. Liquid tin quenching has several drawbacks in that it embrittles the alloy or tends to initiate cracks in the alloy, and is too complicated for large scale production.
  • Nb-O. lC means an alloy containing 0.1 weight percent carbon and 99.9 weight percent niobium
  • Nb-l5Mo-0.1C means alloy containing 0.1 weight percent carbon, 15 weight percent molybdenum and 84.9 weight percent niobium.
  • Alloys A, B, and C were prepared. Alloy A was Nb-0.lC. Alloy B was Nb-l5Mo-O.1C. Alloy C was Nb-30Mo-0.1C. The elements were placed together and melted. The melting was accomplished by nonconsumable arc melting under a purified argon atmosphere in water-cooled copper molds. The alloys were remelted three times to insure thorough mixing of the ingredient components. Fifty gram buttons were recovered from the molds and were solution annealed for one hour at 1,750 C. and radiation cooled in a conventional vacuum furnace. The approximate cooling rate between 1,750 C. and l,000 C. was 400 C. per minute. Metallographic evaluation showed that grain and subgrain boundaries of all three alloys contained carbide phases. Alloy A and alloy B in addition contained coarse carbides in the grain interior.
  • the three alloys were then annealed in vacuum at 1,200 C. for an additional 24 hours.
  • This second anneal produced no structural changes in alloy A and very little structural change in alloy B.
  • I-Iowever,'the second anneal produced an extensive precipitation of carbides in alloy C.
  • This additional precipitation was in the form of discontinuous precipitation or growth of carbide plates from the grain or subgrain boundary carbides into the grain interior.
  • EXAMPLE II Five alloys were prepared in the manner similar to that described by Example I. The alloys were Nb-lZr-0.l3C-l0 Mo, Nb-lZr-0.l3C-l5Nb-lZr-0.l3C-25Mo, and Nb-lZr- 0.13C-3Mo. The elements were melted in copper molds as described by Example I and 50 gram buttons of each composition were recovered. The buttons were then solution annealed at l,900 C. for 5 hours. Vacuum cooling at the rate of Example I was then carried out.
  • buttons were given a second annealing treatment for 1 hour at temperatures between 1,000 C. and 1,800 C. This anneal caused the formation of zirconium carbides.
  • the microstructures of samples after this second annealing treatment revealed a unique effect of molybdenum in the concentration range of 20 to 30 weight percent on the size and distribution of zirconium carbides.
  • alloys containing less than 20 weight percent molybdenum showed comparatively coarse and rather nonuniformly distributed zirconium carbide particles, these carbides were extremely uniformly distributed and of a small and hardly detectable size in alloys with 25 and 30 weight percent molybdenum annealed for 1 hour at 1,400 C. This indicates the excellent high temperature stability and strength achieved by the addition of 25 to 30 weight percent molybdenum.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Niobium-base alloys containing at least 20 weight percent molybdenum, small amounts of carbon, and small amounts of zirconium, hafnium, titanium, or mixtures thereof. Molybdenum prevents the formation of undesirable Nb3C2 and greatly inhibits the formation of undesirable Nb2C during cooling of the alloy after its initial heat treatment (solution annealing). The alloy must contain at least 20 weight percent molybdenum in order for the final product to be substantially free of the undesirable niobium carbides. By preventing the formation of the niobium carbides, the molybdenum causes carbon to be free to react with zirconium, hafnium, titanium, or mixtures thereof and form desirable carbides with those elements during a second heat treatment. The alloys of this invention are useful where strong, lightweight materials are needed such as in the manufacture of jet engine turbines.

Description

United States Patent [72] Inventor Friedrick G. Ostermann Yellow Springs, Ohio [21] Appl. No. 817,559 [22] Filed Apr. 18, 1969 [4S] Patented Sept. 21, 1971 [73] Assignee The United States of America as represented by the Secretary of the Air Force [54] MOLYBDENUM IN CARBON CONTAINING NlOBlUM-BASE ALLOYS 2 Claims, No Drawings [52] 11.8. CI 75/174, 148/32.5, 148/133 [51] Int. Cl C22c 27/00 [50] Field of Search 75/174; 148/32, 32.5, 133
[56] References Cited UNITED STATES PATENTS 2,973,261 2/1961 Frank 75/174 Primary Examiner-Charles N. Lovell Attorneys-Harry A. Herbert, Jr. and Alvin B. Peterson ABSTRACT: Niobium-base alloys containing at least 20 weight percent molybdenum, small amounts of carbon, and small amounts of zirconium, hafnium, titanium, or mixtures thereof. Molybdenum prevents the formation of undesirable Nb -,C and greatly inhibits the formation of undesirable Nb C during cooling of the alloy after its initial heat treatment (solution annealing). The alloy must contain at least 20 weight percent molybdenum in order for the final product to be substantially free of the undesirable niobium carbides. By preventing the formation of the niobium carbides, the molybdenum causes carbon to be free to react with zirconium, hafnium, titanium, or mixtures thereof and form desirable carbides with those elements during a second heat treatment. The alloys of this invention are useful where strong, lightweight materials are needed such as in the manufacture of jet engine turbines.
MOLYBDENUM IN CARBON CONTAINING NIOBIUM- BASE ALLOYS BACKGROUND OF THE INVENTION l. Field of the Invention This invention is in the field of niobium-base alloys.
2. Description of the Prior Art Between about 1955 and 1960 there was some experimentation with niobium-base alloys containing molybdenum, carbon, and zirconium (or acceptable substitutes for zirconium). These alloys were largely developed for application as structural materials for aerospace (reentry) vehicles. Because these alloys had to be workable at room temperature and because large weight percentages of molybdenum decrease the workability at room temperature, molybdenum content was generally held to less than 20 weight percent and was preferably in the range of about to about l5 weight percent.
Around 1960 it was found that, for many purposes, tungsten is a more efficient solid solution strengthener of niobium than molybdenum and most niobium-base alloy work turned to the niobium-tungsten system. However, for certain purposes such as the manufacture of jet engine turbines, the tungsten containing alloys have too high a density to be useful. Therefore, in the recent past, interest in niobium-base alloys containing molybdenum has been rekindled. Also, in such operations as jet engine turbine manufacture, workability of the alloy at room temperature is not always necessary, i.e. turbine blades can be cast or worked at higher temperatures.
The use of carbon in niobium-base alloys has created a problem in the past. The preparation of niobium-base alloys generally involves a heat treatment at about l,700 C., cooling to room temperature, followed by a second heat treatment at about 1,200 to l,300 C. During the cooling step the carbon forms undesirable carbides with niobium which are present in the final product in the form of coarse, unstable needles. Quenching with liquid tin has been used as a means for preventing the formation of large carbide needles. Liquid tin quenching has several drawbacks in that it embrittles the alloy or tends to initiate cracks in the alloy, and is too complicated for large scale production.
SUMMARY OF THE INVENTION It has now been found, quite unexpectedly, that increasing the molybdenum content of niobium-base alloys to weight percentages in the range of from to greatly increases the high temperature strength characteristics of the alloy. It has also been found that increasing the molybdenum content eliminates the need for liquid tin quenching because the larger weight percentages of molybdenum prevent the formation of Nbacg (one of the undesirable niobium carbides) and inhibits the formation of Nb C (a second undesirable carbide). By preventing the formation of undesirable niobium carbides, the large weight percent of molybdenum acts to make carbon available to form desirable zirconium, hafnium, and titanium carbides during the second annealing of the alloy. These carbides are extremely fine and completely dispersed throughout the final product and thus lend strength to the final product.
DESCRIPTION OF THE PREFERRED EMBODIMENT A general discussion of the method used to prepare the alloys of this invention has been given above. It bears repeating that the weight percentage of molybdenum used in the alloy is very critical and that the percentage should be at least 20 and preferably in the range of from about 25 to 30. This will be shown by the following examples.
The following examples serve to completely illustrate the invention and make it understandable and practicable by one skilled in the art. All percentages given are weight percentages unless otherwise stated. The weight percentages of niobium are not given, it being understood that the balance of the alloys over and above the percentages given for the other elements is niobium. Thus, for example, Nb-O. lC means an alloy containing 0.1 weight percent carbon and 99.9 weight percent niobium, and Nb-l5Mo-0.1C means alloy containing 0.1 weight percent carbon, 15 weight percent molybdenum and 84.9 weight percent niobium.
EXAMPLE I Alloys A, B, and C were prepared. Alloy A was Nb-0.lC. Alloy B was Nb-l5Mo-O.1C. Alloy C was Nb-30Mo-0.1C. The elements were placed together and melted. The melting was accomplished by nonconsumable arc melting under a purified argon atmosphere in water-cooled copper molds. The alloys were remelted three times to insure thorough mixing of the ingredient components. Fifty gram buttons were recovered from the molds and were solution annealed for one hour at 1,750 C. and radiation cooled in a conventional vacuum furnace. The approximate cooling rate between 1,750 C. and l,000 C. was 400 C. per minute. Metallographic evaluation showed that grain and subgrain boundaries of all three alloys contained carbide phases. Alloy A and alloy B in addition contained coarse carbides in the grain interior.
The three alloys were then annealed in vacuum at 1,200 C. for an additional 24 hours. This second anneal produced no structural changes in alloy A and very little structural change in alloy B. I-Iowever,'the second anneal produced an extensive precipitation of carbides in alloy C. This additional precipitation was in the form of discontinuous precipitation or growth of carbide plates from the grain or subgrain boundary carbides into the grain interior.
This example illustrates that precipitation of carbidesduring the cooling step in the Nb-30Mo-O.1C alloy (alloy C) is especially sluggish and confined to crystal defects and that carbon supersaturation exists in alloy C after cooling from the solution annealing temperature. This carbon supersaturation apparently does not exit or exists only to a very small degree in alloy B (which contains only 15 weight percent molybdenum) and does not exist at all in alloy A (which contains no molybdenum).
EXAMPLE II Five alloys were prepared in the manner similar to that described by Example I. The alloys were Nb-lZr-0.l3C-l0 Mo, Nb-lZr-0.l3C-l5Nb-lZr-0.l3C-25Mo, and Nb-lZr- 0.13C-3Mo. The elements were melted in copper molds as described by Example I and 50 gram buttons of each composition were recovered. The buttons were then solution annealed at l,900 C. for 5 hours. Vacuum cooling at the rate of Example I was then carried out. A comparison of the microstructures after this solution anneal showed coarse, undesirable niobium carbide needles in alloys with less than 20 weight percent molybdenum which disappeared in the 25 and 30 weigh percent molybdenum containing alloys. Finally, sections of the buttons were given a second annealing treatment for 1 hour at temperatures between 1,000 C. and 1,800 C. This anneal caused the formation of zirconium carbides. The microstructures of samples after this second annealing treatment revealed a unique effect of molybdenum in the concentration range of 20 to 30 weight percent on the size and distribution of zirconium carbides. Whereas alloys containing less than 20 weight percent molybdenum showed comparatively coarse and rather nonuniformly distributed zirconium carbide particles, these carbides were extremely uniformly distributed and of a small and hardly detectable size in alloys with 25 and 30 weight percent molybdenum annealed for 1 hour at 1,400 C. This indicates the excellent high temperature stability and strength achieved by the addition of 25 to 30 weight percent molybdenum.
still going on to decide which of the two, if either, is preferable for use in certain applications, Also, combinations of the three (zirconium, hafnium, and titanium) may be used to yield very good alloys.
The foregoing examples have given precise values for carbon and zirconium weight percentages. Of course it is well known in the art that the weight percentages of carbon may be varied in the range of about 0.05 to about 0.2 and the weight percentages of zirconium may vary within the range of about 0.5 to about 3.0. If hafnium or titanium or combinations of zirconium, hafnium, and titanium are used in lieu of zirconium, the weight added should, of course, be equivalent on the

Claims (1)

  1. 2. A niobium-base alloy according to claim 1 wherein the zirconium is replaced by corresponding atomic percentages of a member selected from the group consisting of hafnium, titanium, and combinations of zirconium, titanium, and hafnium.
US817559A 1969-04-18 1969-04-18 Molybdenum in carbon containing niobium-base alloys Expired - Lifetime US3607251A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US81755969A 1969-04-18 1969-04-18

Publications (1)

Publication Number Publication Date
US3607251A true US3607251A (en) 1971-09-21

Family

ID=25223352

Family Applications (1)

Application Number Title Priority Date Filing Date
US817559A Expired - Lifetime US3607251A (en) 1969-04-18 1969-04-18 Molybdenum in carbon containing niobium-base alloys

Country Status (1)

Country Link
US (1) US3607251A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4299625A (en) * 1978-09-25 1981-11-10 The United States Of America As Represented By The Secretary Of The Navy Niobium-base alloy
US4836849A (en) * 1987-04-30 1989-06-06 Westinghouse Electric Corp. Oxidation resistant niobium alloy
US9546837B1 (en) 2015-10-09 2017-01-17 Bh5773 Ltd Advanced gun barrel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2973261A (en) * 1959-06-11 1961-02-28 Gen Electric Columbium base alloys
US3113863A (en) * 1960-05-31 1963-12-10 Gen Electric Columbium base alloy
US3230119A (en) * 1963-09-17 1966-01-18 Du Pont Method of treating columbium-base alloy
US3346379A (en) * 1961-11-15 1967-10-10 Union Carbide Corp Niobium base alloy
US3384479A (en) * 1965-07-08 1968-05-21 Gen Electric Columbium-base alloys

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2973261A (en) * 1959-06-11 1961-02-28 Gen Electric Columbium base alloys
US3113863A (en) * 1960-05-31 1963-12-10 Gen Electric Columbium base alloy
US3346379A (en) * 1961-11-15 1967-10-10 Union Carbide Corp Niobium base alloy
US3230119A (en) * 1963-09-17 1966-01-18 Du Pont Method of treating columbium-base alloy
US3384479A (en) * 1965-07-08 1968-05-21 Gen Electric Columbium-base alloys

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4299625A (en) * 1978-09-25 1981-11-10 The United States Of America As Represented By The Secretary Of The Navy Niobium-base alloy
US4836849A (en) * 1987-04-30 1989-06-06 Westinghouse Electric Corp. Oxidation resistant niobium alloy
US9546837B1 (en) 2015-10-09 2017-01-17 Bh5773 Ltd Advanced gun barrel

Similar Documents

Publication Publication Date Title
US2754204A (en) Titanium base alloys
US2754203A (en) Thermally stable beta alloys of titanium
US4292077A (en) Titanium alloys of the Ti3 Al type
US4889170A (en) High strength Ti alloy material having improved workability and process for producing the same
US4386976A (en) Dispersion-strengthened nickel-base alloy
US3902862A (en) Nickel-base superalloy articles and method for producing the same
US3567526A (en) Limitation of carbon in single crystal or columnar-grained nickel base superalloys
EP0642598A1 (en) Low density, high strength al-li alloy having high toughness at elevated temperatures
US3575734A (en) Process for making nickel base precipitation hardenable alloys
US2892706A (en) Titanium base alloys
US3551143A (en) Aluminum base alloys having improved high temperature properties and method for their production
EP0593824A1 (en) Nickel aluminide base single crystal alloys and method
US2996379A (en) Cobalt-base alloy
JPH0219438A (en) High strength oxidation-resistant alpha titanium alloy
US3607251A (en) Molybdenum in carbon containing niobium-base alloys
US2588007A (en) Titanium-molybdenum-chromium alloys
US3039868A (en) Magnesium base alloys
US3243291A (en) High-temperature alloy
US3230119A (en) Method of treating columbium-base alloy
US2960403A (en) Molybdenum-base alloys
US3379520A (en) Tantalum-base alloys
JPS63312901A (en) Heat resistant high tensile al alloy powder and composite ceramics reinforced heat resistant al alloy material using said powder
US3183085A (en) Tantalum base alloys
EP0476043A1 (en) Improved nickel aluminide alloy for high temperature structural use.
US3174853A (en) Chromium base alloys