US3607097A - Analyzer for liquid samples - Google Patents
Analyzer for liquid samples Download PDFInfo
- Publication number
- US3607097A US3607097A US750654A US3607097DA US3607097A US 3607097 A US3607097 A US 3607097A US 750654 A US750654 A US 750654A US 3607097D A US3607097D A US 3607097DA US 3607097 A US3607097 A US 3607097A
- Authority
- US
- United States
- Prior art keywords
- working tube
- working
- tube
- tubes
- containers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 32
- 210000004369 blood Anatomy 0.000 claims abstract description 11
- 239000008280 blood Substances 0.000 claims abstract description 11
- 238000004737 colorimetric analysis Methods 0.000 claims abstract description 8
- 239000003153 chemical reaction reagent Substances 0.000 claims description 37
- 239000000470 constituent Substances 0.000 claims description 12
- 239000003708 ampul Substances 0.000 claims description 8
- 239000012530 fluid Substances 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims description 2
- 239000000126 substance Substances 0.000 abstract description 6
- 238000012360 testing method Methods 0.000 abstract description 4
- 238000004458 analytical method Methods 0.000 description 22
- 210000002966 serum Anatomy 0.000 description 10
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 8
- 239000008103 glucose Substances 0.000 description 8
- 238000011282 treatment Methods 0.000 description 7
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 4
- 229910052700 potassium Inorganic materials 0.000 description 4
- 239000011591 potassium Substances 0.000 description 4
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- PANJMBIFGCKWBY-UHFFFAOYSA-N iron tricyanide Chemical compound N#C[Fe](C#N)C#N PANJMBIFGCKWBY-UHFFFAOYSA-N 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- 239000000057 synthetic resin Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000005955 Ferric phosphate Substances 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 description 1
- 229910001626 barium chloride Inorganic materials 0.000 description 1
- 238000004159 blood analysis Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 210000000624 ear auricle Anatomy 0.000 description 1
- 229940032958 ferric phosphate Drugs 0.000 description 1
- YAGKRVSRTSUGEY-UHFFFAOYSA-N ferricyanide Chemical compound [Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] YAGKRVSRTSUGEY-UHFFFAOYSA-N 0.000 description 1
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 1
- 229910000399 iron(III) phosphate Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- DPTATFGPDCLUTF-UHFFFAOYSA-N phosphanylidyneiron Chemical compound [Fe]#P DPTATFGPDCLUTF-UHFFFAOYSA-N 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/505—Containers for the purpose of retaining a material to be analysed, e.g. test tubes flexible containers not provided for above
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/02—Burettes; Pipettes
- B01L3/0289—Apparatus for withdrawing or distributing predetermined quantities of fluid
- B01L3/0293—Apparatus for withdrawing or distributing predetermined quantities of fluid for liquids
- B01L3/0296—Apparatus for withdrawing or distributing predetermined quantities of fluid for liquids from piercable tubing, e.g. in extracorporeal blood sampling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/10—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
- G01N35/1002—Reagent dispensers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
- G01N2035/0401—Sample carriers, cuvettes or reaction vessels
- G01N2035/0406—Individual bottles or tubes
- G01N2035/0408—Individual bottles or tubes connected in a flexible chain
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
- G01N2035/0401—Sample carriers, cuvettes or reaction vessels
- G01N2035/0429—Sample carriers adapted for special purposes
- G01N2035/0434—Sample carriers adapted for special purposes in the form of a syringe or pipette tip
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/10—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
- G01N35/1079—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices with means for piercing stoppers or septums
Definitions
- first conveyor belt carries the samples to be analyzed, an adjacent belt carries working tubes in which the tests occur, and
- a third belt carries substances to be added to the samples during the tests. Needles and tubes are provided between the containers of substances on the three belts for piercing container walls and then transferring liquids between the containers.
- a sequence of tubes having flexible walls and filled with the liquid samples to be analyzed are arranged parallel to each other on a belt which is adapted to run around drums carrying out predetermined movements, means being provided for carrying out the treatments required for the analysis in a given order of succession of the sample in each tube, for instance, injection of auxiliary liquids, mixtures and so on.
- the apparatus comprises rows of thrust feet arranged parallel to the tubes, each row cooperating with'a single stationary member associated with a row, the number of rows being at least equal to the number of auxiliary liquids to be introduced into the samples.
- a programming device controls the thrust feet, each of which can be pressed against the wall of the opposite tube so that the liquid is displaced against the wall of the length of the tube and the predetermined treatment can be carried out.
- Each working tube comprises in its interior filters for performing the number of required filtrations during the analysis.
- the invention has for its object to provide further mechanization of the apparatus, and accordingly the invention there is provided a second belt having parallel tubes for the auxiliary liquids consisting of flexible material and being displaceable by actuating at least one pushbutton into a position near the working tube, each auxiliary liquid tube having an injection needle for injecting the auxiliary liquid into the working tube.
- FIG. 1 shows schematically an elevation of the various belts provided with tubes in an apparatus according to the invention
- H6. 2 is a sectional view of an auxiliary liquid tube comprising two chambers
- FIG. 3 is a schematic elevation of a detail of the cooperating tubes connected with thrust feet.
- the improvement provided by the invention relates particularly to the quantitative analysis of one or more constituents of the blood of a large number of patients.
- the analysis of glucose described before is chosen by way of example.
- all treatments are carried out within a single working tube 2 of small diameter, for example, of a synthetic resin resistant to the chemical reagents.
- the working tubes 2 are arranged parallel to each other on a belt 1, termed the working belt.
- the belt is adapted to move along two drums, one of which is shown at 31in the spaces 4 between every two tubes 2 the working belt is provided with the patients data and the coded analysis in the form of perforations.
- each working tube has at one end a hollow needle 5 for taking in the blood serum, which will be described more fully hereinafter.
- the working belt is associated with a number of rows of thrust feet (not shown in FIG. l), the number of rows being at least equal to the number of reagents or auxiliary liquids to be introduced during the same analysis into the sample to be analyzed.
- Att'ultliltg In tlultivcnliml there is added to the working belt I a second belt 7. which can bemoved by a drum 8 and which is provided with tubes 9 of flexible synthetic resin containing the substances to be added during the analysis.
- the belt 7 has a given thickness so that the tubes 9, arranged parallel to each other, can be fixed in openings in the direction of thickness of the belt 7.
- the tubes 9 can be pressed out of the openings by means of a thrust pin 10 and be moved to the area above a working tube 2 on the belt 1.
- Each tube 9 has a needle 11, which is capable of piercing the wall ofa working tube 2.
- reagents may be stored for a long time in a sealed glass ampulla.
- a tube 9 contains the glass ampulla sealed by a pigtail, which can be broken across the tube, for example, by means of a thrust pin.
- the tube 9 may be shaped in the form shown in FIG. 2.
- This tube comprises two separate chambers 91 and 92, communicating with each other through openings 96, the chamber 91 being divided into separate spaces 93, separated from each other by closed partitions 94. Each space contains a constituent of the reagent, for example, in the sealed ampullae 95.
- Each separate space 93 communicates with the chamber 92 via a hollow needle 96.
- For producing the reagent pigtails are broken by exerting pressure across the synthetic resin wall so that the liquids flow into the spaces concerned.
- Thrust members (not shown) permit of introducing into the chamber 92 the desired quantities of the constituents which form the final reagent by mixing, if necessary with the supply of heat.
- the chamber 92 has a hollow needle 11.
- the apparatus comprises a third belt 12, termed herein take-in belt, adapted to be moved between two drums 13 and supporting parallel tubes 14, each of which contains blood of a patient.
- the tubes 14 are provided at one end with a lancet 15 and the blood can be taken in, for example, from the patients ear lobe manually or automatically by means of an apparatus independent of the analyzer into which the belt 12 has to be introduced subsequently.
- the tubes 14 are fixed on the belt 12 in rigid supports by means ofa spring (not shown) arranged on stv
- the free space 16 between two tubes 14 contains all data relating to the patient and the desired analysis in the form of coded perforations which data can be transferred to the belt 1 by means of a photoelectric cell.
- the take-in tubes 14 with the blood are first centrifuged before the belt 12 is inserted into the analyzerso that serum and corpuscles are separated from each other.
- the operation of the analyzer will now be described briefly with reference to the assessment of the glucose content of blood.
- the drum 13 and the take-in belt 12 are moved so that invariable a tube 14 is located opposite a working tube 2.
- the belt 1 with the working tubes 2 is arranged so that the needle ofa working tube 2 can penetrate into the take-in tube 14 just above the portion filled with corpuscles, after which the desired quantity of serum can be sucked into the working tube 2.
- the associated coded information of the belt 12 is read and punched in the belt 1.
- a programming device receiving the punched information of the belt 12 will control the course of the three belts l, 7 and l2.
- the belt 7 comprises a number of tubes 9 containing reagents corresponding with the number of patients.
- Reagent A for expelling protein
- [.22 gs. barium chloride 2H 0.26 g. distilled water [00 cc.
- Reagent B (ferric-ferrous cyanide) pure potassium ferro-cyanidc 0.006 g. pure potassium ferri-cyanide 0.033 g. pure dry sodium carbonate 0.4 g.
- Reagent C (ferric phosphate) pure potassium fcrri-cyanide 0.04 g. SS'k-ic phosphoric acid 4.7 gs. distilled water I00 cc.
- the first reagent having a pH value exceeding 8 can be kept in good condition, it may be provided in the ready state in a glass ampulla in a tube 9 and the sealing tip of the ampulla can be broken at the exact instant.
- the tube 9 is then moved to above the belt 1 with the working tubes 2, where the tube 9 stands still until the termination of the glucose analysis.
- the hollow needle of the tube 9 can penetrate by pressure into the working tube 2 by means of thrust feet. This is shown in detail in FIG. 3.
- the tube 9 with the filled chamber 92 is located above the working tube 2 and the needle 11 has pierced the wall.
- the thrust feet 17 press the working tube 2 flat against the member 18 and after the return movement of the feet the tube 2 sucks in a quantity of reagent. By pressing the correct number of feet 17 against the member 18 a quantity of uL. is urged 20 times in order of succession forwardly in the tube portion serving for the analysis and for taking in serum.
- the serum is taken in the same manner by means of the needle 5.
- the needle In order to cause this needle to penetrate into the centrifuged take-in tubes 14, the latter are pressed against the needle by a thrust foot. The needles are adjusted so that they penetrate just above the blood clot so that no serum gets lost.
- the serum is taken into the working tube 2, It is mixed with the reagent by the alternate displacement of the evennumbered and odd-numbered thrust feet 17.
- the mixture is then filtered by a hard-glass filter 6 in the interior of the working tube 2.
- the thrust feet By the action of the thrust feet the liquid is injected under pressure through the walls of the filter.
- the working tube 2 is displaced by one step, after which the same cycle is repeated for the analysis of the glucose content of a further patient and so on until the doses to be analyzed are exhausted or the tube 9 is empty.
- the second treatment of the filtrate consists in the introduction of the ferri-ferro-cyanide, the glucose reduction of which is measured.
- This reagent has to be produced separately,
- the tube 9 has in this case two chambers, one of which is divided into three separate spaces 93 which contain the previously weighed quantities of ferrous cyanide, ferric cyanide and a solution of sodium carbonate in a glass ampulla.
- a quantity of, for example, cc. accurately determined by means of thrust pins can be readily supplied from the ampulla containing sodium carbonate under gas pressure.
- This quantity of the solution is then inserted into the other chamber 92 and mixed therein with the ferrous cyanide and the ferric cyanide.
- the tube 9 is moved near the working tube 2 for the injection of the reagent.
- the process is then as follows: In an accurately determined portion of the tube 2 L. of the filtrate of the first treatment is absorbed, after which this quantity is shifted upwards.
- the reaction is completed by heating at near the boiling point of the liquid for one quarter of an hour, for example, in a bath, which may be a circulating heating bath. Each tube is passed through the bath for the same period of time. After the bath a quantity of ,u.L. of ferric phosphide is introduced in the same way as described above. For color stabilization the belt is held for about 15 minutes at 20 C. in a drying furnace. The tubes 2 are then subjected to colorimetric analysis.
- the belt 12 is moved back to its initial position after termination of the first sequence of analyses and a new sequence of tubes 2 is applied to the belt 1, each of which can take in a new quantity of serum.
- the belt 7 with the reagents is moved so that the tubes 9 are disposed in accordance with the new sequence of analyses.
- the tubes employed for the preceding analysis are conducted away and rejected.
- Apparatus for automatic analysis of liquid samples obtained from a plurality of containers comprising:
- first duct means for communicating the sample liquid from each container to a working tube, with said liquid being drawable into the working tube by said suction therein
- auxiliary containers each containing at least one reagent
- third means for carrying auxiliary containers along a third path and for disposing each to be closely adjacent a working tube
- second duct means for communicating each reagent from its auxiliary container to a working tube, the reagent being drawable onto the working tube by said suction therein, whereby each sample is mixed within a working tube at least one reagent subsequent analysis.
- auxiliary liquid containers comprises a first chamber separated into two spaces, each adapted to house an ampulla containing a constituent of a reagent, and a second chamber communicating with said spaces for receiving and mixing said constituents and for discharging the mixed constituents into the working tube.
- Apparatus according to claim 2 further comprising means for breaking open the ampullae in said spaces of the first chamber and for urging the constituents into the second chamber.
- each working tube comprises a plurality of thrust feet, each movable between an inactive position, an an active position in pressure contact with a working tube for compressing same.
- Apparatus according to claim 4 wherein said thrust feet are selectively movable into pressure contact with each working tube to mix the liquid sample and reagent therein and subsequently to discharge the mixed fluid from the working tube.
- Apparatus comprising a device according to claim 6, further comprising means for programming said belts to move in phased relationship, for phased interrelationship between said tubes and containers.
- Apparatus according to claim 1 further comprising in each working tube a filter for filtering the sample after it is mixed with the reagent.
- Apparatus for automatic colorimetric analysis of liquid fluid samples obtained from a plurality of containers comprising:
- a plurality of thrust feet each movable between an inactive position, an an active position in pressure contact with a working tube for selectively 'compressing same, the tube being subsequently expanded to develop suction therein when each thrust foot is returned to its inactive position,
- means for moving said feet between said active and inacg. a plurality of auxiliary containers, each having a discharge needle and containing at least one reagent,
- third belt for carrying the auxiliary containers and for disposing each to be closely adjacent a working tube and for then urging the needle of each auxiliarfcontainer to penetrate a working tube, the reagent then being drawable into the working tube by said suction therein, whereby each blood sample is mixed within a working tube with at least one reagent for subsequent colorimetric analysis.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR117367A FR93162E (fr) | 1966-04-05 | 1967-08-09 | Appareil d'analyse d'échantillons liquides. |
Publications (1)
Publication Number | Publication Date |
---|---|
US3607097A true US3607097A (en) | 1971-09-21 |
Family
ID=8636629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US750654A Expired - Lifetime US3607097A (en) | 1967-08-09 | 1968-08-06 | Analyzer for liquid samples |
Country Status (2)
Country | Link |
---|---|
US (1) | US3607097A (enrdf_load_stackoverflow) |
BE (1) | BE719196A (enrdf_load_stackoverflow) |
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3713771A (en) * | 1971-05-13 | 1973-01-30 | B Taylor | Method for organized assay and bendable test tube rack therefor |
US3812597A (en) * | 1972-06-29 | 1974-05-28 | Philips Corp | Oven |
US3869252A (en) * | 1972-04-22 | 1975-03-04 | Hans Haug | Dose distribution means |
US3883305A (en) * | 1972-03-21 | 1975-05-13 | Coulter Electronics | Automatic chemical analysis apparatus |
US3902852A (en) * | 1972-07-25 | 1975-09-02 | Univ Sherbrooke | Apparatus for multiple sample application |
US3918913A (en) * | 1974-12-02 | 1975-11-11 | Lilly Co Eli | Sampler-injector for liquid chromatography |
US3948606A (en) * | 1973-01-26 | 1976-04-06 | Johnson Derrold D | Programmed test tube rack for manually performing medical diagnostic assays |
US4106911A (en) * | 1976-07-09 | 1978-08-15 | Societe Francaise Pour Le Developpement De L'automatisme En Biologie | Device for examining a plurality of microdoses of liquids |
US4120662A (en) * | 1978-01-18 | 1978-10-17 | Cortex Research Corporation | Specimen sampling apparatus |
US4311484A (en) * | 1980-04-09 | 1982-01-19 | Cortex Research Corporation | Specimen sampling apparatus |
EP0254246A3 (en) * | 1986-07-22 | 1989-08-09 | Personal Diagnostics, Inc. | Improved cuvette |
US4872353A (en) * | 1987-11-25 | 1989-10-10 | Micromeritics Instrument Corp. | Automatic sample feeder for suspended samples |
US4937049A (en) * | 1987-02-24 | 1990-06-26 | Ibg Systems Limited | Sample transfer device |
US4960566A (en) * | 1986-09-11 | 1990-10-02 | Mochida Pharmaceutical Co., Ltd. | Chemical reaction apparatus |
US5988947A (en) * | 1997-11-04 | 1999-11-23 | Bruso; Bruce L. | Multi-section soil remediation device |
WO1999067646A1 (en) * | 1998-06-24 | 1999-12-29 | Chen & Chen, Llc | Fluid sample testing system |
US20030049833A1 (en) * | 1998-06-24 | 2003-03-13 | Shuqi Chen | Sample vessels |
US20070123802A1 (en) * | 2002-09-05 | 2007-05-31 | Freeman Dominique M | Methods and apparatus for an analyte detecting device |
US20070219463A1 (en) * | 2002-04-19 | 2007-09-20 | Barry Briggs | Methods and apparatus for lancet actuation |
US20080021491A1 (en) * | 2002-04-19 | 2008-01-24 | Freeman Dominique M | Method and apparatus for penetrating tissue |
US20080027385A1 (en) * | 2002-04-19 | 2008-01-31 | Freeman Dominique M | Method and apparatus for penetrating tissue |
US20090131964A1 (en) * | 2002-04-19 | 2009-05-21 | Dominique Freeman | Tissue penetration device |
US20090192410A1 (en) * | 2001-10-16 | 2009-07-30 | Dominique Freeman | Universal diagnostic system |
US20090194422A1 (en) * | 2008-01-31 | 2009-08-06 | George Koltse | Method and apparatus for plating metal parts |
US20110143968A1 (en) * | 1998-06-24 | 2011-06-16 | Iquum, Inc. | Sample vessels |
US20120149999A1 (en) * | 2001-06-12 | 2012-06-14 | Dominique Freeman | Tissue penetration device |
US8574895B2 (en) | 2002-12-30 | 2013-11-05 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus using optical techniques to measure analyte levels |
US8641644B2 (en) | 2000-11-21 | 2014-02-04 | Sanofi-Aventis Deutschland Gmbh | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
US8652831B2 (en) | 2004-12-30 | 2014-02-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte measurement test time |
US8668656B2 (en) | 2003-12-31 | 2014-03-11 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for improving fluidic flow and sample capture |
US8690796B2 (en) | 2002-04-19 | 2014-04-08 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8702624B2 (en) | 2006-09-29 | 2014-04-22 | Sanofi-Aventis Deutschland Gmbh | Analyte measurement device with a single shot actuator |
US8721671B2 (en) | 2001-06-12 | 2014-05-13 | Sanofi-Aventis Deutschland Gmbh | Electric lancet actuator |
US8784335B2 (en) | 2002-04-19 | 2014-07-22 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling device with a capacitive sensor |
US8828203B2 (en) | 2004-05-20 | 2014-09-09 | Sanofi-Aventis Deutschland Gmbh | Printable hydrogels for biosensors |
CN104237223A (zh) * | 2014-10-08 | 2014-12-24 | 江苏奥赛康药业股份有限公司 | 测定铁-碳水化合物络合物中不稳定铁含量的方法 |
US8936933B2 (en) | 2003-02-05 | 2015-01-20 | IQumm, Inc. | Sample processing methods |
US8945910B2 (en) | 2003-09-29 | 2015-02-03 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for an improved sample capture device |
US8965476B2 (en) | 2010-04-16 | 2015-02-24 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9144401B2 (en) | 2003-06-11 | 2015-09-29 | Sanofi-Aventis Deutschland Gmbh | Low pain penetrating member |
US9226699B2 (en) | 2002-04-19 | 2016-01-05 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling module with a continuous compression tissue interface surface |
US9248267B2 (en) | 2002-04-19 | 2016-02-02 | Sanofi-Aventis Deustchland Gmbh | Tissue penetration device |
US9314194B2 (en) | 2002-04-19 | 2016-04-19 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9351680B2 (en) | 2003-10-14 | 2016-05-31 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a variable user interface |
US9375169B2 (en) | 2009-01-30 | 2016-06-28 | Sanofi-Aventis Deutschland Gmbh | Cam drive for managing disposable penetrating member actions with a single motor and motor and control system |
US9427532B2 (en) | 2001-06-12 | 2016-08-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9662652B2 (en) | 2000-12-29 | 2017-05-30 | Chen & Chen, Llc | Sample processing device for pretreatment and thermal cycling |
US9775553B2 (en) | 2004-06-03 | 2017-10-03 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
US9795747B2 (en) | 2010-06-02 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US9820684B2 (en) | 2004-06-03 | 2017-11-21 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
CN110261632A (zh) * | 2019-07-30 | 2019-09-20 | 成都斯马特科技有限公司 | 一种全自动化学发光免疫分析仪 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3266298A (en) * | 1963-07-30 | 1966-08-16 | Technicon Instr | Means and method for the identification of samples for blood typing |
US3297558A (en) * | 1965-03-12 | 1967-01-10 | Instrumentation Labor Inc | Fluid control apparatus |
US3306229A (en) * | 1965-04-05 | 1967-02-28 | Technicon Instr | Pump apparatus and method of operation thereof |
US3490876A (en) * | 1966-04-05 | 1970-01-20 | Philips Corp | Analysing devices for fluid samples |
-
1968
- 1968-08-06 US US750654A patent/US3607097A/en not_active Expired - Lifetime
- 1968-08-07 BE BE719196D patent/BE719196A/xx unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3266298A (en) * | 1963-07-30 | 1966-08-16 | Technicon Instr | Means and method for the identification of samples for blood typing |
US3297558A (en) * | 1965-03-12 | 1967-01-10 | Instrumentation Labor Inc | Fluid control apparatus |
US3306229A (en) * | 1965-04-05 | 1967-02-28 | Technicon Instr | Pump apparatus and method of operation thereof |
US3490876A (en) * | 1966-04-05 | 1970-01-20 | Philips Corp | Analysing devices for fluid samples |
Cited By (98)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3713771A (en) * | 1971-05-13 | 1973-01-30 | B Taylor | Method for organized assay and bendable test tube rack therefor |
US3883305A (en) * | 1972-03-21 | 1975-05-13 | Coulter Electronics | Automatic chemical analysis apparatus |
US3869252A (en) * | 1972-04-22 | 1975-03-04 | Hans Haug | Dose distribution means |
US3812597A (en) * | 1972-06-29 | 1974-05-28 | Philips Corp | Oven |
US3902852A (en) * | 1972-07-25 | 1975-09-02 | Univ Sherbrooke | Apparatus for multiple sample application |
US3948606A (en) * | 1973-01-26 | 1976-04-06 | Johnson Derrold D | Programmed test tube rack for manually performing medical diagnostic assays |
US3918913A (en) * | 1974-12-02 | 1975-11-11 | Lilly Co Eli | Sampler-injector for liquid chromatography |
US4106911A (en) * | 1976-07-09 | 1978-08-15 | Societe Francaise Pour Le Developpement De L'automatisme En Biologie | Device for examining a plurality of microdoses of liquids |
US4120662A (en) * | 1978-01-18 | 1978-10-17 | Cortex Research Corporation | Specimen sampling apparatus |
DE2901345A1 (de) * | 1978-01-18 | 1979-07-19 | Cortex Res Corp | Geraet zum entnehmen von proben aus blutspezimens o.dgl. |
US4311484A (en) * | 1980-04-09 | 1982-01-19 | Cortex Research Corporation | Specimen sampling apparatus |
EP0254246A3 (en) * | 1986-07-22 | 1989-08-09 | Personal Diagnostics, Inc. | Improved cuvette |
US4960566A (en) * | 1986-09-11 | 1990-10-02 | Mochida Pharmaceutical Co., Ltd. | Chemical reaction apparatus |
US4937049A (en) * | 1987-02-24 | 1990-06-26 | Ibg Systems Limited | Sample transfer device |
US4872353A (en) * | 1987-11-25 | 1989-10-10 | Micromeritics Instrument Corp. | Automatic sample feeder for suspended samples |
US5988947A (en) * | 1997-11-04 | 1999-11-23 | Bruso; Bruce L. | Multi-section soil remediation device |
US10022722B2 (en) | 1998-06-24 | 2018-07-17 | Roche Molecular Systems, Inc. | Sample vessels |
US20130040830A1 (en) * | 1998-06-24 | 2013-02-14 | Chen & Chen, Llc | Fluid Sample Testing System |
US20030049833A1 (en) * | 1998-06-24 | 2003-03-13 | Shuqi Chen | Sample vessels |
US6748332B2 (en) | 1998-06-24 | 2004-06-08 | Chen & Chen, Llc | Fluid sample testing system |
WO1999067646A1 (en) * | 1998-06-24 | 1999-12-29 | Chen & Chen, Llc | Fluid sample testing system |
US9005551B2 (en) | 1998-06-24 | 2015-04-14 | Roche Molecular Systems, Inc. | Sample vessels |
US6318191B1 (en) | 1998-06-24 | 2001-11-20 | Chen & Chen, Llc | Fluid sample testing system |
US20110143968A1 (en) * | 1998-06-24 | 2011-06-16 | Iquum, Inc. | Sample vessels |
US20080038813A1 (en) * | 1998-06-24 | 2008-02-14 | Shuqi Chen | Sample vessels |
US7337072B2 (en) | 1998-06-24 | 2008-02-26 | Chen & Chen, Llc | Fluid sample testing system |
US20110064613A1 (en) * | 1998-06-24 | 2011-03-17 | Chen & Chen, Llc | Fluid sample testing system |
US7833489B2 (en) | 1998-06-24 | 2010-11-16 | Chen & Chen, Llc | Fluid sample testing system |
US7799521B2 (en) | 1998-06-24 | 2010-09-21 | Chen & Chen, Llc | Thermal cycling |
US8641644B2 (en) | 2000-11-21 | 2014-02-04 | Sanofi-Aventis Deutschland Gmbh | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
US9662652B2 (en) | 2000-12-29 | 2017-05-30 | Chen & Chen, Llc | Sample processing device for pretreatment and thermal cycling |
US9802007B2 (en) | 2001-06-12 | 2017-10-31 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US9427532B2 (en) | 2001-06-12 | 2016-08-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9694144B2 (en) | 2001-06-12 | 2017-07-04 | Sanofi-Aventis Deutschland Gmbh | Sampling module device and method |
US20120149999A1 (en) * | 2001-06-12 | 2012-06-14 | Dominique Freeman | Tissue penetration device |
US9937298B2 (en) | 2001-06-12 | 2018-04-10 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8845550B2 (en) | 2001-06-12 | 2014-09-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8721671B2 (en) | 2001-06-12 | 2014-05-13 | Sanofi-Aventis Deutschland Gmbh | Electric lancet actuator |
US8641643B2 (en) | 2001-06-12 | 2014-02-04 | Sanofi-Aventis Deutschland Gmbh | Sampling module device and method |
US8679033B2 (en) * | 2001-06-12 | 2014-03-25 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8622930B2 (en) | 2001-06-12 | 2014-01-07 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US20090192410A1 (en) * | 2001-10-16 | 2009-07-30 | Dominique Freeman | Universal diagnostic system |
US9560993B2 (en) | 2001-11-21 | 2017-02-07 | Sanofi-Aventis Deutschland Gmbh | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
US8690796B2 (en) | 2002-04-19 | 2014-04-08 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US9248267B2 (en) | 2002-04-19 | 2016-02-02 | Sanofi-Aventis Deustchland Gmbh | Tissue penetration device |
US8579831B2 (en) | 2002-04-19 | 2013-11-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US20070219463A1 (en) * | 2002-04-19 | 2007-09-20 | Barry Briggs | Methods and apparatus for lancet actuation |
US9907502B2 (en) | 2002-04-19 | 2018-03-06 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8574168B2 (en) | 2002-04-19 | 2013-11-05 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a multi-use body fluid sampling device with analyte sensing |
US9839386B2 (en) | 2002-04-19 | 2017-12-12 | Sanofi-Aventis Deustschland Gmbh | Body fluid sampling device with capacitive sensor |
US20080021491A1 (en) * | 2002-04-19 | 2008-01-24 | Freeman Dominique M | Method and apparatus for penetrating tissue |
US8562545B2 (en) | 2002-04-19 | 2013-10-22 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8784335B2 (en) | 2002-04-19 | 2014-07-22 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling device with a capacitive sensor |
US8808201B2 (en) | 2002-04-19 | 2014-08-19 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for penetrating tissue |
US9795334B2 (en) | 2002-04-19 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8845549B2 (en) | 2002-04-19 | 2014-09-30 | Sanofi-Aventis Deutschland Gmbh | Method for penetrating tissue |
US8556829B2 (en) | 2002-04-19 | 2013-10-15 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8905945B2 (en) | 2002-04-19 | 2014-12-09 | Dominique M. Freeman | Method and apparatus for penetrating tissue |
US9724021B2 (en) | 2002-04-19 | 2017-08-08 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US20080027385A1 (en) * | 2002-04-19 | 2008-01-31 | Freeman Dominique M | Method and apparatus for penetrating tissue |
US20090131964A1 (en) * | 2002-04-19 | 2009-05-21 | Dominique Freeman | Tissue penetration device |
US9498160B2 (en) | 2002-04-19 | 2016-11-22 | Sanofi-Aventis Deutschland Gmbh | Method for penetrating tissue |
US8496601B2 (en) | 2002-04-19 | 2013-07-30 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US9339612B2 (en) | 2002-04-19 | 2016-05-17 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9072842B2 (en) | 2002-04-19 | 2015-07-07 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US9089678B2 (en) | 2002-04-19 | 2015-07-28 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US9089294B2 (en) | 2002-04-19 | 2015-07-28 | Sanofi-Aventis Deutschland Gmbh | Analyte measurement device with a single shot actuator |
US9314194B2 (en) | 2002-04-19 | 2016-04-19 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9186468B2 (en) | 2002-04-19 | 2015-11-17 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US9226699B2 (en) | 2002-04-19 | 2016-01-05 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling module with a continuous compression tissue interface surface |
US8636673B2 (en) | 2002-04-19 | 2014-01-28 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US20110034829A9 (en) * | 2002-09-05 | 2011-02-10 | Freeman Dominique M | Methods and apparatus for an analyte detecting device |
US20070123802A1 (en) * | 2002-09-05 | 2007-05-31 | Freeman Dominique M | Methods and apparatus for an analyte detecting device |
US9034639B2 (en) | 2002-12-30 | 2015-05-19 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus using optical techniques to measure analyte levels |
US8574895B2 (en) | 2002-12-30 | 2013-11-05 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus using optical techniques to measure analyte levels |
US10443050B2 (en) | 2003-02-05 | 2019-10-15 | Roche Molecular Systems, Inc. | Sample processing methods |
US9708599B2 (en) | 2003-02-05 | 2017-07-18 | Roche Molecular Systems, Inc. | Sample processing methods |
US8936933B2 (en) | 2003-02-05 | 2015-01-20 | IQumm, Inc. | Sample processing methods |
US9144401B2 (en) | 2003-06-11 | 2015-09-29 | Sanofi-Aventis Deutschland Gmbh | Low pain penetrating member |
US10034628B2 (en) | 2003-06-11 | 2018-07-31 | Sanofi-Aventis Deutschland Gmbh | Low pain penetrating member |
US8945910B2 (en) | 2003-09-29 | 2015-02-03 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for an improved sample capture device |
US9351680B2 (en) | 2003-10-14 | 2016-05-31 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a variable user interface |
US8668656B2 (en) | 2003-12-31 | 2014-03-11 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for improving fluidic flow and sample capture |
US9561000B2 (en) | 2003-12-31 | 2017-02-07 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for improving fluidic flow and sample capture |
US8828203B2 (en) | 2004-05-20 | 2014-09-09 | Sanofi-Aventis Deutschland Gmbh | Printable hydrogels for biosensors |
US9261476B2 (en) | 2004-05-20 | 2016-02-16 | Sanofi Sa | Printable hydrogel for biosensors |
US9820684B2 (en) | 2004-06-03 | 2017-11-21 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
US9775553B2 (en) | 2004-06-03 | 2017-10-03 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
US8652831B2 (en) | 2004-12-30 | 2014-02-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte measurement test time |
US8702624B2 (en) | 2006-09-29 | 2014-04-22 | Sanofi-Aventis Deutschland Gmbh | Analyte measurement device with a single shot actuator |
US20090194422A1 (en) * | 2008-01-31 | 2009-08-06 | George Koltse | Method and apparatus for plating metal parts |
US9375169B2 (en) | 2009-01-30 | 2016-06-28 | Sanofi-Aventis Deutschland Gmbh | Cam drive for managing disposable penetrating member actions with a single motor and motor and control system |
US8965476B2 (en) | 2010-04-16 | 2015-02-24 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9795747B2 (en) | 2010-06-02 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
CN104237223A (zh) * | 2014-10-08 | 2014-12-24 | 江苏奥赛康药业股份有限公司 | 测定铁-碳水化合物络合物中不稳定铁含量的方法 |
CN104237223B (zh) * | 2014-10-08 | 2017-04-12 | 江苏奥赛康药业股份有限公司 | 测定铁‑碳水化合物络合物中不稳定铁含量的方法 |
CN110261632A (zh) * | 2019-07-30 | 2019-09-20 | 成都斯马特科技有限公司 | 一种全自动化学发光免疫分析仪 |
CN110261632B (zh) * | 2019-07-30 | 2024-05-14 | 成都斯马特科技股份有限公司 | 一种全自动化学发光免疫分析仪 |
Also Published As
Publication number | Publication date |
---|---|
BE719196A (enrdf_load_stackoverflow) | 1969-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3607097A (en) | Analyzer for liquid samples | |
US3489521A (en) | Automatic laboratory | |
US3504376A (en) | Automated chemical analyzer | |
US3825410A (en) | Performance of routine chemical reactions in compartmentalized containers | |
US4039286A (en) | Automatic chemical analysis apparatus | |
US4678752A (en) | Automatic random access analyzer | |
US6066296A (en) | Sample addition, reagent application, and testing chamber | |
US3620678A (en) | Installation for multiple and automatic analyses | |
US3582285A (en) | Chemical package | |
CN101356008B (zh) | 用于样本液体的光度测量方法、光度测量装置以及用于光度测量装置的混合容器 | |
GB1224863A (en) | Automated chemical analyser | |
US3846075A (en) | Apparatus for simultaneous analysis of fluid | |
US4054415A (en) | Body fluid and blood electrolyte analyzer | |
US4267149A (en) | Evaluation instrument for automatic photometric analysis of liquid samples | |
US4366118A (en) | Apparatus and method for luminescent determination of concentration of an analyte in a sample | |
US3799744A (en) | Automatic chemical analysis apparatus | |
GB1485481A (en) | Method and apparatus for simultaneously and repeatedly carrying out a plurality of microanalyses | |
EP0325101B1 (en) | Automatic chemical analytical apparatus | |
US4078892A (en) | Novel means and method for diagnostic quantitation of serum or plasma bilirubin | |
US3477822A (en) | Chemical package | |
US3480398A (en) | Chemical package | |
US5011663A (en) | Multitest-tube for clinical chemistry analysis for several simultaneous tests | |
US3711247A (en) | Method for determination of thyro-binding capacity of blood proteins | |
US3490876A (en) | Analysing devices for fluid samples | |
JPH05503155A (ja) | 光学監視システム用の試料操作システム |