US3711247A - Method for determination of thyro-binding capacity of blood proteins - Google Patents
Method for determination of thyro-binding capacity of blood proteins Download PDFInfo
- Publication number
- US3711247A US3711247A US00015342A US3711247DA US3711247A US 3711247 A US3711247 A US 3711247A US 00015342 A US00015342 A US 00015342A US 3711247D A US3711247D A US 3711247DA US 3711247 A US3711247 A US 3711247A
- Authority
- US
- United States
- Prior art keywords
- serum
- vial
- triiodothyronine
- radioactive
- reaction vial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 102000004506 Blood Proteins Human genes 0.000 title description 5
- 108010017384 Blood Proteins Proteins 0.000 title description 5
- 210000002966 serum Anatomy 0.000 claims abstract description 22
- 230000002285 radioactive effect Effects 0.000 claims abstract description 20
- AUYYCJSJGJYCDS-LBPRGKRZSA-N Thyrolar Chemical compound IC1=CC(C[C@H](N)C(O)=O)=CC(I)=C1OC1=CC=C(O)C(I)=C1 AUYYCJSJGJYCDS-LBPRGKRZSA-N 0.000 claims abstract description 18
- 229940035722 triiodothyronine Drugs 0.000 claims abstract description 17
- 239000007788 liquid Substances 0.000 claims abstract description 8
- 239000000376 reactant Substances 0.000 claims abstract description 6
- 239000007983 Tris buffer Substances 0.000 claims description 5
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 20
- 239000011347 resin Substances 0.000 abstract description 16
- 229920005989 resin Polymers 0.000 abstract description 16
- 239000012528 membrane Substances 0.000 abstract description 9
- 239000000872 buffer Substances 0.000 abstract description 7
- 210000003743 erythrocyte Anatomy 0.000 description 9
- 210000004369 blood Anatomy 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000000338 in vitro Methods 0.000 description 5
- 210000001685 thyroid gland Anatomy 0.000 description 5
- 239000003957 anion exchange resin Substances 0.000 description 4
- 229940088597 hormone Drugs 0.000 description 4
- 239000005556 hormone Substances 0.000 description 4
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 229910052740 iodine Inorganic materials 0.000 description 3
- 239000011630 iodine Substances 0.000 description 3
- -1 l" or 1' Chemical compound 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 239000005495 thyroid hormone Substances 0.000 description 3
- 229940036555 thyroid hormone Drugs 0.000 description 3
- XUIIKFGFIJCVMT-UHFFFAOYSA-N thyroxine-binding globulin Natural products IC1=CC(CC([NH3+])C([O-])=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-UHFFFAOYSA-N 0.000 description 3
- XUIIKFGFIJCVMT-GFCCVEGCSA-N D-thyroxine Chemical compound IC1=CC(C[C@@H](N)C(O)=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-GFCCVEGCSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 102100028709 Thyroxine-binding globulin Human genes 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000009206 nuclear medicine Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229940034208 thyroxine Drugs 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 102000002572 Alpha-Globulins Human genes 0.000 description 1
- 108010068307 Alpha-Globulins Proteins 0.000 description 1
- 208000025814 Inflammatory myopathy with abundant macrophages Diseases 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 241001417524 Pomacanthidae Species 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 208000024799 Thyroid disease Diseases 0.000 description 1
- 102000002248 Thyroxine-Binding Globulin Human genes 0.000 description 1
- 108010000259 Thyroxine-Binding Globulin Proteins 0.000 description 1
- 150000001412 amines Chemical group 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000012631 diagnostic technique Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005534 hematocrit Methods 0.000 description 1
- 230000003054 hormonal effect Effects 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 208000021510 thyroid gland disease Diseases 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/508—Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
- B01L3/5082—Test tubes per se
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S436/00—Chemistry: analytical and immunological testing
- Y10S436/807—Apparatus included in process claim, e.g. physical support structures
- Y10S436/81—Tube, bottle, or dipstick
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S436/00—Chemistry: analytical and immunological testing
- Y10S436/825—Pretreatment for removal of interfering factors from sample
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S436/00—Chemistry: analytical and immunological testing
- Y10S436/826—Additives, e.g. buffers, diluents, preservatives
Definitions
- ABSTRACT The ability of serum to bind additional triiodothyronine is determined by a method requiring minimal quantities of serum, of the order of 0.10 ml., and short mixing times, of the order of 40 minutes, by employment of a specially designed syringe-type reaction vial in which radioactive triiodothyronine and a buffer are prepackaged, and a resin membrane separable from the liquid reactants by syringing of the latter from the vial after mixing.
- the present invention relates to an improved method and apparatus for in vitro determination of the endogenous triiodothyronine (T3) content of blood by measurement of the uptake of radioactively labeled triiodothyronine.
- the endogenous thyroid hormones thyroxine and triiodothyronine which circulate in the blood stream are bound to several specific sites, primarily an alphaglobulin known as thyroxine-binding globulin, or TBG, but also including as secondary binding sites the red blood cells, or erythrocytes.
- TBG thyroxine-binding globulin
- T86 and certain secondary binding sites have the same capacity to bind radiothyroxine and radiotriiodothyronine in which a radioactive isotope of iodine, such as l" or 1', has been substituted for the non-radioactive or stable form.
- a radioactive isotope of iodine such as l" or 1'
- the plasma and erythrocytes were then separated and, after washing, the radioactivity of the erythrocytes was similarly measured or, alternatively, the radioactivity of the plasma was so measured.
- the ratio of the second to the first scintillation counter reading constituted the uptake subject to certain corrections such as for the hematocrit reading.
- radioactive triiodothyronine such as I T3 or 1' T3 is tagged (bound artificially) to a quaternary amine polystyrene anion exchange resin which has been preprocessed by cleaning before tagging. Exact amounts of this resin (0.1 gram assayed radioactively) is dispensed into a reaction vial. Three milliliter tris buffer at 7.17 pH is added to the reaction vial, together with l ml. of the serum to be assayed.
- reaction vial containing the serum, buffer and tagged resin is mixed (usually by a vial rotator) for 2 hours at approximate room temperature, and a fraction of the supernate, usually 2 ml., is removed from the reaction vial and placed into a clean vial for radioactive counting and assay.
- the serum being tested is measured against a normal standard serum which has been treated and reacted in exactly the same manner as the serum being assayed.
- the results of this method are usually reported in terms ofa thyro binding index which has a normal range of 0.88-1.10, but can be converted to percent resin uptake or percent red blood cell uptake and reported in these terms if desired.
- the present invention has as its principal object the reduction of the required mixing time and minimization of the number of transfers of reactants in the determination of thyro-binding capacity of blood proteins.
- radioactive triiodothyronine in excess of the amount required to saturate the blood proteins to be assayed, and a buffer solution at the proper pH are premeasured into a spe cially designed syringe-type reaction vial provided with a removal tip closure and a plunger for expelling its liquid contents through that tip after removal of the closure.
- this reaction vial To the contents of this reaction vial a very small quantity, which may be as little as 0.10 milliliter, of the serum to be assayed is added. Following this step, an anion resin in the form ofa membrane of inert material impregnated with such resin is inserted into the reaction vial.
- reaction vial containing the radioactive triiodothyronine, buffer, serum and resin membrane is then mixed, usually by a conventional vial rotator, for about 40 minutes at approximately room temperature.
- the present invention thus provides a method for determination of the thyro-binding capacity requiring pipetting of only the small amount of serum to be assayed, a single transfer of reactants from one container to another, and a mixing time of only about 40 minutes as compared with the 2-hour mixing time of the prior art.
- FIG. 1 is an exploded perspective view of a specially designed syringe-type reaction vial embodying the present invention
- FIG. 2 is a side view in section of the assembled reaction vial of FIG. 1;
- FIG. 3 is a flow diagram delineating successive steps of the method of the present invention.
- the novel reaction vial of the present invention comprises a tubular glass body having a flanged end 12 and provided at its opposite end 13 with a bead 14.
- a plunger 15 of elastic plastic material, such as polyethylene, is provided with a head 16 dimensioned for a sliding fit closely within the body 10 and a portion 18 which is preferably integral with the head and cruciform in cross-section for rigidity and which extends from the head 16 beyond the end of the tubular body 10.
- the plunger 15 is assembled into the body 10 by insertion of the portion l8 first into the beaded end 13 of the body 10, the head 16 being prevented from exiting from the flanged end 12 of the body 10 by a necked-in portion 20 of the body 10.
- a removable closure is provided for the beaded end 13 of the body 10 comprising a cap 22 of similar elastic plastic material formed with a thin sleeve 24 closely fitting within the body 10 and a rim 26 which may be flexed over the bead 14 and thereby retained in position on the body 10.
- a hollow teat 28 communicates with the interior of the sleeve 24 and is closed at its opposite end by a tip of elastic material such as polyethylene.
- the exterior of the teat 28 is provided with an integral ring 29 and the interior of the tip 30 is provided with a complementary groove 31 so that the elastic tip 30 will be securely retained in place on the teat 28 by inter-engagement of the ring 29 and groove 31.
- a rim 32 on the tip 30 is provided to facilitate its removal from the teat 28 when it is desired to discharge the contents of the vial.
- Tabs 34 are formed integrally with the rim 26 to facilitate removal of the cap 22 from the bead 14.
- approximately 0.1 microcurie of radioactive triiodothyronine (I' T3) together with 3.5 milliliters of a tris buffer at 7.0 to 7.8 pH is premeasured into a reaction vial of the kind described above, and so prepackaged are delivered to the laboratory for use within the shelf life of the radioactive isotope.
- the cap 22 is removed from a reaction vial containing the above described mixture of radioactive triiodothyronine and buffer, as illustrated in FIG. 3 of the drawing, and approximately 0.10 milliliter of the serum to be assayed is pipetted into the vial.
- an anion exchange resin carried upon a mesh material to which it is sufficiently strongly attached to resist displacement during the subsequently described mixing operation is inserted into the reaction vial; the quantity of resin thus introduced being in excess of that required to bind the radioactive triiodothyronine not bound by the serum.
- the material manufactured by Ionac (New Jersey) and designated by it as l m 12 which is described by the manufacturer as a heterogeneous ion exchange membrane of the strongly ionized perm-selective type has been successfully used for this purpose.
- the cap 22 is replaced on the reaction vial and (usually together with other identical tests vials and a control vial), the contents of the vial are mixed, usually on a vial rotator, for approximately 40 minutes at room temperature, nominally 68 F.
- the tip 30 of the cap 22 is removed from the teat 28, and with the vial held in the vertical position in which it is shown at 6 in FIG. 3, the liquid contents are expelled into a separate vial by operation of the plunger 15; the anion impregnated membrane being retained in the vial.
- Radioactive counting of the expelled contents of the reaction vial is performed in the conventional manner, the serum being tested being measured against a normal standard serum which has been treated and reacted in exactly the same manner as the serum being assayed.
- the results of this method are usually reported in terms of a thyrobinding index which has a normal range of 0.88-1.10, but can be converted to percent resin uptake or percent red blood cell uptake and reported in these terms if desired.
- triiodothyronine tagged with the I isotope of iodine has been described in the above example and is preferred because it has a shelf life of approximately 60 days
- other radioactive isotopes of iodine may be used for tagging the triiodothyronine used, such as, for example, the I'' isotope of iodine which, however, has a shelf life of only 14 days.
- the system is not sensitive to the amount of radioactivity applied, and ranges from 2.0 to 0.07 microcuries may be employed provided that each vial utilized in the same testing cycle contains the same amount within plus or minus 1 percent.
- volume of buffer employed may be varied within a range of from 2 to 5 milliliters provided that each vial employed in the same testing cycle contains the same amount.
- Buffers other than the tris buffer referred to in the above example, such as, for instance, acetate of barbitol, may be employed.
- liquid reactants include 2.0 to 0.07 microcuries of radioactive triiodothyronine, 2 to 5 ml.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
The ability of serum to bind additional triiodothyronine is determined by a method requiring minimal quantities of serum, of the order of 0.10 ml., and short mixing times, of the order of 40 minutes, by employment of a specially designed syringe-type reaction vial in which radioactive triiodothyronine and a buffer are prepackaged, and a resin membrane separable from the liquid reactants by syringing of the latter from the vial after mixing.
Description
ited States Patent n 1 Adams 1 Jan. 16, 1973 [54] METHOD FOR DETERMINATION OF TIIYRO-BINDING CAPACITY OF BLOOD PROTEINS [75] Inventor: Raymond J. Adams, Anaheim, Calif.
[73] Assignee: Curtis Nuclear Corporation, Los
Angeles, Calif.
[22] Filed: March 2, 1970 [21] App]. No.: 15,342
[52] U.S. Cl. ..23/230 B, 23/253 R, 424/1, 424/79 [51] Int. Cl. ..G01n 33/16 [58] Field of Search....23/230 B, 253; 250/83; 424/1, 424/79 [56] References Cited UNITED STATES PATENTS 3,206,602 9/1965 Eberle ..23/23O B 3,451,777 6/1969 Giulio ..23/230 B 2 444/ Ye an OTHER PUBLlCATlONS Sterling et al., Measurement of Free Thyroxine Concentration in Human Serum, J. of Clinical lnvest., No. 5, I962. p. 1031-1040 Primary Examiner-Joseph Scovronek Assistant Examiner-R. E. Serwin AtzorneyHuebner and Worrel [57] ABSTRACT The ability of serum to bind additional triiodothyronine is determined by a method requiring minimal quantities of serum, of the order of 0.10 ml., and short mixing times, of the order of 40 minutes, by employment of a specially designed syringe-type reaction vial in which radioactive triiodothyronine and a buffer are prepackaged, and a resin membrane separable from the liquid reactants by syringing of the latter from the vial after mixing.
3 Claims, 3 Drawing Figures PATENTEDJM 16 I975 SHEEI 1 [IF 2 Imam r02 ,HzyMOA/a d Av/ws,
PATENTEDJAH 16 I975 SHEET 2 OF 2 .mmgs
METHOD FOR DETERMINATION OF THYRO- BINDING CAPACITY OF BLOOD PROTEINS BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved method and apparatus for in vitro determination of the endogenous triiodothyronine (T3) content of blood by measurement of the uptake of radioactively labeled triiodothyronine.
Assessment of the functional status of the thyroid gland by in vitro measurement of the endogenous thyroid hormones generated in the thyroid gland and circulating in the blood stream, by use of radioactive isotopes, has become a widely employed diagnostic technique in recent years.
The endogenous thyroid hormones thyroxine and triiodothyronine which circulate in the blood stream are bound to several specific sites, primarily an alphaglobulin known as thyroxine-binding globulin, or TBG, but also including as secondary binding sites the red blood cells, or erythrocytes.
T86 and certain secondary binding sites have the same capacity to bind radiothyroxine and radiotriiodothyronine in which a radioactive isotope of iodine, such as l" or 1', has been substituted for the non-radioactive or stable form. Thus, by taking a blood sample in which the TBG and secondary binding sites are partially saturated with endogenous thyroid hormones, completing their saturation with synthetic radioactive hormones in the laboratory, and then measuring the amount of the radioactive hormone bound by the sample, it becomes possible to calculate the degree of hormone saturation of the original sample. This is indicative of the functional status of the thyroid gland.
2. Description of the Prior Art A variety of in vitro procedures for measuring the uptake of radioactive hormones by blood constituents have been developed for the purpose described. Hamolsky et al. in The Thyroid Hormone-Plasma Protein Complex in Man. II. A New in vitro Method for Study of Uptake of Labelled Hormonal Components by Human Erythrocytes, J. Clin. Endrocrinol. & Metab. 17:33, 1957, described a procedure in which whole blood mixed with anti-coagulant has added to it a measure proportion of l and T3. This mixture, after being shaken, then had its radioactivity measured with a well-type scintillation counter. The plasma and erythrocytes were then separated and, after washing, the radioactivity of the erythrocytes was similarly measured or, alternatively, the radioactivity of the plasma was so measured. The ratio of the second to the first scintillation counter reading constituted the uptake subject to certain corrections such as for the hematocrit reading.
In order to avoid difficulties with this procedure inherent in the use of live red blood cells, ion exchange resins known to compete with the plasma for the T3 and 1 T3 were next used to replace the red blood cells in tests otherwise comparable to that of Hamolsky et al. described above. Scholer, in A Simple Measure of Thyro-Binding by Plasma: A Test of Thyroid Function," .1. Nuclear Medicine 3:41, 1962, and the references cited therein describe the use in this way of a labelled resin in head form, and Mitchell et al. in
The in vitro Resin Sponge Uptake of Triiodothyronine I from Serum in Thyroid Disease and in Pregnancy, J. Clin. Endocrinol. & Metab., 20:11, 1960, describe the use of a resin sponge made by mixing polyurethane foam with a finely ground anion exchange resin in substantially the same way. Further refinement of the resin sponge procedure is described by McAdams et al. in Resin Sponge Modification of the I T3 Test," 1. Nuclear Medicine 5:112, 1964.
According to the preferred present practice, radioactive triiodothyronine such as I T3 or 1' T3 is tagged (bound artificially) to a quaternary amine polystyrene anion exchange resin which has been preprocessed by cleaning before tagging. Exact amounts of this resin (0.1 gram assayed radioactively) is dispensed into a reaction vial. Three milliliter tris buffer at 7.17 pH is added to the reaction vial, together with l ml. of the serum to be assayed. The reaction vial containing the serum, buffer and tagged resin is mixed (usually by a vial rotator) for 2 hours at approximate room temperature, and a fraction of the supernate, usually 2 ml., is removed from the reaction vial and placed into a clean vial for radioactive counting and assay.
The serum being tested is measured against a normal standard serum which has been treated and reacted in exactly the same manner as the serum being assayed. The results of this method are usually reported in terms ofa thyro binding index which has a normal range of 0.88-1.10, but can be converted to percent resin uptake or percent red blood cell uptake and reported in these terms if desired.
SUMMARY OF THE INVENTION The present invention has as its principal object the reduction of the required mixing time and minimization of the number of transfers of reactants in the determination of thyro-binding capacity of blood proteins.
According to the present invention, radioactive triiodothyronine in excess of the amount required to saturate the blood proteins to be assayed, and a buffer solution at the proper pH are premeasured into a spe cially designed syringe-type reaction vial provided with a removal tip closure and a plunger for expelling its liquid contents through that tip after removal of the closure.
To the contents of this reaction vial a very small quantity, which may be as little as 0.10 milliliter, of the serum to be assayed is added. Following this step, an anion resin in the form ofa membrane of inert material impregnated with such resin is inserted into the reaction vial.
The reaction vial containing the radioactive triiodothyronine, buffer, serum and resin membrane is then mixed, usually by a conventional vial rotator, for about 40 minutes at approximately room temperature.
Following such mixing, the tip closure of the reaction vial is removed and the plunger is operated to expel the liquid contents into a separate container for counting, leaving the resin membrane in the vial. Counting and assaying then proceeds as in present practice.
The present invention thus provides a method for determination of the thyro-binding capacity requiring pipetting of only the small amount of serum to be assayed, a single transfer of reactants from one container to another, and a mixing time of only about 40 minutes as compared with the 2-hour mixing time of the prior art.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is an exploded perspective view of a specially designed syringe-type reaction vial embodying the present invention;
FIG. 2 is a side view in section of the assembled reaction vial of FIG. 1; and
FIG. 3 is a flow diagram delineating successive steps of the method of the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT Achievement of the objects of the method of the present invention is significantly facilitated by employment of a specially designed syringe-type reaction vial, although the steps of the method may be carried out using conventional laboratory equipment.
As illustrated in FIGS. 1 and 2, the novel reaction vial of the present invention comprises a tubular glass body having a flanged end 12 and provided at its opposite end 13 with a bead 14. A plunger 15 of elastic plastic material, such as polyethylene, is provided with a head 16 dimensioned for a sliding fit closely within the body 10 and a portion 18 which is preferably integral with the head and cruciform in cross-section for rigidity and which extends from the head 16 beyond the end of the tubular body 10.
The plunger 15 is assembled into the body 10 by insertion of the portion l8 first into the beaded end 13 of the body 10, the head 16 being prevented from exiting from the flanged end 12 of the body 10 by a necked-in portion 20 of the body 10.
A removable closure is provided for the beaded end 13 of the body 10 comprising a cap 22 of similar elastic plastic material formed with a thin sleeve 24 closely fitting within the body 10 and a rim 26 which may be flexed over the bead 14 and thereby retained in position on the body 10. A hollow teat 28 communicates with the interior of the sleeve 24 and is closed at its opposite end by a tip of elastic material such as polyethylene. The exterior of the teat 28 is provided with an integral ring 29 and the interior of the tip 30 is provided with a complementary groove 31 so that the elastic tip 30 will be securely retained in place on the teat 28 by inter-engagement of the ring 29 and groove 31. A rim 32 on the tip 30 is provided to facilitate its removal from the teat 28 when it is desired to discharge the contents of the vial. Tabs 34 are formed integrally with the rim 26 to facilitate removal of the cap 22 from the bead 14.
According to an example of the method of the present invention, approximately 0.1 microcurie of radioactive triiodothyronine (I' T3) together with 3.5 milliliters of a tris buffer at 7.0 to 7.8 pH is premeasured into a reaction vial of the kind described above, and so prepackaged are delivered to the laboratory for use within the shelf life of the radioactive isotope.
When a given sample of patients serum is to be assayed, the cap 22 is removed from a reaction vial containing the above described mixture of radioactive triiodothyronine and buffer, as illustrated in FIG. 3 of the drawing, and approximately 0.10 milliliter of the serum to be assayed is pipetted into the vial.
Next, an anion exchange resin carried upon a mesh material to which it is sufficiently strongly attached to resist displacement during the subsequently described mixing operation is inserted into the reaction vial; the quantity of resin thus introduced being in excess of that required to bind the radioactive triiodothyronine not bound by the serum. The material manufactured by Ionac (New Jersey) and designated by it as l m 12 which is described by the manufacturer as a heterogeneous ion exchange membrane of the strongly ionized perm-selective type has been successfully used for this purpose.
Following the insertion of this membrane, the cap 22 is replaced on the reaction vial and (usually together with other identical tests vials and a control vial), the contents of the vial are mixed, usually on a vial rotator, for approximately 40 minutes at room temperature, nominally 68 F.
Following such mixing, the tip 30 of the cap 22 is removed from the teat 28, and with the vial held in the vertical position in which it is shown at 6 in FIG. 3, the liquid contents are expelled into a separate vial by operation of the plunger 15; the anion impregnated membrane being retained in the vial.
Radioactive counting of the expelled contents of the reaction vial is performed in the conventional manner, the serum being tested being measured against a normal standard serum which has been treated and reacted in exactly the same manner as the serum being assayed. The results of this method are usually reported in terms of a thyrobinding index which has a normal range of 0.88-1.10, but can be converted to percent resin uptake or percent red blood cell uptake and reported in these terms if desired.
While the use of triiodothyronine tagged with the I isotope of iodine has been described in the above example and is preferred because it has a shelf life of approximately 60 days, other radioactive isotopes of iodine may be used for tagging the triiodothyronine used, such as, for example, the I'' isotope of iodine which, however, has a shelf life of only 14 days.
Similarly, the system is not sensitive to the amount of radioactivity applied, and ranges from 2.0 to 0.07 microcuries may be employed provided that each vial utilized in the same testing cycle contains the same amount within plus or minus 1 percent.
Similarly, the volume of buffer employed may be varied within a range of from 2 to 5 milliliters provided that each vial employed in the same testing cycle contains the same amount. Buffers other than the tris buffer referred to in the above example, such as, for instance, acetate of barbitol, may be employed.
Other mesh materials and fabrics composed of paper, nylon or rayon mesh impregnated with anion exchange resins may likewise be substituted for the specific membrane described in the foregoing example. A similar membrane manufactured by Ionics (Massachusetts) under the designation Ill BZL I84 and l l l BZP 333 have been found satisfactory.
Although the invention has been herein shown and described in what is conceived to be the most practical and preferred embodiment, it is recognized that departures may be made therefrom within the scope of the invention.
What is claimed is:
with liquid.
2. An improved method in accordance with claim 1 in which the liquid reactants include 2.0 to 0.07 microcuries of radioactive triiodothyronine, 2 to 5 ml.
of a tris buffer at 7.0 to 7.8 pH, and approximately 0.] ml. of serum.
3. An improved method in accordance with claim 2 in which the mixing time is approximately 40 minutes.
Claims (2)
- 2. An improved method in accordance with claim 1 in which the liquid reactants include 2.0 to 0.07 microcuries of radioactive triiodothyronine, 2 to 5 ml. of a tris buffer at 7.0 to 7.8 pH, and approximately 0.1 ml. of serum.
- 3. An improved method in accordance with claim 2 in which the mixing time is approximately 40 minutes.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US1534270A | 1970-03-02 | 1970-03-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3711247A true US3711247A (en) | 1973-01-16 |
Family
ID=21770845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00015342A Expired - Lifetime US3711247A (en) | 1970-03-02 | 1970-03-02 | Method for determination of thyro-binding capacity of blood proteins |
Country Status (1)
Country | Link |
---|---|
US (1) | US3711247A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5013525A (en) * | 1973-05-01 | 1975-02-13 | ||
US3874851A (en) * | 1973-11-15 | 1975-04-01 | Robert John Wilkins | Method and apparatus for the detection of microfilariae |
US3911096A (en) * | 1972-06-23 | 1975-10-07 | Professional Staff Ass Of The | Radioimmunoassay for measurement of thyroxine (T{HD 4{B ) and triiodothyonine (T{HD 3{B ) in blood serum |
US3961894A (en) * | 1973-04-24 | 1976-06-08 | Yissum Research Development Company | Test for determination of triiodothyronine |
US4110076A (en) * | 1975-06-26 | 1978-08-29 | Mallinckrodt, Inc. | Radioimmunoassay methods for the determination of L-triiodothyronine and thyroxine |
US4138474A (en) * | 1973-05-01 | 1979-02-06 | Wisconsin Alumni Research Foundation | Method and device for immunoassay |
US4155711A (en) * | 1975-06-24 | 1979-05-22 | Smutko Raymond A | Method and apparatus for determining thyroid function of multiple samples |
USRE32098E (en) * | 1972-06-23 | 1986-03-25 | Research And Education Institute, Inc. | Radioimmunoassay for measurement of thyroxine (T4) and triiodothyronine (T3) in blood serum |
US20090215998A1 (en) * | 2005-11-21 | 2009-08-27 | Barofoid, Inc. | Devices and methods for high-pressure refolding of proteins |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3206602A (en) * | 1960-05-02 | 1965-09-14 | Byron T Eberle | Apparatus for measuring the binding capacity of serum proteins |
US3451777A (en) * | 1965-08-20 | 1969-06-24 | Walter Di Giulio | Method and apparatus for determining the thyroid hormone content of blood |
-
1970
- 1970-03-02 US US00015342A patent/US3711247A/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3206602A (en) * | 1960-05-02 | 1965-09-14 | Byron T Eberle | Apparatus for measuring the binding capacity of serum proteins |
US3451777A (en) * | 1965-08-20 | 1969-06-24 | Walter Di Giulio | Method and apparatus for determining the thyroid hormone content of blood |
Non-Patent Citations (1)
Title |
---|
Sterling et al., Measurement of Free Thyroxine Concentration in Human Serum, J. of Clinical Invest., No. 5, 1962, pp. 1031 1040 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3911096A (en) * | 1972-06-23 | 1975-10-07 | Professional Staff Ass Of The | Radioimmunoassay for measurement of thyroxine (T{HD 4{B ) and triiodothyonine (T{HD 3{B ) in blood serum |
USRE32098E (en) * | 1972-06-23 | 1986-03-25 | Research And Education Institute, Inc. | Radioimmunoassay for measurement of thyroxine (T4) and triiodothyronine (T3) in blood serum |
US3961894A (en) * | 1973-04-24 | 1976-06-08 | Yissum Research Development Company | Test for determination of triiodothyronine |
JPS5013525A (en) * | 1973-05-01 | 1975-02-13 | ||
US4138474A (en) * | 1973-05-01 | 1979-02-06 | Wisconsin Alumni Research Foundation | Method and device for immunoassay |
US3874851A (en) * | 1973-11-15 | 1975-04-01 | Robert John Wilkins | Method and apparatus for the detection of microfilariae |
US4155711A (en) * | 1975-06-24 | 1979-05-22 | Smutko Raymond A | Method and apparatus for determining thyroid function of multiple samples |
US4110076A (en) * | 1975-06-26 | 1978-08-29 | Mallinckrodt, Inc. | Radioimmunoassay methods for the determination of L-triiodothyronine and thyroxine |
US20090215998A1 (en) * | 2005-11-21 | 2009-08-27 | Barofoid, Inc. | Devices and methods for high-pressure refolding of proteins |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4272478A (en) | Discardable reaction receptacle for use in immunological assay | |
US3451777A (en) | Method and apparatus for determining the thyroid hormone content of blood | |
US3579306A (en) | Diagnostic test device | |
CA1098441A (en) | Micro-titer plate with immunologic solid carrier having neck piece of smaller cross section | |
US3790663A (en) | Preparation of dry antiserum coated solid-phase for radioimmunoassay of antigens | |
Seligson et al. | Measurement of thyroxine by competitive protein binding | |
CA1113391A (en) | Direct assay of free analyte | |
Rudd et al. | A rapid method for the measurement of sex hormone binding globulin capacity of sera | |
US3918909A (en) | Apparatus for performing saturation analyses | |
US3711247A (en) | Method for determination of thyro-binding capacity of blood proteins | |
US3981981A (en) | Method of radioimmunoassay employing diffusion | |
Refetoff et al. | Estimation of the T4 binding capacity of serum TBG and TBPA by a single T4 load ion exchange resin method | |
US3206602A (en) | Apparatus for measuring the binding capacity of serum proteins | |
O'Broin | Influence of hematocrit on quantitative analysis of" blood spots" on filter paper | |
Chown et al. | The slanted capillary method of rhesus blood-grouping | |
Free et al. | A comparative study of qualitative tests for ketones in urine and serum | |
DE2727206A1 (en) | PROCEDURE FOR DETERMINING THE LEVEL OF SATISFACTION OF ANTIBODIES OF A BIOLOGICALLY ACTIVE COMPOUND IN A BIOLOGICAL LIQUID | |
US3507618A (en) | Apparatus and method for determining thyroid function | |
US3710117A (en) | Vitro test system for assessing thyroid function | |
Kiyoshi et al. | An improved assay of thyrotropin in dried blood samples on filter paper as a screening test for neonatal hypothyroidism | |
Belonje | Serum ionized calcium in the sheep: Relation to total plasma calcium, blood pH, total plasma proteins and plasma magnesium | |
Mock et al. | Stoichiometric Tc-99m RBC labeling using stable kit solutions of stannous chloride and EDTA: concise communication | |
US3974088A (en) | Mock iodine-125 radiation source | |
DE2533052A1 (en) | Plastic closure unit for reaction vessel - acts as storage and metering element for a reagent to be added in the second stage | |
US3493346A (en) | Method for testing for uric acid in blood |