US3582406A - Thermal treatment of aluminum-magnesium alloy for improvement of stress-corrosion properties - Google Patents
Thermal treatment of aluminum-magnesium alloy for improvement of stress-corrosion properties Download PDFInfo
- Publication number
- US3582406A US3582406A US772027A US3582406DA US3582406A US 3582406 A US3582406 A US 3582406A US 772027 A US772027 A US 772027A US 3582406D A US3582406D A US 3582406DA US 3582406 A US3582406 A US 3582406A
- Authority
- US
- United States
- Prior art keywords
- alloy
- aluminum
- magnesium
- alloys
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005260 corrosion Methods 0.000 title abstract description 22
- 229910000861 Mg alloy Inorganic materials 0.000 title abstract description 9
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 title description 10
- 230000006872 improvement Effects 0.000 title description 3
- 238000007669 thermal treatment Methods 0.000 title description 2
- 229910045601 alloy Inorganic materials 0.000 abstract description 54
- 239000000956 alloy Substances 0.000 abstract description 54
- 230000007797 corrosion Effects 0.000 abstract description 20
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 abstract description 19
- 229910052749 magnesium Inorganic materials 0.000 abstract description 19
- 239000011777 magnesium Substances 0.000 abstract description 19
- 229910052782 aluminium Inorganic materials 0.000 abstract description 16
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 15
- 238000000034 method Methods 0.000 abstract description 11
- 230000008569 process Effects 0.000 abstract description 10
- 238000010438 heat treatment Methods 0.000 abstract description 6
- 230000035882 stress Effects 0.000 description 19
- 229940091250 magnesium supplement Drugs 0.000 description 18
- 238000001816 cooling Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 238000000137 annealing Methods 0.000 description 6
- 238000005275 alloying Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 238000005482 strain hardening Methods 0.000 description 3
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 229910001122 Mischmetal Inorganic materials 0.000 description 2
- 229910052776 Thorium Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000001235 sensitizing effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 229910052714 tellurium Inorganic materials 0.000 description 2
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- FGUJWQZQKHUJMW-UHFFFAOYSA-N [AlH3].[B] Chemical compound [AlH3].[B] FGUJWQZQKHUJMW-UHFFFAOYSA-N 0.000 description 1
- GANNOFFDYMSBSZ-UHFFFAOYSA-N [AlH3].[Mg] Chemical class [AlH3].[Mg] GANNOFFDYMSBSZ-UHFFFAOYSA-N 0.000 description 1
- QRRWWGNBSQSBAM-UHFFFAOYSA-N alumane;chromium Chemical compound [AlH3].[Cr] QRRWWGNBSQSBAM-UHFFFAOYSA-N 0.000 description 1
- KCZFLPPCFOHPNI-UHFFFAOYSA-N alumane;iron Chemical compound [AlH3].[Fe] KCZFLPPCFOHPNI-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/047—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
Definitions
- the present invention relates to a new and improved method of producing aluminum base alloys containing magnesium and the alloy produced thereby. More particularly, the present invention resides in aluminum base alloys containing from about 3.0 to about magnesium and characterized by improved stress corrosion resistance.
- magnesium in aluminum base alloys if present in an amount more than about 3% sensitizes the alloy to stress corrosion. Retention of magnesium in solid solution is readily achieved by annealing the alloy at a temperature above the solvus temperature and cooling at a rate rapid enough to prevent precipitation of a magnesium rich second phase. The alloy may then be cold worked to final gage.
- magnesium retained in solid solution by the rapid cool tends to precipitate preferentially in the grain boundaries as an aluminum-magnesium intermetallic com pound, thus sensitizing the alloy to stress corrosion.
- the mechanical properties of the cold worked alloy tend to degrade during service due to thermal recovery, which also occurs at or near ambient temperature.
- the alloy is slowly cooled, i.e., less than 500 F. per hour, after the final anneal prior to cold working to promote heterogeneous nucleation of the equilibrium magnesium rich phase in the grain matrix as well as in the grain boundaries rather than solely or predominately in the grain boundaries as will occur upon aging of the alloy.
- the stabilizing treatment in those alloys containing more than 3% magnesium causes additional heterogeneous nucleation of the equilibrium magnesium rich beta phase, or a metastable beta modification, in the grain boundaries and, should the alloy be highly cold worked, at points of three dimensional disregistry in deformation bands.
- magnesium content of the aluminum-magnesium alloys is generally limited to about 5.5% magnesium, thus precluding favorable strength properties at magnesium contents in excess of 5.5
- the process of the present invention comprises; (A) providing an aluminum base alloy containing from about 3.0% to about 10.0% magnesium, balance essentially aluminum, in hot worked or cold worked form from up to about 95.0% reduction; (B) heating said alloy at a rate of 50 F. per hour or less to a temperature of about 600 F. to 800 F. for about 5 minutes to about 24 hours; (C) holding said alloy at said temperature for 5 minutes to 24 hours, and (D) cooling said alloy at a rate of 500 F. per hour or less down to at least 350 F.
- the alloy may then be cold worked and thermally stabilized at a temperature of about 225 F. and 350 F. for about 1 hour to 24 hours in order to prevent softening due to recovery when the alloy is placed in service at ambient temperatures.
- Common alloying additions may include but are not limited to the following: boron in an amount from 0.001 to 0.350%; chromium in an amount from 0.05 to 0.3%; indium in an amount from 0.002 to 0.80%; gallium in an amount from 0.01 to 0.50%; cadmium in an amount from 0.03 to 0.50%; thorium in an amount from 0.005 to 0.350%; misch metal in an amount from 0.005 to 0.30%; tellurium in an amount from 0.005 to 0.30%; lithium in an amount from 0.01 to 0.80%; germanium in an amount from 0.01 to 0.55%; cobalt in an amount from 0.101 to 0.80%; copper in an amount from 0.10 to 0.60%.
- Impurities may include but are not limited to the following: iron up to 0.50%; silicon up to 0.50% copper up to 0.25%; manganese up to 0.35%; zinc up to 0.2%; titanium up to 0.15%; beryllium up to 0.02%; and others in total up to 0.2%.
- the aluminum magnesium alloys show an unexpected and remarkable increase in resistance to stress corrosion when processed according to the present invention as compared to a process wherein the heat up rate to the full annealing temperature is in excess of 50 F. per hour.
- a slow cooling down rate from the annealing temperature was employed, in the order of 50 F. per hour, since it is well known that high rates of cooling have a detrimental effect on resistance to stress corrosion.
- This detrimental effect is caused by the tendency of an aluminum-magnesium intermetallic compound to precipitate preferentially in the grain boundaries upon aging of the alloy rather than in the grain matrix, thus sensitizing the alloy to stress corrosion.
- Example II Testing of the alloy as processed according to the present invention was performed by stressing a tensile test specimen of the alloy to 80% of its yield strength in a solution of 6% NaCl+0.005 M NaHCO and applying an anodic current to the specimen of 11 ma./ sq. in. via a platinum gauze cathode. A failure time of 13 hours in 4 EXAMPLE II
- the alloys of Example I after the treatment of Example I was subjected to stress corrosion tests in the following accelerated manner: Samples 0.060" x 2.0" x 0.25" were stressed at 80 percent of their yield strength in a 6 .percent solution of NaCl+0.005 M NaHCO;;. An anodic current of 11 ma./ sq. in.
- a failure time of 13 hours in the accelerated tests corresponds to a failure time for preformed U-bend specimens in a marine environment of greater than 3 years, a limit which normally signifies a stress corrosion resistant condition.
- the results of stress corrosion testing is given in the following table.
- EXAMPLE I An alloy having the following composition was prepared from a charge of commercial purity aluminum, master alloys of iron-aluminum, chromium-aluminum, boron-aluminum, beryllium-aluminum and the other alloying additions in elemental form. The alloy was cast in the form of 6.0" x 4.0" x 1.5" ingots.
- the above alloys were scalped to 1.40 inches and homogenized at 950 F. for 16 hours, employing a slow heat up rate of about 50 F. per hour from 750 F.
- the alloys were furnace cooled and hot rolled at 675 F. to 0.3 inch.
- the alloys were then cold rolled to about 0.150 inch, and then annealed at various times "and temperatures and employing various heating up rates as shown in Table II.
- the alloys were then all cooled down to ambient temperature from the annealing temperature, and at a cooling rate of about 350 F. per hour to 350 F. Following the anneal, the alloys were then cold reduced about 60.0% followed by stabilization at various times and temperatures as shown in Table II.
- a process for increasing the stress corrosion resistance of aluminum magnesium alloys which comprises:
- said alloy contains iron up to 0.50%, silicon up to 0.50%, copper up to 0.25%, manganese up to 0.35%, zirconium up to 0.2%, titanium up to 0.15%, beryllium up to 0.02%, and others in total up to 0.2%.
Landscapes
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Heat Treatment Of Steel (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
- Hard Magnetic Materials (AREA)
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US77202768A | 1968-10-30 | 1968-10-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3582406A true US3582406A (en) | 1971-06-01 |
Family
ID=25093664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US772027A Expired - Lifetime US3582406A (en) | 1968-10-30 | 1968-10-30 | Thermal treatment of aluminum-magnesium alloy for improvement of stress-corrosion properties |
Country Status (9)
Country | Link |
---|---|
US (1) | US3582406A (enrdf_load_html_response) |
JP (1) | JPS499931B1 (enrdf_load_html_response) |
BE (1) | BE741006A (enrdf_load_html_response) |
CH (1) | CH535834A (enrdf_load_html_response) |
DE (1) | DE1954750C3 (enrdf_load_html_response) |
FR (1) | FR2021865A1 (enrdf_load_html_response) |
GB (1) | GB1234866A (enrdf_load_html_response) |
NO (1) | NO125054B (enrdf_load_html_response) |
SE (1) | SE353107B (enrdf_load_html_response) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50144616A (enrdf_load_html_response) * | 1974-05-13 | 1975-11-20 | ||
US4094705A (en) * | 1977-03-28 | 1978-06-13 | Swiss Aluminium Ltd. | Aluminum alloys possessing improved resistance weldability |
US4214925A (en) * | 1977-10-25 | 1980-07-29 | Kobe Steel, Limited | Method for fabricating brazed aluminum fin heat exchangers |
US4233066A (en) * | 1972-04-27 | 1980-11-11 | Aktiebolaget Elektrokoppar | Electrical conductor of aluminium |
US5487757A (en) * | 1993-07-20 | 1996-01-30 | Medtronic Cardiorhythm | Multicurve deflectable catheter |
US20030010411A1 (en) * | 2001-04-30 | 2003-01-16 | David Mitlin | Al-Cu-Si-Ge alloys |
US20030204423A1 (en) * | 2002-04-29 | 2003-10-30 | Walter Koller | Appraisal processing |
US20080251230A1 (en) * | 2007-04-11 | 2008-10-16 | Alcoa Inc. | Strip Casting of Immiscible Metals |
US20100119407A1 (en) * | 2008-11-07 | 2010-05-13 | Alcoa Inc. | Corrosion resistant aluminum alloys having high amounts of magnesium and methods of making the same |
US20110036464A1 (en) * | 2007-04-11 | 2011-02-17 | Aloca Inc. | Functionally graded metal matrix composite sheet |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5059733U (enrdf_load_html_response) * | 1973-09-29 | 1975-06-03 | ||
JPS51129940U (enrdf_load_html_response) * | 1975-04-10 | 1976-10-20 | ||
JPS52137244U (enrdf_load_html_response) * | 1976-04-12 | 1977-10-18 | ||
JPH0699789B2 (ja) * | 1989-02-23 | 1994-12-07 | 住友軽金属工業株式会社 | 耐食性に優れる高強度成形用アルミニウム合金硬質板の製造方法 |
CN113862498B (zh) * | 2021-08-19 | 2022-08-02 | 河南泰鸿新材料有限公司 | 一种载货汽车油箱用高强度铝板材及其生产方法 |
-
1968
- 1968-10-30 US US772027A patent/US3582406A/en not_active Expired - Lifetime
-
1969
- 1969-07-25 GB GB37473/69A patent/GB1234866A/en not_active Expired
- 1969-08-29 JP JP44068557A patent/JPS499931B1/ja active Pending
- 1969-09-29 FR FR6933172A patent/FR2021865A1/fr not_active Withdrawn
- 1969-10-03 CH CH1494369A patent/CH535834A/de not_active IP Right Cessation
- 1969-10-22 SE SE14491/69A patent/SE353107B/xx unknown
- 1969-10-29 NO NO4290/69A patent/NO125054B/no unknown
- 1969-10-30 DE DE1954750A patent/DE1954750C3/de not_active Expired
- 1969-10-30 BE BE741006D patent/BE741006A/xx unknown
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4233066A (en) * | 1972-04-27 | 1980-11-11 | Aktiebolaget Elektrokoppar | Electrical conductor of aluminium |
JPS50144616A (enrdf_load_html_response) * | 1974-05-13 | 1975-11-20 | ||
US4094705A (en) * | 1977-03-28 | 1978-06-13 | Swiss Aluminium Ltd. | Aluminum alloys possessing improved resistance weldability |
US4214925A (en) * | 1977-10-25 | 1980-07-29 | Kobe Steel, Limited | Method for fabricating brazed aluminum fin heat exchangers |
US5487757A (en) * | 1993-07-20 | 1996-01-30 | Medtronic Cardiorhythm | Multicurve deflectable catheter |
US20030010411A1 (en) * | 2001-04-30 | 2003-01-16 | David Mitlin | Al-Cu-Si-Ge alloys |
US20030204423A1 (en) * | 2002-04-29 | 2003-10-30 | Walter Koller | Appraisal processing |
US20080251230A1 (en) * | 2007-04-11 | 2008-10-16 | Alcoa Inc. | Strip Casting of Immiscible Metals |
US20110036464A1 (en) * | 2007-04-11 | 2011-02-17 | Aloca Inc. | Functionally graded metal matrix composite sheet |
US8381796B2 (en) | 2007-04-11 | 2013-02-26 | Alcoa Inc. | Functionally graded metal matrix composite sheet |
US8403027B2 (en) | 2007-04-11 | 2013-03-26 | Alcoa Inc. | Strip casting of immiscible metals |
US8697248B2 (en) | 2007-04-11 | 2014-04-15 | Alcoa Inc. | Functionally graded metal matrix composite sheet |
US20100119407A1 (en) * | 2008-11-07 | 2010-05-13 | Alcoa Inc. | Corrosion resistant aluminum alloys having high amounts of magnesium and methods of making the same |
US8956472B2 (en) | 2008-11-07 | 2015-02-17 | Alcoa Inc. | Corrosion resistant aluminum alloys having high amounts of magnesium and methods of making the same |
Also Published As
Publication number | Publication date |
---|---|
CH535834A (de) | 1973-04-15 |
DE1954750C3 (de) | 1973-10-31 |
GB1234866A (en) | 1971-06-09 |
DE1954750B2 (de) | 1973-04-12 |
NO125054B (enrdf_load_html_response) | 1972-07-10 |
DE1954750A1 (de) | 1970-05-06 |
FR2021865A1 (enrdf_load_html_response) | 1970-07-24 |
JPS499931B1 (enrdf_load_html_response) | 1974-03-07 |
SE353107B (enrdf_load_html_response) | 1973-01-22 |
BE741006A (enrdf_load_html_response) | 1970-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3582406A (en) | Thermal treatment of aluminum-magnesium alloy for improvement of stress-corrosion properties | |
US4073667A (en) | Processing for improved stress relaxation resistance in copper alloys exhibiting spinodal decomposition | |
US2915391A (en) | Aluminum base alloy | |
US2915390A (en) | Aluminum base alloy | |
US3346370A (en) | Aluminum base alloy | |
US4305762A (en) | Copper base alloy and method for obtaining same | |
NO764316L (enrdf_load_html_response) | ||
US4224066A (en) | Copper base alloy and process | |
US3617395A (en) | Method of working aluminum-magnesium alloys to confer satisfactory stress corrosion properties | |
US3346371A (en) | Aluminum base alloy | |
US3698965A (en) | High conductivity,high strength copper alloys | |
CA1093437A (en) | Processing for improved stress relaxation resistance in copper alloys exhibiting spinodal decompositon | |
US4007039A (en) | Copper base alloys with high strength and high electrical conductivity | |
US3366476A (en) | Aluminum base alloy | |
US3346372A (en) | Aluminum base alloy | |
JPS5918457B2 (ja) | 機械的強度が高く、腐蝕性向が低いマグネシウム基合金 | |
US2919186A (en) | Uranium alloys | |
US3556872A (en) | Process for preparing aluminum base alloys | |
US2666698A (en) | Alloys of titanium containing aluminum and iron | |
US3346374A (en) | Aluminum base alloy | |
US3985589A (en) | Processing copper base alloys | |
US3346377A (en) | Aluminum base alloy | |
US4149882A (en) | Magnesium alloys | |
US3366477A (en) | Copper base alloys | |
US3386820A (en) | Aluminum base alloy containing zirconium-chromium-manganese |