US3577033A - Magnetron device with cooling fluid flow in longitudinal direction of magnetron tube - Google Patents
Magnetron device with cooling fluid flow in longitudinal direction of magnetron tube Download PDFInfo
- Publication number
- US3577033A US3577033A US806975A US3577033DA US3577033A US 3577033 A US3577033 A US 3577033A US 806975 A US806975 A US 806975A US 3577033D A US3577033D A US 3577033DA US 3577033 A US3577033 A US 3577033A
- Authority
- US
- United States
- Prior art keywords
- magnetron
- cooling
- magnetron tube
- tube
- vanes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012809 cooling fluid Substances 0.000 title claims abstract description 13
- 238000001816 cooling Methods 0.000 claims abstract description 61
- 239000002184 metal Substances 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 238000007664 blowing Methods 0.000 claims description 6
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 230000004907 flux Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000010411 cooking Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J23/00—Details of transit-time tubes of the types covered by group H01J25/00
- H01J23/005—Cooling methods or arrangements
Definitions
- a magnetron device including a magnetron tube and a permanent magnet
- cooling means is provided for cooling the magnetron tube and magnet, the cooling means defining cooling fluid flow paths in a direction substantially in parallel with the longitudinal axis of the magnetron tube.
- This invention relates to a fluid cooled magnetron device and more particularly to improved cooling means therefor.
- magnetrons are constructed to have relatively large output ratings when compared with their physical size. As a result, the quantity of heat generated by them due to power loss is large, thus requiring elaborate cooling devices to effectively cool them. As the quantity of heat generated is increased it is necessary to increase the quantity of cooling fluid or air or to increase the heat dissipating area of the cooling fin.
- a magnetron tube 2 is fit in the opening at the center of rectangular cooling vanes I and a pair of permanent magnets 3 are disposed on both sides of cooling vanes in parallel with the magnetron tube.
- the poles of magnets 3 are bridged by upper and lower magnetic yokes 4 which complete magnetic paths from the magnets to pole pieces (not shown) contained in the magnetron tube.
- a magnetron device comprising a magnetron tube, a cooling means including cooling vanes surrounding the magnetron tube, said cool- FIG. 2 shows a perspective view of a cooling means utilized :in'one embodiment of this invention
- FIG. 3 is a sectional view of the cooling means taken along a line III-III in FIG. 2;
- FIG. 4 is a top plan view of a magnetron device utilizing the cooling means shown in FIG. 2;
- FIGS shows a side elevation of the embodiment shown FIG. 4;
- FIG. 6 shows a front view, partly in section, of the embodiment shown in FIG. 4;
- FIG. 7 is a top plan view of a modified embodiment of this I 7 FIG. 9, taken along a line X-X thereof.
- FIGS. 2 to 6 inclusive illustrate a horizontal type magnetron device em bodying this invention.
- cooling vanes II comprising a plurality of rectangular metal plates stacked one upon the other with a suitable gap or cooling air passage between adjacent plates are provided with a central opening 12 for accommodating a magnetron tube to be described later and two openings 13 on opposite sides of the central opening for accommodating permanent magnets.
- a magnetron tube I4 and a pair ofpermanent magnets 15 are snugly received in openings 12 and 13, respectively, and are connected by upper and lower magnetic yokes 16 to complete a magnetron device.
- the magnetron tube comprises a metal cylinder 25, pole pieces 17 disposed in the metal cylinder to form a portion of the magnetic path for the magnetic flux through the magnetic yokes, an anode vane 20 connected to an antenna 19 disposed in an output dome I8, and a cathode electrode 23 on one end of acathode support 22 supported by a cathode bushing 21 and surrounded by the anode vanes 20.
- Each one of cathode support 22 and cathode bushing 21 is provided with terminal leads 24 and these terminal leads are connected to an external source of supply to heat a cathode heater.
- the cathode leads are connected to a condenser and an inductance coil (not shown) to prevent leakage of high frequency waves from the cathode. Since the construction of the magnetron tube itself is well known in the art it is believed unnecessary to describe it herein in detail.
- cooling air is passed in the horizontall or transverse direction to cool the anode electrode of the magnetron tube and the magnets.
- magnets I5 are disposed in the cooling vanes, there arises the following advantages.
- FIGS. 7 and 8 show a modified embodiment of this invention. Portions identical to those shown in FIGS. 2 to 6 are designated by the same reference numerals to avoid duplicate description.
- a plurality of radial metal cooling vanes or fins 31 are secured to the outer periphery of magnetron tube 14 in parallel with the longitudinal axis of the tube to form a cooler.
- the inner edge of each cooling vane 31 is secured .to the periphery of the magnetron tube and'the lower outer edges of the vanes are inclined inwardly toward output dome 18 of the magnetron tube.
- permanent magnets I5 are disposed in the space in the cooler where cooling vanes are eliminated.
- the cooling air passes through the passages between the cooling vanes in the axial direction of the magnetron tube and permanent magnets.
- this modified magnetron device is to be incorporated into an electronic range it is advantageous to provide a metal housing or shield 32 to enclose magnetron tube 14, magnets 15, yokes l6 and cooling vanes 31 in order to prevent noise and leakage of high frequency waves.
- a cap member 33 of metal wire net may be removably secured to the upper end of housing 32 to' surround cathode support 22 and cathode bushing 21 of the magnetron tube.
- the cap member 33 serves to prevent leakage of high frequency waves from cathode bushing 21.
- This embodiment is suitable for applications where the cooling air is passed in the longitudinal direction of the magnetron tube.
- FIGS. 9 and 10 A still further modification of this invention is shown in FIGS. 9 and 10.
- a cylindrical cap element 34 is disposed upon an upper side of the cooling vanes 31 so as to hermetically receive the cathode support 22 and the cathode bushing 21.
- an air blowing duct 41 extending at right angles with respect to the axis of magnetron tube 14.
- an air receiving duct 42 is connected to the lower end of cooling vanes 31 on the opposite side.
- the cooling air admitted through the air blowing duct 41 flows upwardly through the space between cooling vanes on one side, horizontally through the space between the magnetron tube and permanent magnets, downwardly through the space between cooling vanes on the other side and finally flows out through the air receiving duct 42.
- the anode electrode and cathode bushing of magnetron tube 14 and the permanent magnets 15 can be effectively cooled, but also, as the cooling air is supplied and exhausted in the lateral or horizontal direction, it is possible to install a cooling air circulating device on the side of the magnetron device, thus decreasing the height thereof relative to the embodiment shown in F165. 7 and 8. This feature is particularly advantageous in electronic ranges.
- this invention provides a small size magnetron device having improved cooling means and which is capable of operating with stable operating characteristics.
- a magnetron device comprising:
- a magnetron tube having a longitudinal axis
- a permanent magnet for operating said magnetron tube said permanent magnet being disposed outside said mag-. netron tube;
- cooling means containing said magnetron tube and said permanent magnet, said cooling means comprising:
- a magnetron device comprising a cap member removably secured to said housing.
- a magnetron device according to claim 1, wherein said outer edges of each of said cooling vanes are attached to saidv vanes on the side of the output dome is formed with an inclined relationship to the circumferential surface of said tube, and further comprising:
- a cap element detachably connected to said metal housing on the side of said cathode bushing and receiving said cathode bushing;
- duct forming means for blowing and receiving cooling fluid, said duct forming means being detachably connected to the inclined side of the cooling vanes with said ducts being in a direction substantially perpendicular to thelongitudinal axis of the magnetron tube, such that cooling fluid introduced to one side of the cooling vanes through said blowing duct is passed through at least some 'of said cooling paths, through said cap element, and through the others of said cooling paths, the cooling fluid being exhausted through said receiving duct.
Landscapes
- Microwave Tubes (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2076868 | 1968-03-18 | ||
| JP10075968U JPS4930844Y1 (enrdf_load_stackoverflow) | 1968-11-20 | 1968-11-20 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3577033A true US3577033A (en) | 1971-05-04 |
Family
ID=26357753
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US806975A Expired - Lifetime US3577033A (en) | 1968-03-18 | 1969-03-13 | Magnetron device with cooling fluid flow in longitudinal direction of magnetron tube |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US3577033A (enrdf_load_stackoverflow) |
| FR (1) | FR2004170A1 (enrdf_load_stackoverflow) |
| GB (1) | GB1237624A (enrdf_load_stackoverflow) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS49115642A (enrdf_load_stackoverflow) * | 1973-03-07 | 1974-11-05 | ||
| JPS5088970A (enrdf_load_stackoverflow) * | 1974-05-17 | 1975-07-17 | ||
| US3916247A (en) * | 1973-07-16 | 1975-10-28 | Tokyo Shibaura Electric Co | Shell type magnetron device |
| US3967154A (en) * | 1974-01-11 | 1976-06-29 | Tokyo Shibaura Electric Co., Ltd. | Magnetron having horizontally blown type radiator |
| US4296355A (en) * | 1978-11-13 | 1981-10-20 | Toshiba Corporation | Magnetron with cooling means |
| US5087853A (en) * | 1988-10-26 | 1992-02-11 | Hitachi, Ltd. | Magnetron and dielectric heater using magnetron |
| US6351071B1 (en) * | 1998-11-18 | 2002-02-26 | Matsushita Electric Industrial Co., Ltd. | Magnetron apparatus and manufacturing method therefor |
| EP1355340A3 (en) * | 2002-04-18 | 2006-03-01 | Lg Electronics Inc. | Magnetron |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5516376Y2 (enrdf_load_stackoverflow) * | 1972-11-30 | 1980-04-16 |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3095037A (en) * | 1958-06-14 | 1963-06-25 | Miwag Mikrowellen A G | Air cooler for power tubes |
| US3304400A (en) * | 1960-03-04 | 1967-02-14 | Husqvarna Vapenfabriks Ab | Cooling arrangement for magnetrons |
| US3323020A (en) * | 1963-07-12 | 1967-05-30 | Electrolux Ab | Structure for cooling a microwave generator |
| US3325678A (en) * | 1966-06-02 | 1967-06-13 | Gen Electric | Magnetically shielded structure with adjustable cover member supporting a magnetron |
| US3440386A (en) * | 1966-11-21 | 1969-04-22 | Technology Instr Corp Of Calif | Microwave heating apparatus |
| US3493810A (en) * | 1968-02-16 | 1970-02-03 | Litton Precision Prod Inc | Magnetron construction |
-
1969
- 1969-03-13 US US806975A patent/US3577033A/en not_active Expired - Lifetime
- 1969-03-18 FR FR6907719A patent/FR2004170A1/fr not_active Withdrawn
- 1969-03-18 GB GB04037/69A patent/GB1237624A/en not_active Expired
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3095037A (en) * | 1958-06-14 | 1963-06-25 | Miwag Mikrowellen A G | Air cooler for power tubes |
| US3304400A (en) * | 1960-03-04 | 1967-02-14 | Husqvarna Vapenfabriks Ab | Cooling arrangement for magnetrons |
| US3323020A (en) * | 1963-07-12 | 1967-05-30 | Electrolux Ab | Structure for cooling a microwave generator |
| US3325678A (en) * | 1966-06-02 | 1967-06-13 | Gen Electric | Magnetically shielded structure with adjustable cover member supporting a magnetron |
| US3440386A (en) * | 1966-11-21 | 1969-04-22 | Technology Instr Corp Of Calif | Microwave heating apparatus |
| US3493810A (en) * | 1968-02-16 | 1970-02-03 | Litton Precision Prod Inc | Magnetron construction |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS49115642A (enrdf_load_stackoverflow) * | 1973-03-07 | 1974-11-05 | ||
| US3916247A (en) * | 1973-07-16 | 1975-10-28 | Tokyo Shibaura Electric Co | Shell type magnetron device |
| US3967154A (en) * | 1974-01-11 | 1976-06-29 | Tokyo Shibaura Electric Co., Ltd. | Magnetron having horizontally blown type radiator |
| JPS5088970A (enrdf_load_stackoverflow) * | 1974-05-17 | 1975-07-17 | ||
| US4296355A (en) * | 1978-11-13 | 1981-10-20 | Toshiba Corporation | Magnetron with cooling means |
| US5087853A (en) * | 1988-10-26 | 1992-02-11 | Hitachi, Ltd. | Magnetron and dielectric heater using magnetron |
| US6351071B1 (en) * | 1998-11-18 | 2002-02-26 | Matsushita Electric Industrial Co., Ltd. | Magnetron apparatus and manufacturing method therefor |
| EP1355340A3 (en) * | 2002-04-18 | 2006-03-01 | Lg Electronics Inc. | Magnetron |
Also Published As
| Publication number | Publication date |
|---|---|
| FR2004170A1 (enrdf_load_stackoverflow) | 1969-11-21 |
| GB1237624A (en) | 1971-06-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3577033A (en) | Magnetron device with cooling fluid flow in longitudinal direction of magnetron tube | |
| US3493810A (en) | Magnetron construction | |
| US2489891A (en) | Cesium electric discharge device | |
| EP1355340B1 (en) | Magnetron | |
| US3809950A (en) | Magnetron | |
| US3716750A (en) | Magnetrons | |
| US3794879A (en) | Microwave magnetron | |
| JPS5935497B2 (ja) | マグネトロン | |
| US3562579A (en) | Electron discharge device employing inexpensive permanent magnets if significantly reduced size | |
| KR20030038459A (ko) | 마그네트론장치 | |
| US7026762B2 (en) | Magnetron, and microwave oven and high-frequency heating apparatus each equipped with the same | |
| US3916247A (en) | Shell type magnetron device | |
| US4042851A (en) | Magnetron | |
| JPH0628984A (ja) | マグネトロンの放熱フィン構造 | |
| US4105913A (en) | Core magnetron and method of manufacturing permanent magnets therefor with low gas emission | |
| US2454031A (en) | Electric discharge device of the magnetron type | |
| CN212411993U (zh) | 磁控管 | |
| KR100275969B1 (ko) | 열적 안정화 구조의 냉각핀을 가지는 마그네트론 | |
| JP3164907B2 (ja) | マグネトロン装置 | |
| US2787728A (en) | Electron discharge device with toroidal permanent magnet | |
| KR100374840B1 (ko) | 마그네트론 | |
| KR970005950Y1 (ko) | 전자레인지용 마그네트론 | |
| US3631281A (en) | Magnetic field extenders | |
| KR200145525Y1 (ko) | 전자레인지용 마그네트론의 영구자석 구조 | |
| JPS6286639A (ja) | マグネトロン装置 |