US3577033A - Magnetron device with cooling fluid flow in longitudinal direction of magnetron tube - Google Patents

Magnetron device with cooling fluid flow in longitudinal direction of magnetron tube Download PDF

Info

Publication number
US3577033A
US3577033A US806975A US3577033DA US3577033A US 3577033 A US3577033 A US 3577033A US 806975 A US806975 A US 806975A US 3577033D A US3577033D A US 3577033DA US 3577033 A US3577033 A US 3577033A
Authority
US
United States
Prior art keywords
magnetron
cooling
magnetron tube
tube
vanes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US806975A
Inventor
Ichiro Aoki
Kenji Iwasaki
Tamaji Yoshihashi
Tokuji Koinuma
Masao Kato
Akihiro Fukatu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP10075968U external-priority patent/JPS4930844Y1/ja
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Application granted granted Critical
Publication of US3577033A publication Critical patent/US3577033A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/005Cooling methods or arrangements

Definitions

  • a magnetron device including a magnetron tube and a permanent magnet
  • cooling means is provided for cooling the magnetron tube and magnet, the cooling means defining cooling fluid flow paths in a direction substantially in parallel with the longitudinal axis of the magnetron tube.
  • This invention relates to a fluid cooled magnetron device and more particularly to improved cooling means therefor.
  • magnetrons are constructed to have relatively large output ratings when compared with their physical size. As a result, the quantity of heat generated by them due to power loss is large, thus requiring elaborate cooling devices to effectively cool them. As the quantity of heat generated is increased it is necessary to increase the quantity of cooling fluid or air or to increase the heat dissipating area of the cooling fin.
  • a magnetron tube 2 is fit in the opening at the center of rectangular cooling vanes I and a pair of permanent magnets 3 are disposed on both sides of cooling vanes in parallel with the magnetron tube.
  • the poles of magnets 3 are bridged by upper and lower magnetic yokes 4 which complete magnetic paths from the magnets to pole pieces (not shown) contained in the magnetron tube.
  • a magnetron device comprising a magnetron tube, a cooling means including cooling vanes surrounding the magnetron tube, said cool- FIG. 2 shows a perspective view of a cooling means utilized :in'one embodiment of this invention
  • FIG. 3 is a sectional view of the cooling means taken along a line III-III in FIG. 2;
  • FIG. 4 is a top plan view of a magnetron device utilizing the cooling means shown in FIG. 2;
  • FIGS shows a side elevation of the embodiment shown FIG. 4;
  • FIG. 6 shows a front view, partly in section, of the embodiment shown in FIG. 4;
  • FIG. 7 is a top plan view of a modified embodiment of this I 7 FIG. 9, taken along a line X-X thereof.
  • FIGS. 2 to 6 inclusive illustrate a horizontal type magnetron device em bodying this invention.
  • cooling vanes II comprising a plurality of rectangular metal plates stacked one upon the other with a suitable gap or cooling air passage between adjacent plates are provided with a central opening 12 for accommodating a magnetron tube to be described later and two openings 13 on opposite sides of the central opening for accommodating permanent magnets.
  • a magnetron tube I4 and a pair ofpermanent magnets 15 are snugly received in openings 12 and 13, respectively, and are connected by upper and lower magnetic yokes 16 to complete a magnetron device.
  • the magnetron tube comprises a metal cylinder 25, pole pieces 17 disposed in the metal cylinder to form a portion of the magnetic path for the magnetic flux through the magnetic yokes, an anode vane 20 connected to an antenna 19 disposed in an output dome I8, and a cathode electrode 23 on one end of acathode support 22 supported by a cathode bushing 21 and surrounded by the anode vanes 20.
  • Each one of cathode support 22 and cathode bushing 21 is provided with terminal leads 24 and these terminal leads are connected to an external source of supply to heat a cathode heater.
  • the cathode leads are connected to a condenser and an inductance coil (not shown) to prevent leakage of high frequency waves from the cathode. Since the construction of the magnetron tube itself is well known in the art it is believed unnecessary to describe it herein in detail.
  • cooling air is passed in the horizontall or transverse direction to cool the anode electrode of the magnetron tube and the magnets.
  • magnets I5 are disposed in the cooling vanes, there arises the following advantages.
  • FIGS. 7 and 8 show a modified embodiment of this invention. Portions identical to those shown in FIGS. 2 to 6 are designated by the same reference numerals to avoid duplicate description.
  • a plurality of radial metal cooling vanes or fins 31 are secured to the outer periphery of magnetron tube 14 in parallel with the longitudinal axis of the tube to form a cooler.
  • the inner edge of each cooling vane 31 is secured .to the periphery of the magnetron tube and'the lower outer edges of the vanes are inclined inwardly toward output dome 18 of the magnetron tube.
  • permanent magnets I5 are disposed in the space in the cooler where cooling vanes are eliminated.
  • the cooling air passes through the passages between the cooling vanes in the axial direction of the magnetron tube and permanent magnets.
  • this modified magnetron device is to be incorporated into an electronic range it is advantageous to provide a metal housing or shield 32 to enclose magnetron tube 14, magnets 15, yokes l6 and cooling vanes 31 in order to prevent noise and leakage of high frequency waves.
  • a cap member 33 of metal wire net may be removably secured to the upper end of housing 32 to' surround cathode support 22 and cathode bushing 21 of the magnetron tube.
  • the cap member 33 serves to prevent leakage of high frequency waves from cathode bushing 21.
  • This embodiment is suitable for applications where the cooling air is passed in the longitudinal direction of the magnetron tube.
  • FIGS. 9 and 10 A still further modification of this invention is shown in FIGS. 9 and 10.
  • a cylindrical cap element 34 is disposed upon an upper side of the cooling vanes 31 so as to hermetically receive the cathode support 22 and the cathode bushing 21.
  • an air blowing duct 41 extending at right angles with respect to the axis of magnetron tube 14.
  • an air receiving duct 42 is connected to the lower end of cooling vanes 31 on the opposite side.
  • the cooling air admitted through the air blowing duct 41 flows upwardly through the space between cooling vanes on one side, horizontally through the space between the magnetron tube and permanent magnets, downwardly through the space between cooling vanes on the other side and finally flows out through the air receiving duct 42.
  • the anode electrode and cathode bushing of magnetron tube 14 and the permanent magnets 15 can be effectively cooled, but also, as the cooling air is supplied and exhausted in the lateral or horizontal direction, it is possible to install a cooling air circulating device on the side of the magnetron device, thus decreasing the height thereof relative to the embodiment shown in F165. 7 and 8. This feature is particularly advantageous in electronic ranges.
  • this invention provides a small size magnetron device having improved cooling means and which is capable of operating with stable operating characteristics.
  • a magnetron device comprising:
  • a magnetron tube having a longitudinal axis
  • a permanent magnet for operating said magnetron tube said permanent magnet being disposed outside said mag-. netron tube;
  • cooling means containing said magnetron tube and said permanent magnet, said cooling means comprising:
  • a magnetron device comprising a cap member removably secured to said housing.
  • a magnetron device according to claim 1, wherein said outer edges of each of said cooling vanes are attached to saidv vanes on the side of the output dome is formed with an inclined relationship to the circumferential surface of said tube, and further comprising:
  • a cap element detachably connected to said metal housing on the side of said cathode bushing and receiving said cathode bushing;
  • duct forming means for blowing and receiving cooling fluid, said duct forming means being detachably connected to the inclined side of the cooling vanes with said ducts being in a direction substantially perpendicular to thelongitudinal axis of the magnetron tube, such that cooling fluid introduced to one side of the cooling vanes through said blowing duct is passed through at least some 'of said cooling paths, through said cap element, and through the others of said cooling paths, the cooling fluid being exhausted through said receiving duct.

Landscapes

  • Microwave Tubes (AREA)

Abstract

In a magnetron device including a magnetron tube and a permanent magnet, cooling means is provided for cooling the magnetron tube and magnet, the cooling means defining cooling fluid flow paths in a direction substantially in parallel with the longitudinal axis of the magnetron tube.

Description

United States Patent lnventors Appl. No. Filed Patented Assignee Priority lchiro Aoki;
Kenji lwasaki, Yokohama-shi; Tamaji Yoshihashi, Fukaya-shi; Tokuju Koinuma, Kawasaki-shi; Masao Kato; Akihiro Fukatu, Yokohama-shi, Japan 806,975
Mar. 13, 1969 May 4, 1971 Tokyo Shibaura Electric Co., Ltd. Kawasaki-shi, Japan Mar. 18, 1968, Nov. 20, 1968 Japan 43/20768 and 43/ 100759 MAGNETRON DEVICE WITH COOLING FLUID FLOW IN LONGITUDINAL DIRECTION OF MAGNETRON TUBE 5 Claims, Drawing Figs.
U.S. Cl
Int. Cl
219/1055, 313/30, 313/36, 313/45, 31'3/158, 335/217 H0lj 7/26, H0lj /50 Field ofSearch 313/11,30, 45, 36; 335/217, 300; 219/1055; l/(E); 315/3959, 39.71,153,158
[56] References Cited UNITED STATES PATENTS 3,095,037 6/1963 Bohm 313/45X 3,304,400 2/1967 Ojelid 219/1055 3,323,020 5/1967 Lenart et al. 219/l0.55X 3,325,678 6/1967 Krug, Jr. et a1. 315/3971 3,440,386 4/1969 Boehm 219/1055 3,493,810 2/1970 Valles 315/39.7.1X
Primary Examiner-Roy Lake Assistant Examiner-E. R. LaRoche AttorneyFlynn & Frishauf ABSTRACT: In a magnetron device including a magnetron tube and a permanent magnet, cooling means is provided for cooling the magnetron tube and magnet, the cooling means defining cooling fluid flow paths in a direction substantially in parallel with the longitudinal axis of the magnetron tube.
, LONGITIJDINAL DIRECTION OF MAGNETRON TUBE This invention relates to a fluid cooled magnetron device and more particularly to improved cooling means therefor.
Generally, magnetrons are constructed to have relatively large output ratings when compared with their physical size. As a result, the quantity of heat generated by them due to power loss is large, thus requiring elaborate cooling devices to effectively cool them. As the quantity of heat generated is increased it is necessary to increase the quantity of cooling fluid or air or to increase the heat dissipating area of the cooling fin.
According to one prior arrangement shown in FIG. I, a magnetron tube 2 is fit in the opening at the center of rectangular cooling vanes I and a pair of permanent magnets 3 are disposed on both sides of cooling vanes in parallel with the magnetron tube. The poles of magnets 3 are bridged by upper and lower magnetic yokes 4 which complete magnetic paths from the magnets to pole pieces (not shown) contained in the magnetron tube.
However, with this construction as the magnets are not effectively cooled, the temperature thereof tends to increase due to heat generated by the magnetron tube. As the magnetomotive force of a permanent magnet decreases with temperature, for example, at a rate of 0.02 per C.-, when the temperature of the magnet rises, the magnetic flux generated thereby decreases to greatly increase the anode current of the tube, thus varying the output of the magnetron tube. Moreover, it has been difficult to effectively cool the cathode bushing of the tube.
In an electronic range or an ultra-high frequency cooking device, it is desirable to reduce the volume of the high frequency oscillator including magnetron tube in order to increase, as far as possible, the cooking space. According to a prior art arrangement, however, as magnets are disposed outside of cooling vanes it has been impossible to decrease the volume of the high frequency oscillator as desired. Disposition of permanent magnets outside of the cooling vanes also increased the spacing between these magnets and the magnetron tube. The ratio of permeability of the magnetic material comprising magnetic yokes 4, iron for example, to that of the surrounding air is approximately l -l0:l. Where the length of the yokes is increased, leakage flux is increased, sometimes amounting to three-fourths of the total flux.
It is therefore an object of this invention to provide an improved air cooled magnetron device with improved cooling means and which is small in size, can decrease leakage flux and can provide stable output.
SUMMARY OF THE INVENTION According to this invention there is provided a magnetron device comprising a magnetron tube, a cooling means including cooling vanes surrounding the magnetron tube, said cool- FIG. 2 shows a perspective view of a cooling means utilized :in'one embodiment of this invention;
FIG. 3 is a sectional view of the cooling means taken along a line III-III in FIG. 2;
FIG. 4 is a top plan view of a magnetron device utilizing the cooling means shown in FIG. 2;
FIGS shows a side elevation of the embodiment shown FIG. 4;
FIG. 6 shows a front view, partly in section, of the embodiment shown in FIG. 4;
FIG. 7 is a top plan view of a modified embodiment of this I 7 FIG. 9, taken along a line X-X thereof.
Referring now to the accompanying drawings, FIGS. 2 to 6 inclusive illustrate a horizontal type magnetron device em bodying this invention. As shown in FIGS. 2 and 3 cooling vanes II comprising a plurality of rectangular metal plates stacked one upon the other with a suitable gap or cooling air passage between adjacent plates are provided with a central opening 12 for accommodating a magnetron tube to be described later and two openings 13 on opposite sides of the central opening for accommodating permanent magnets. As shown in FIGS. 4 to 6, a magnetron tube I4 and a pair ofpermanent magnets 15 are snugly received in openings 12 and 13, respectively, and are connected by upper and lower magnetic yokes 16 to complete a magnetron device.
Generally, the magnetron tube comprises a metal cylinder 25, pole pieces 17 disposed in the metal cylinder to form a portion of the magnetic path for the magnetic flux through the magnetic yokes, an anode vane 20 connected to an antenna 19 disposed in an output dome I8, and a cathode electrode 23 on one end of acathode support 22 supported by a cathode bushing 21 and surrounded by the anode vanes 20. Each one of cathode support 22 and cathode bushing 21 is provided with terminal leads 24 and these terminal leads are connected to an external source of supply to heat a cathode heater. Further, the cathode leads are connected to a condenser and an inductance coil (not shown) to prevent leakage of high frequency waves from the cathode. Since the construction of the magnetron tube itself is well known in the art it is believed unnecessary to describe it herein in detail.
In this embodiment the cooling air is passed in the horizontall or transverse direction to cool the anode electrode of the magnetron tube and the magnets.
Since magnets I5 are disposed in the cooling vanes, there arises the following advantages. First, the magnetron tube 14, particularly its anode electrode, and the magnets are cooled effectively, so that a temperature rise of magnets I5 can be avoided, thus stabilizing the operating characteristics of the magnetron. Second, due to a decrease in the length of the magnetic path, leakage flux is decreased from 60-70 percent to 4050 percent, thus increasing the utilization factor of the magnets. Due to decreased leakage flux, there are only required small amounts of a magnetizing force with the resultant reduction in the size of the magnet as well as in the size and weight of the magnetron device as a whole, thereby reducing its cost.
FIGS. 7 and 8 show a modified embodiment of this invention. Portions identical to those shown in FIGS. 2 to 6 are designated by the same reference numerals to avoid duplicate description. In this embodiment, a plurality of radial metal cooling vanes or fins 31 are secured to the outer periphery of magnetron tube 14 in parallel with the longitudinal axis of the tube to form a cooler. The inner edge of each cooling vane 31 is secured .to the periphery of the magnetron tube and'the lower outer edges of the vanes are inclined inwardly toward output dome 18 of the magnetron tube. As best shown in FIG. 7, permanent magnets I5 are disposed in the space in the cooler where cooling vanes are eliminated. The cooling air passes through the passages between the cooling vanes in the axial direction of the magnetron tube and permanent magnets. Where this modified magnetron device is to be incorporated into an electronic range it is advantageous to provide a metal housing or shield 32 to enclose magnetron tube 14, magnets 15, yokes l6 and cooling vanes 31 in order to prevent noise and leakage of high frequency waves.
Further, as shown in FIG. 8, a cap member 33 of metal wire net may be removably secured to the upper end of housing 32 to' surround cathode support 22 and cathode bushing 21 of the magnetron tube. The cap member 33 serves to prevent leakage of high frequency waves from cathode bushing 21.
This embodiment is suitable for applications where the cooling air is passed in the longitudinal direction of the magnetron tube.
A still further modification of this invention is shown in FIGS. 9 and 10. A cylindrical cap element 34 is disposed upon an upper side of the cooling vanes 31 so as to hermetically receive the cathode support 22 and the cathode bushing 21. To the inwardly inclined portion at the'lower end of cooling vanes 31 on one side of permanent magnets is connected an air blowing duct 41 extending at right angles with respect to the axis of magnetron tube 14. In the same manner an air receiving duct 42 is connected to the lower end of cooling vanes 31 on the opposite side. As shown by arrows, the cooling air admitted through the air blowing duct 41 flows upwardly through the space between cooling vanes on one side, horizontally through the space between the magnetron tube and permanent magnets, downwardly through the space between cooling vanes on the other side and finally flows out through the air receiving duct 42. With this arrangement not only the anode electrode and cathode bushing of magnetron tube 14 and the permanent magnets 15 can be effectively cooled, but also, as the cooling air is supplied and exhausted in the lateral or horizontal direction, it is possible to install a cooling air circulating device on the side of the magnetron device, thus decreasing the height thereof relative to the embodiment shown in F165. 7 and 8. This feature is particularly advantageous in electronic ranges.
Although two permanent magnets have been shown in the above-described embodiments, it will be clear that a single magnet may be sufficient.
Thus, this invention provides a small size magnetron device having improved cooling means and which is capable of operating with stable operating characteristics.
We claim:
1. A magnetron device comprising:
a magnetron tube having a longitudinal axis;
a permanent magnet for operating said magnetron tube, said permanent magnet being disposed outside said mag-. netron tube;
a magnetic yoke coupling said magnet and said magnetron tube for forming a magnetic circuit between said magnet and said magnetron tube; and
cooling means containing said magnetron tube and said permanent magnet, said cooling means comprising:
a metal housing enclosing said magnetron tube and said magnet; and i a plurality of cooling vanes having faces which are arrange substantially radially with respect to said longitudinal axis of said magnetron tube to define paths for the flow of cooling fluid in a direction substantially in parallel with the longitudinal axis of said magnetron tube, the inner edge of each of said cooling vanes being attached to the outer circumferential surface of said magnetron tube, and the outer edge of each of said cooling vanes being disposed adjacent to the inner surface of said metalhousing. 2. A magnetron device according to claim 1, further comprising a cap member removably secured to said housing.
3. A magnetron device according to claim 1, wherein said outer edges of each of said cooling vanes are attached to saidv vanes on the side of the output dome is formed with an inclined relationship to the circumferential surface of said tube, and further comprising:
a cap element detachably connected to said metal housing on the side of said cathode bushing and receiving said cathode bushing; and
means forming ducts for blowing and receiving cooling fluid, said duct forming means being detachably connected to the inclined side of the cooling vanes with said ducts being in a direction substantially perpendicular to thelongitudinal axis of the magnetron tube, such that cooling fluid introduced to one side of the cooling vanes through said blowing duct is passed through at least some 'of said cooling paths, through said cap element, and through the others of said cooling paths, the cooling fluid being exhausted through said receiving duct.

Claims (5)

1. A magnetron device comprising: a magnetron tube having a longitudinal axis; a permanent magnet for operating said magnetron tube, said permanent magnet being disposed outside said magnetron tube; a magnetic yoke coupling said magnet and said magnetron tube for forming a magnetic circuit between said magnet and said magnetron tube; and cooling means containing said magnetron tube and said permanent magnet, said cooling means comprising: a metal housing enclosing said magnetron tube and said magnet; and a plurality of cooling vanes having faces which are arrange substantially radially with respect to said longitudinal axis Of said magnetron tube to define paths for the flow of cooling fluid in a direction substantially in parallel with the longitudinal axis of said magnetron tube, the inner edge of each of said cooling vanes being attached to the outer circumferential surface of said magnetron tube, and the outer edge of each of said cooling vanes being disposed adjacent to the inner surface of said metal housing.
2. A magnetron device according to claim 1, further comprising a cap member removably secured to said housing.
3. A magnetron device according to claim 1, wherein said outer edges of each of said cooling vanes are attached to said metal housing.
4. A magnetron device according to claim 1, wherein said magnet is accommodated between a pair of cooling vanes.
5. A magnetron device according to claim 1, wherein one surface of the magnetron tube perpendicular to the direction of the longitudinal axis of the magnetron tube has a cathode bushing, the other surface of the magnetron tube perpendicular to the direction of the longitudinal axis of the magnetron tube has an output dome, and one edge of each of the cooling vanes on the side of the output dome is formed with an inclined relationship to the circumferential surface of said tube, and further comprising: a cap element detachably connected to said metal housing on the side of said cathode bushing and receiving said cathode bushing; and means forming ducts for blowing and receiving cooling fluid, said duct forming means being detachably connected to the inclined side of the cooling vanes with said ducts being in a direction substantially perpendicular to the longitudinal axis of the magnetron tube, such that cooling fluid introduced to one side of the cooling vanes through said blowing duct is passed through at least some of said cooling paths, through said cap element, and through the others of said cooling paths, the cooling fluid being exhausted through said receiving duct.
US806975A 1968-03-18 1969-03-13 Magnetron device with cooling fluid flow in longitudinal direction of magnetron tube Expired - Lifetime US3577033A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2076868 1968-03-18
JP10075968U JPS4930844Y1 (en) 1968-11-20 1968-11-20

Publications (1)

Publication Number Publication Date
US3577033A true US3577033A (en) 1971-05-04

Family

ID=26357753

Family Applications (1)

Application Number Title Priority Date Filing Date
US806975A Expired - Lifetime US3577033A (en) 1968-03-18 1969-03-13 Magnetron device with cooling fluid flow in longitudinal direction of magnetron tube

Country Status (3)

Country Link
US (1) US3577033A (en)
FR (1) FR2004170A1 (en)
GB (1) GB1237624A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49115642A (en) * 1973-03-07 1974-11-05
JPS5088970A (en) * 1974-05-17 1975-07-17
US3916247A (en) * 1973-07-16 1975-10-28 Tokyo Shibaura Electric Co Shell type magnetron device
US3967154A (en) * 1974-01-11 1976-06-29 Tokyo Shibaura Electric Co., Ltd. Magnetron having horizontally blown type radiator
US4296355A (en) * 1978-11-13 1981-10-20 Toshiba Corporation Magnetron with cooling means
US5087853A (en) * 1988-10-26 1992-02-11 Hitachi, Ltd. Magnetron and dielectric heater using magnetron
US6351071B1 (en) * 1998-11-18 2002-02-26 Matsushita Electric Industrial Co., Ltd. Magnetron apparatus and manufacturing method therefor
EP1355340A2 (en) * 2002-04-18 2003-10-22 Lg Electronics Inc. Magnetron

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516376Y2 (en) * 1972-11-30 1980-04-16

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3095037A (en) * 1958-06-14 1963-06-25 Miwag Mikrowellen A G Air cooler for power tubes
US3304400A (en) * 1960-03-04 1967-02-14 Husqvarna Vapenfabriks Ab Cooling arrangement for magnetrons
US3323020A (en) * 1963-07-12 1967-05-30 Electrolux Ab Structure for cooling a microwave generator
US3325678A (en) * 1966-06-02 1967-06-13 Gen Electric Magnetically shielded structure with adjustable cover member supporting a magnetron
US3440386A (en) * 1966-11-21 1969-04-22 Technology Instr Corp Of Calif Microwave heating apparatus
US3493810A (en) * 1968-02-16 1970-02-03 Litton Precision Prod Inc Magnetron construction

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3095037A (en) * 1958-06-14 1963-06-25 Miwag Mikrowellen A G Air cooler for power tubes
US3304400A (en) * 1960-03-04 1967-02-14 Husqvarna Vapenfabriks Ab Cooling arrangement for magnetrons
US3323020A (en) * 1963-07-12 1967-05-30 Electrolux Ab Structure for cooling a microwave generator
US3325678A (en) * 1966-06-02 1967-06-13 Gen Electric Magnetically shielded structure with adjustable cover member supporting a magnetron
US3440386A (en) * 1966-11-21 1969-04-22 Technology Instr Corp Of Calif Microwave heating apparatus
US3493810A (en) * 1968-02-16 1970-02-03 Litton Precision Prod Inc Magnetron construction

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49115642A (en) * 1973-03-07 1974-11-05
US3916247A (en) * 1973-07-16 1975-10-28 Tokyo Shibaura Electric Co Shell type magnetron device
US3967154A (en) * 1974-01-11 1976-06-29 Tokyo Shibaura Electric Co., Ltd. Magnetron having horizontally blown type radiator
JPS5088970A (en) * 1974-05-17 1975-07-17
US4296355A (en) * 1978-11-13 1981-10-20 Toshiba Corporation Magnetron with cooling means
US5087853A (en) * 1988-10-26 1992-02-11 Hitachi, Ltd. Magnetron and dielectric heater using magnetron
US6351071B1 (en) * 1998-11-18 2002-02-26 Matsushita Electric Industrial Co., Ltd. Magnetron apparatus and manufacturing method therefor
EP1355340A2 (en) * 2002-04-18 2003-10-22 Lg Electronics Inc. Magnetron
EP1355340A3 (en) * 2002-04-18 2006-03-01 Lg Electronics Inc. Magnetron

Also Published As

Publication number Publication date
GB1237624A (en) 1971-06-30
FR2004170A1 (en) 1969-11-21

Similar Documents

Publication Publication Date Title
US3577033A (en) Magnetron device with cooling fluid flow in longitudinal direction of magnetron tube
US3493810A (en) Magnetron construction
US2489891A (en) Cesium electric discharge device
EP1355340B1 (en) Magnetron
US3716750A (en) Magnetrons
US3794879A (en) Microwave magnetron
US4426601A (en) Magnetron
US3562579A (en) Electron discharge device employing inexpensive permanent magnets if significantly reduced size
KR20030038459A (en) Magnetron apparatus
US3809950A (en) Magnetron
JPS5935497B2 (en) magnetron
US3916247A (en) Shell type magnetron device
US7026762B2 (en) Magnetron, and microwave oven and high-frequency heating apparatus each equipped with the same
JPH0628984A (en) Structure of radiating fin of magnetron
US4105913A (en) Core magnetron and method of manufacturing permanent magnets therefor with low gas emission
JPS5818732B2 (en) magnetron
KR100275969B1 (en) Magnetron with cooling fins with thermal stabilization
JP3164907B2 (en) Magnetron equipment
US2787728A (en) Electron discharge device with toroidal permanent magnet
CN212411993U (en) Magnetron
KR100374840B1 (en) Magnetron
KR970005950Y1 (en) Magnetron for microwave oven
US3631281A (en) Magnetic field extenders
KR200145525Y1 (en) A permanent magnet structure of magnetron for microwave oven
JPS6286639A (en) Magnetron device