US3570380A - Impactless typewriter - Google Patents
Impactless typewriter Download PDFInfo
- Publication number
- US3570380A US3570380A US735407A US3570380DA US3570380A US 3570380 A US3570380 A US 3570380A US 735407 A US735407 A US 735407A US 3570380D A US3570380D A US 3570380DA US 3570380 A US3570380 A US 3570380A
- Authority
- US
- United States
- Prior art keywords
- character
- thermographic material
- substrate
- mask
- illuminating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 claims abstract description 52
- 239000000758 substrate Substances 0.000 claims abstract description 48
- 238000009877 rendering Methods 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 description 4
- 239000001993 wax Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000010979 ruby Substances 0.000 description 3
- 229910001750 ruby Inorganic materials 0.000 description 3
- 238000005286 illumination Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 241000931526 Acer campestre Species 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- 239000005041 Mylar™ Substances 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 229940092738 beeswax Drugs 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 235000019809 paraffin wax Nutrition 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/435—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
- B41J2/465—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using masks, e.g. light-switching masks
- B41J2/4655—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using masks, e.g. light-switching masks using character templates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/435—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
- B41J2/475—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material for heating selectively by radiation or ultrasonic waves
- B41J2/48—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material for heating selectively by radiation or ultrasonic waves melting ink on a film or melting ink granules
Definitions
- An impactless printing system is provided wherein a light source is used to illuminate a thermographic material through a character-shaped aperture in a mask.
- the light source generates enough heat in the thermographic material to cause it to be transferred, in the character shape to a receiving substrate.
- a FOP/V5 V5 IMZPACTLESS rvrawarrsn BACKGROUND OF THE INVENTION This invention relates to printing apparatus and more par ticularly to improvements therein.
- An object of this invention is the provision of a impactless printing device which can be used for the creation of originals.
- Yet another object of the present invention is the provision of a novel impactless typewriter.
- Still another object of this invention is the provision of a unique printing arrangement which uses light-heat energy for printing.
- thermotransfermaterial in an arrangement for a typewriter which in one embodiment substitutes for the type characters, a radiant energy source, a rotating disc which has aperture-shaped characters therein, and a typewriter ribbon coated with thermotransfermaterial.
- Each character-shaped aperture which is in position to be illuminatecl by the radiant energy source is detected and compared with a depressed key. If they coincide, then the source is permitted to illuminate the character-shaped aperture whereby a radiant image thereof is projected onto the ribbon coated with thermotransfer material. Heat developed from the radiant image causes the thermotransfermaterial on the ribbon to transfer to the adjacent paper.
- Other embodiments are also provided which use a mask having charactenshaped apertures in a moveable web 'for effectuating book printing or in a cylinder for high-speed printing.
- FIG. l is a diagram showing the layout of a impactless typewriter in accordance with this invention.
- FIG. 2 is a plan view showing the relative positions of the essential components of the typewriter
- FIG. 3 is a schematic view illustrative of circuits necessary for operation of the embodiment of the invention.
- FIG. A is a diagram illustrating a impactless web printer, in accordance with this invention.
- FIG. 5 is a diagram illustrating a drum printer in accordance with this invention.
- FIG. ti illustrates a generalized arrangement suitable for use with the embodiment of the invention shown in FIG. 1.
- FIG. I A layout for a impactless typewriter, in accordance with this invention, shown in FIG. I.
- the typewriter includes a keyboard lltl which has the same appearance and is operated in the exact same manner as the keyboard of the present day typewriters.
- Exemplary of the radiant energy source is a laser 12 which is permitted to emit a light flash which passes through a character-shaped aperture in a rotating disc 14, when that character-shaped aperture is in position to be illuminated by the laser beam.
- FIG. 2 there may be seen a plan view of the invention.
- the paper 26 is shown with an exaggerated thickness, in position between the ribbon l6 and the roller 22.
- the ribbon is pressed against the paper by two guides respectively 23, 30.
- the typewriter ribbon may comprise any suitable infrared transparent plastic material, such as Mylar, which has coated thereon on the side adjacent to the paper, a thermographic material.
- a thermographic material such as Mylar, which has coated thereon on the side adjacent to the paper.
- One may use any one of thewaxes such as a bees wax, paraffin wax, carnauba wax or obokerite wax for this purpose. These waxes are mixed when liquid, together with 5 percent of carbon black powder and 2 percent of methyviolet.
- One side of the ribbon is coated with the waxy mixture which is then permitted to cool thereon.
- the temperature at which the wax melts, and thus can be transferred to the receiving substrate, which is the paper or any other material upon which printing is desired to be effectuated, can occur at the melting temperature of the warm is well known than one can obtain waxes with melt temperatures from F!
- the temperature selected is determined by the temperature which the light source can provide at the desired speed of operation. Information on the available temperatures from the different laser light source is known, found in the literature, and available from the laser manufacturers. For example, a book which provides the available temperatures for some lasers is Optical Masers by George Birnbaum, published by the Academic Press in 1964.
- FIG. 3 The schematic view of the circuit arrangement for controlling the flash of the laser so that it will turn on only when a character-shaped aperture is in position to receive the illumination, is shown in FIG. 3.
- the laser must be strobed.
- a well-known technique called O-spoiling may be employed. This technique is described in the literature.
- a laser will include a ruby rod 30 which is placed within a resonant light cavity defined by two mirrors respectively 32, 34.
- the mirror 32 is coated to completely reflect any light that impinges thereon, while the mirror 34 is coated to reflect some of the light and pass therethrough the remainder of the light coming from the ruby rod.
- A- Kerr cell 36 is placed within the resonant cavity.
- This cell operates, in a well-known manner, to rotate the polarization of any light beam which passes therethrough when an electric field is applied thereacross.
- the cell is equipped with polarizing filters and therefore can be operated to permit or block the light from the ruby rod passing to the mirror 34 to be reflected back.
- the Kerr cell spoils the Q of the optical cavity and thereby can be used to determine when the laser is operative.
- the light from the laser which passes through the mirror 34 then passes through a lens 38 which insures coverage of a character-shaped aperture 40, by the light from the laser.
- the character-shaped aperture forms the light into a corresponding character.
- a motor 42 rotates the mask 14. Centers of magnetization, represented in the drawing as spots 16, are formed in the periphery of the disc, which is made out of a magnetizable metal, by applying a localizing field to these various spots. These spots are positioned adjacent character-shaped apertures.
- each spot passes by a magnetic reading head 44, consisting of a core of magnetizable metal 46 over which a winder 48 is placed.
- a magnetic reading head 44 consisting of a core of magnetizable metal 46 over which a winder 48 is placed.
- each magnetic spot passing adjacent the reading head will cause a voltage pulse to be induced in the winding 48.
- This is applied to an amplifier 50.
- the output of the amplifier is used to drive a cyclic counter 52.
- the counter has a count capacity equal to the number of keys in the keyboard Ml. Each key is assigned a different count. Accordingly, as the disc is rotated by the motor, and as each character-shaped aperture is lined up with the laser, the counter will have a different count condition for each character. This is indicated by the output of the counter.
- Each different count output of the counter is applied as one input to a different one of the AND gates 54, 56, 58. It will be appreciated that there are as many AND as there are counter outputs. Three are shown by way of example
- Each one of the keys of the keyboard It) actuates or closes a different switch respectively 64), 62, 64. All of the switches are connected from one contact to a potential source 66. The other contact of each switch goes to a different one of the respective AND gates 54, 56, 58. Accordingly, as a key on the keyboard is actuated, a switch, such as 60, is closed, whereby a potential is applied from the potential source 66 to the AND gate 541. The AND gate will not be enabled however until the counter 52 attains that count which applies an output to the other input to that particular AND gate.
- Such count is attained only when the character-shaped aperture corresponding to the key which has been actuated, is in position to receive the light from the laser, Whichever one of the AND gates is enabled, applies its output to an OR gate 68.
- the OR gate which merely collects all the outputs of the AND gates applies a single output to the Kerr cell control circuits 70.
- This circuit applies a high voltage to the Kerr cell 36 over an interval required to enable the laser to generate light. The light passes through the character aperture and heats the thermographic material sufficiently to cause it to be transferred.
- the Kerr cell control circuit then removes the enabling voltage whereupon the laser light is turned off.
- the typewriter ribbon and keyboard is advanced after the character is printed in the same manner as the typewriter keyboard is presently advanced for providing an available blank space for additional printing.
- FIG. 4 shows another arrangement, in accordance with this invention for printing.
- paper which is fed from a payout roll 72 to a takeup roll 74 past a printing station defined by a pressure plate 76, opposite which there are two guide rollers respectively 78, 80.
- a ribbon 82 which is coated with the thermographic material and also a mask 84, which is in the form of a web fed from the payout roll 86 through the printing station to the takeup roll 88.
- the web in addition to having the information desired to be printed in the form of perforated characters, also carries indicia 90 which may be in the form of magnetic markings of the type discussed in connection with the disc 14, or may beholes each of which is lined up with a line of printing. If the markings are magnetic, obviously a magnetic detector will be employed. If the markings consist of holes, then a light is placed on one side of the mask and a photocell on the other. It will be assumed here that these markings are small holes and a photocell 92 is employed for detecting when a line of character-shaped apertures is at the printing position. The output of the photocell is amplified by an amplifier 94 and applied to Kerr cell control circuits 96.
- the Kerr cell control circuits control the Kerr cells in a plurality of aligned lasers 98, only one of which may be seen in the drawing.
- a plurality of lasers is used to insure that there is sufiicient illumination so that the thermographic material, which is behind each character-shaped aperture on the web 84, will be transferred to the paper.
- a motor 100 drives the takeup rollers for the ribbon, the mask, web, and the paper, to insure synchronism.
- a photocell provides an output whenever it detects that a line of charactershaped apertures is at the printing'station. This causes the lasers to be triggered whereby printing occurs.
- FIG. shows how this invention may be employed for printing using a drum.
- the web 102 having the charactershaped apertures is wrapped around a glass drum 104.
- the laser array 106 is placed within the drum.
- the drum is rotatably supported on two rollers 108, 110.
- the ribbon 112 is fed from a payout roller 114 to a takeup roller 116, passing between the masked drum surface and a backup roller 120.
- the paper 122 is fed from a payout roller 124 to a takeup roller 126.
- the detection apparatus for triggering the laser is not shown in this view, however, it is identical with that shown in H0. 4.
- thermographic material which has sufficient thermal energy to enable a thermographic material to be transferred from the carrying substrate to a receiving substrate in the shape of a desired character.
- the light source which has been shown and described herein is a laser light source
- any light source capable of being strobed at a sufficiently rapid rate and capable of providing sufficient heat during the interval of strobing to effectuate the transfer of the thermographic material may be employed in place of the laser light source, without departing from the spirit and scope of this invention. If the light source cannot be strobed, then an arrangement such as shown in H6. 6 may be used.
- the radiant energy source may be a source of infrared, for example.
- an electromagnetic shutter 132 is employed. This is operated by the output of the OR gate in FIG. 3, for example.
- the mask 40 is the same as the one shown in FIG. 3.
- the shutter 130 is operated to enable heat energy to reach the thermotransfer material to cause it to be transferred to the receiving substrate.
- Apparatus for effectuating impactless printing on an inert receiving substrate comprising: I
- thermographic material disposed adjacent said receiving substrate with said thermographic material in contact with said receiving substrate;
- thermographic material a mask having a plurality of character-shaped apertures positioned adjacent said substrate carrying said thermographic material
- thermographic material means for selectively illuminating with radiant energy a portion of .said thermographic material through said mask and said substantially transparent substrate;
- thermographic material-coated substrate for melting said thermographic material on the character-shaped portion of said thermographic material-coated substrate illuminated by a said illuminating means through said desired aperture in said mask for causing said melted thermographic material to transfer to said receiving substrate in the shape of said aperture in said mask;
- thermographic material-coated substrate for transporting successive portions of said thermographic material-coated substrate between said illuminating means and said receiving substrate for causing the printing of the successive characters on said receiving substrate with thermographic material from successive portions of said thermographic materialcoated substrate.
- Apparatus as recited in claim 1 wherein said means for illuminating comprises a laser light source.
- Apparatus as recited in claim 1 wherein said means for actuating said means for illuminating only when a desired character-shaped aperture is positioned comprises:
- thermographic-coated substrate a means for generating a signal representative of a character-shaped aperture in position between said means for illuminating and said thermographic-coated substrate
- a impactless printing system comprising:
- a mask in the shape of a web' having a plurality of charactershaped apertures therein I I a ribbon in the shape of a web having thermographic material coated on one side thereof, said ribbon being adjacent said mask; a substrate in the shape of a web in contact with said thermographic material on said ribbon; controllable light means for illuminating said thermographic material-eoated ribbon through a character-shaped aperture of said mask for transferring said thermographic material in the shape of said character to said substrate; means for moving said mask, said ribbon and said substrate in synchronism with one another; and means for rendering said controllable light means operative each time a character-shaped aperture is in position to be illuminated thereby including: identifying means adjacent each character-shaped aperture; means for sensing said identifying means when said character-shaped aperture is in position to be illuminated; and means responsive to said means for sensing to render said means for illuminating operative.
- An impactless printing system comprising:
- thermographic materi on said ribbon
- controllable light means for illuminating said thermographic material-coated ribbon through a character-shaped aperture in said cylindricalmask for transferring said thermographic material in the shape of said character to said substrate; means for moving said mask, said. ribbon and said substrate in synchronism with one another; and means for rendering said controllable light means operative each time a character-shaped aperture is in position to be illuminated thereby including: identifying means adjacent each character-shaped aperture; means for sensing said identifying means when a character-shaped aperture is in position to be illuminated; and t means responsive to said means for sensing to render said means for illuminating operative.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Electronic Switches (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US73540768A | 1968-06-07 | 1968-06-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3570380A true US3570380A (en) | 1971-03-16 |
Family
ID=24955664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US735407A Expired - Lifetime US3570380A (en) | 1968-06-07 | 1968-06-07 | Impactless typewriter |
Country Status (4)
Country | Link |
---|---|
US (1) | US3570380A (enrdf_load_stackoverflow) |
DE (1) | DE1929640A1 (enrdf_load_stackoverflow) |
FR (1) | FR2010382A1 (enrdf_load_stackoverflow) |
GB (1) | GB1239702A (enrdf_load_stackoverflow) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3745235A (en) * | 1970-08-31 | 1973-07-10 | Agfa Gevaert Ag | Method and apparatus for the production of color prints on paper |
US3780214A (en) * | 1970-08-17 | 1973-12-18 | Agfa Gevaert Ag | Method and apparatus for making color prints on paper |
US3787210A (en) * | 1971-09-30 | 1974-01-22 | Ncr | Laser recording technique using combustible blow-off |
US3832718A (en) * | 1973-01-19 | 1974-08-27 | Gen Electric | Non-impact, curie point printer |
US3832547A (en) * | 1970-08-03 | 1974-08-27 | D Silverman | Apparatus for transferring a unique micropattern of microperforations in a first metal layer to an underlying second metal layer |
US3838431A (en) * | 1972-04-18 | 1974-09-24 | H Germer | Apparatus for thermally recording character patterns |
US3847265A (en) * | 1972-04-26 | 1974-11-12 | Battelle Memorial Institute | Ink ribbon having an anisotropic electric conductivity |
US3854808A (en) * | 1963-02-15 | 1974-12-17 | Triumph Werke Nuernberg Ag | Method and device for producing prints and the like |
US3914775A (en) * | 1972-12-26 | 1975-10-21 | Minnesota Mining & Mfg | Device for forming graphics |
US3966317A (en) * | 1974-04-08 | 1976-06-29 | Energy Conversion Devices, Inc. | Dry process production of archival microform records from hard copy |
US4046472A (en) * | 1975-04-18 | 1977-09-06 | Xerox Corporation | Electrostatic imaging apparatus |
US4103995A (en) * | 1975-04-18 | 1978-08-01 | Xerox Corporation | Imaging apparatus |
US4118128A (en) * | 1975-09-08 | 1978-10-03 | Louis Van Den Essen | Optical typewriter |
US4123309A (en) * | 1973-11-29 | 1978-10-31 | Minnesota Mining And Manufacturing Company | Transfer letter system |
US4157412A (en) * | 1977-10-25 | 1979-06-05 | Minnesota Mining And Manufacturing Company | Composite material for and method for forming graphics |
US4245003A (en) * | 1979-08-17 | 1981-01-13 | James River Graphics, Inc. | Coated transparent film for laser imaging |
US4269892A (en) * | 1980-02-04 | 1981-05-26 | International Business Machines Corporation | Polyester ribbon for non-impact printing |
US4323317A (en) * | 1980-05-07 | 1982-04-06 | Shibuya Kogyo Company, Ltd. | Pattern controlling device for laser marker |
US4433902A (en) | 1980-06-16 | 1984-02-28 | Ncr Corporation | Projection printer |
US4511268A (en) * | 1979-10-19 | 1985-04-16 | Marshall Eric J | High speed printer |
US4758703A (en) * | 1987-05-06 | 1988-07-19 | Estee Lauder Inc. | System and method for encoding objects |
US4804975A (en) * | 1988-02-17 | 1989-02-14 | Eastman Kodak Company | Thermal dye transfer apparatus using semiconductor diode laser arrays |
US4804977A (en) * | 1988-04-14 | 1989-02-14 | Eastman Kodak Company | Image or pattern transfer optical system for thermal dye transfer apparatus |
DE102017110040A1 (de) * | 2017-05-10 | 2018-11-15 | LPKF SolarQuipment GmbH | Druckvorrichtung und Druckverfahren zur Übertragung einer Drucksubstanz von einem endlos umlaufenden Drucksubstanzträger auf ein Substrat |
US20230398738A1 (en) * | 2020-12-23 | 2023-12-14 | Cornell University | Controlled molten metal deposition |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2714843A (en) * | 1951-06-19 | 1955-08-09 | Harris Seybold Co | Photographic type composition |
US3126799A (en) * | 1962-06-29 | 1964-03-31 | stauffer | |
US3207051A (en) * | 1957-11-08 | 1965-09-21 | Caps Limited | Photographic type composing apparatus |
US3220013A (en) * | 1963-10-21 | 1965-11-23 | Ibm | High speed electro-optic printer |
US3301697A (en) * | 1960-12-02 | 1967-01-31 | Robert B Russell | Thermographic transfer sheet having a support of a paper and plastic coating and the method of use |
US3351948A (en) * | 1966-01-03 | 1967-11-07 | Honeywell Inc | Laser recorder using medium having encapsulated chemicals |
-
1968
- 1968-06-07 US US735407A patent/US3570380A/en not_active Expired - Lifetime
-
1969
- 1969-06-06 FR FR6918762A patent/FR2010382A1/fr not_active Withdrawn
- 1969-06-09 DE DE19691929640 patent/DE1929640A1/de active Pending
- 1969-06-09 GB GB1239702D patent/GB1239702A/en not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2714843A (en) * | 1951-06-19 | 1955-08-09 | Harris Seybold Co | Photographic type composition |
US3207051A (en) * | 1957-11-08 | 1965-09-21 | Caps Limited | Photographic type composing apparatus |
US3301697A (en) * | 1960-12-02 | 1967-01-31 | Robert B Russell | Thermographic transfer sheet having a support of a paper and plastic coating and the method of use |
US3126799A (en) * | 1962-06-29 | 1964-03-31 | stauffer | |
US3220013A (en) * | 1963-10-21 | 1965-11-23 | Ibm | High speed electro-optic printer |
US3351948A (en) * | 1966-01-03 | 1967-11-07 | Honeywell Inc | Laser recorder using medium having encapsulated chemicals |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3854808A (en) * | 1963-02-15 | 1974-12-17 | Triumph Werke Nuernberg Ag | Method and device for producing prints and the like |
US3832547A (en) * | 1970-08-03 | 1974-08-27 | D Silverman | Apparatus for transferring a unique micropattern of microperforations in a first metal layer to an underlying second metal layer |
US3780214A (en) * | 1970-08-17 | 1973-12-18 | Agfa Gevaert Ag | Method and apparatus for making color prints on paper |
US3745235A (en) * | 1970-08-31 | 1973-07-10 | Agfa Gevaert Ag | Method and apparatus for the production of color prints on paper |
US3787210A (en) * | 1971-09-30 | 1974-01-22 | Ncr | Laser recording technique using combustible blow-off |
US3838431A (en) * | 1972-04-18 | 1974-09-24 | H Germer | Apparatus for thermally recording character patterns |
US3847265A (en) * | 1972-04-26 | 1974-11-12 | Battelle Memorial Institute | Ink ribbon having an anisotropic electric conductivity |
US3914775A (en) * | 1972-12-26 | 1975-10-21 | Minnesota Mining & Mfg | Device for forming graphics |
US3832718A (en) * | 1973-01-19 | 1974-08-27 | Gen Electric | Non-impact, curie point printer |
US4123578A (en) * | 1973-11-29 | 1978-10-31 | Minnesota Mining And Manufacturing Company | Transfer letter system |
US4123309A (en) * | 1973-11-29 | 1978-10-31 | Minnesota Mining And Manufacturing Company | Transfer letter system |
US3966317A (en) * | 1974-04-08 | 1976-06-29 | Energy Conversion Devices, Inc. | Dry process production of archival microform records from hard copy |
US4046472A (en) * | 1975-04-18 | 1977-09-06 | Xerox Corporation | Electrostatic imaging apparatus |
US4103995A (en) * | 1975-04-18 | 1978-08-01 | Xerox Corporation | Imaging apparatus |
US4118128A (en) * | 1975-09-08 | 1978-10-03 | Louis Van Den Essen | Optical typewriter |
US4157412A (en) * | 1977-10-25 | 1979-06-05 | Minnesota Mining And Manufacturing Company | Composite material for and method for forming graphics |
US4245003A (en) * | 1979-08-17 | 1981-01-13 | James River Graphics, Inc. | Coated transparent film for laser imaging |
US4511268A (en) * | 1979-10-19 | 1985-04-16 | Marshall Eric J | High speed printer |
US4269892A (en) * | 1980-02-04 | 1981-05-26 | International Business Machines Corporation | Polyester ribbon for non-impact printing |
US4323317A (en) * | 1980-05-07 | 1982-04-06 | Shibuya Kogyo Company, Ltd. | Pattern controlling device for laser marker |
US4433902A (en) | 1980-06-16 | 1984-02-28 | Ncr Corporation | Projection printer |
US4758703A (en) * | 1987-05-06 | 1988-07-19 | Estee Lauder Inc. | System and method for encoding objects |
US4804975A (en) * | 1988-02-17 | 1989-02-14 | Eastman Kodak Company | Thermal dye transfer apparatus using semiconductor diode laser arrays |
US4804977A (en) * | 1988-04-14 | 1989-02-14 | Eastman Kodak Company | Image or pattern transfer optical system for thermal dye transfer apparatus |
DE102017110040A1 (de) * | 2017-05-10 | 2018-11-15 | LPKF SolarQuipment GmbH | Druckvorrichtung und Druckverfahren zur Übertragung einer Drucksubstanz von einem endlos umlaufenden Drucksubstanzträger auf ein Substrat |
WO2018206218A1 (de) | 2017-05-10 | 2018-11-15 | LPKF SolarQuipment GmbH | Druckvorrichtung und druckverfahren zur übertragung einer drucksubstanz von einem endlos umlaufenden drucksubstanzträger auf ein substrat |
DE102017110040B4 (de) * | 2017-05-10 | 2020-08-27 | LPKF SolarQuipment GmbH | Druckvorrichtung und Druckverfahren zur Übertragung einer Drucksubstanz von einem endlos umlaufenden Drucksubstanzträger auf ein Substrat |
US20230398738A1 (en) * | 2020-12-23 | 2023-12-14 | Cornell University | Controlled molten metal deposition |
US11999107B2 (en) * | 2020-12-23 | 2024-06-04 | Cornell University | Controlled molten metal deposition |
US12151432B2 (en) | 2020-12-23 | 2024-11-26 | Cornell University | Controlled molten metal deposition |
Also Published As
Publication number | Publication date |
---|---|
FR2010382A1 (enrdf_load_stackoverflow) | 1970-02-13 |
DE1929640A1 (de) | 1969-12-11 |
GB1239702A (enrdf_load_stackoverflow) | 1971-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3570380A (en) | Impactless typewriter | |
NL193876C (nl) | Drukinrichting. | |
US4387380A (en) | Printer | |
JPH02231152A (ja) | 画像記録装置 | |
US3573847A (en) | Character recorder | |
US4660053A (en) | Thermal transfer recording apparatus | |
JPS61132366A (ja) | 感熱転写記録方法 | |
US3965476A (en) | Laser printing method and system | |
US4502057A (en) | Method and apparatus for detecting errors in an ink ribbon in a thermal transfer type multicolor printer | |
US3645619A (en) | Document camera system | |
US4123157A (en) | Dry process production and annotation of archival microform records from hard copy | |
US3947661A (en) | Access authenticating system | |
US4647982A (en) | Image display apparatus capable of starting display of a new image in response to designation thereof prior to completion of display of a previously designated image | |
US2421656A (en) | Photographic justifying apparatus | |
US5146241A (en) | Automatic cut-out for auto-focus device | |
US3902802A (en) | Photographic device | |
KR0158516B1 (ko) | 화상의 판독 및 인쇄가 가능한 장치 | |
US3611421A (en) | Recording by varying the location of a magnetic spot | |
US3044068A (en) | Means for and method of recording time markers | |
US3594080A (en) | Method and apparatus for digital color printing | |
US5313248A (en) | Heat protection of photosensitive elements in image formation apparatus | |
JPS60965A (ja) | 画像記録装置 | |
JP2933749B2 (ja) | 熱可逆性記録媒体記録装置およびその記録方法 | |
US4392755A (en) | Magnetic dot matrix printing | |
JPH0245019Y2 (enrdf_load_stackoverflow) |