US3557377A - Device for electro-optically monitoring filiform material - Google Patents
Device for electro-optically monitoring filiform material Download PDFInfo
- Publication number
- US3557377A US3557377A US791738*A US3557377DA US3557377A US 3557377 A US3557377 A US 3557377A US 3557377D A US3557377D A US 3557377DA US 3557377 A US3557377 A US 3557377A
- Authority
- US
- United States
- Prior art keywords
- filiform material
- light
- filiform
- sensitive element
- yarn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H63/00—Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package
- B65H63/06—Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package responsive to presence of irregularities in running material, e.g. for severing the material at irregularities ; Control of the correct working of the yarn cleaner
- B65H63/062—Electronic slub detector
- B65H63/065—Electronic slub detector using photo-electric sensing means, i.e. the defect signal is a variation of light energy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2701/00—Handled material; Storage means
- B65H2701/30—Handled filamentary material
- B65H2701/31—Textiles threads or artificial strands of filaments
Definitions
- Device for electro-optically monitoring filiform material alternately stationary and traveling in the longitudinal direction thereof includes a light-sensitive element disposed back of the filiform material, means located in front of the filiform material for subjecting the filiform material to light beams extending in at least two directions thereto, and means for spacing the filiform material, in the traveling condition thereof, closer to the light-sensitive element than when the filiform material is in stationary condition thereof.
- My invention relates to device for electro-optically monitoring filiform material and more'particularly such devices wherein the material is subjected from at least two directions to light influencing a light-sensitive element.
- Devices of this general type are employed, for example, for ascertaining the presence of abnormalities in the filiform material, such as thick or thin spots therein or for inspecting the regular knotting or tying of two ends of the filiform material.
- These devices are generally associated with a severing device which severs the filiform. material if a dimension thereof, such as the diameter, cross section, volume or the like deviates from a given nominal value.
- the filiform material is a textile yarn, it is known, of course, that it cannot have any exact uniform cross section but rather is subject to certain variations in cross section. A specific valueof these variations is looked upon as being permissible or tolerable.
- the device for monitoring textile yarn is so adjusted that deviations within a predetermined tolerance value do not produce any actuating pulse that would otherwise result insevering the yarn.
- the length of the yarn portion of abnormal dimension such as a thickened portion or the like, is of significance.
- greatly thickened yarn portions that are very short in length may nevertheless be tolerable, whereas slightly thickened yarn portions of relatively great length can have a disturbing effect.
- delay circuits for example have been provided which permit the yarn severing device to be activated only after the predetermined maximum value of a shading for a specific time period is exceeded. Since the speed of the yarn traveling through themonitoring device is known, the tolerable length of a yarn portionof given deviating thickness is ascertained in this manner.
- a trouble-free operating device of this type for the traveling yarn produces fault shadows when the yarn is at rest i.e. is 'not traveling in the longitudinal direction thereof through the monitoring device.
- a movement of the filiform material, such as a yarn, transversely to the longitudinaltravel direction thereof, for example when inserting the filiform material into the monitoring device, does not result in any travel of the filiform material in thelongitudinal direction thereof, and is consequently relegated to the category of the standstill of the filiform material.
- the spacing means defines the spacing of the filiform material from the light-sensitive element so that the light beams coming from different directions and impinging on the filiform material cast orderly shadows thereof on'the light-sensitive element.
- the spacing of the filiform material from the light-sensitive element is increased, however, so that the shadow effects produced on the light-sensitive element by the individual light beams that extend in different directions produce no switching pulse due to their insignificance.
- l provide in accordance with a further feature of my invention a translucent cover for the light-sensitive element which is spaced at given distance therefrom, the filiform material being disposed in abutment with the translucent cover when the filiform material is traveling in its longitudinal direction so as to define thereby the spacing of the filiform material from the light-sensitive element.
- the translucent cover is provided with inclined end faces so that the path of the filiform material at the ends of the cover is angled off, and thus attaining not only a reliable abutment for the filiform material at the translucent cover but also simultaneously assuring that when several filiform materials are being monitored together, they will be disposed parallel to one another in front of the light -scnsitive element and will in this way be uniformly strongly illuminated.
- l in addition to the cover of the light-sensitive element serving as an abutment member for the traveling filiform material, l provide an abutment means for the stationary filiform material which is preferably disposed parallel to the abutment surface of the translucent cover.
- the prism or disc can then serve as the abutment means for the stationary filiform material.
- I also provide, in accordance with my invention, at least one contour member at the translucent cover, against which the traveling filiform material abuts for providing a lateral limit to the motion of the filiform material whereby all or at least the predominant portion of the light beams impinging on the filiform material from different directions have an exciting effect on the light sensitive element.
- FIGS. l and 2 are respective plan and side elevational views of the electro-optical device for monitoring filiform material according to my invention; and I FIG. 3 is an enlarged fragmentary view of FIG. 1.
- FIGS. 1 and 2 there is shown a light bulb I from which light is passed through a lens 2 and a prism 3 to a photoelectric cell 4 protected by a translucent cover 5.
- the filiform material that is being monitored is inserted between the translucent cover 5 and the prism 3.
- the aforementioned components are so assembled that when the filiform material travels in the iongitudinal direction thereof it follows a path corresponding to the dot-dash line E whereas when the filiform material is at rest such as for example after the filiform material has been inserted in the measuring device, the filiform material adopts a course corresponding to the dot-dash line F It can be observed from the enlarged fragmentary view of FIG.
- the path of the yarn corresponding to the dot-dash line F is angled off at the inclined end faces 50 and 5b of the translucent cover 5 so that, for example, when two yarns are inserted, assurance is afforded that both of these yarns will travel parallel to one another over the translucent cover 5 and will therefore have uniform spacing from the photoelectric cell 4.
- Two air nozzles 6 and 7 are also provided as shown in FIG. 2. in the form of suction nozzles which act on the stationary yarn F and assure the abutment of this yarn F against the prism 3.
- two lateral contour members 8 and 9 which extend between the prism 3 and the translucent cover 5 so as to limit the lateral movement of the yarn F to a range within which both shadows F. and F," will safely fall on the photoelectric cell 4.
- the lateral limiting contour member 8 is formed with an insert opening 8a through which the yarn can be inserted in the measuring device.
- the hereindescribed and illustrated device for monitoring the orderly knotting of yarn in an automatic yarn-winding machine operates in the following manner:
- the yarn coming from the take up coil or from the supply coil is inserted through the insert slot 8a into the measuring device by means of a gripper arm simultaneously inserting the yarn into the knotting device, and thereby assumes the position represented by the dot-dash line F in which the shadow image on the photoelement of the cell 4 is at least so small that even upon accidental insertion of a deviating thick portion of the yarn, no activating pulse for the non nonillustrated yarn-severing device will be produced.
- the suction nozzles 6 and 7 thereby hold the yarn tightly against the prism 3, at startup of the winding station of the automatic winding machine, the yarn tension increases so that the yarn, by being drawn taut between the nonillustrated yarn guiding members of the station. adopts the course represented by the dot-dash line F Thus the full shadow formation or shading action upon the photoelement of the cell 4 is immediately attained.
- my invention is not limited to the illustrated and aforedescribed embodiment only.
- the light emanating from the lamp 1 impinges on the filiform material from two directions by means of the prism 3.
- a prism can also be employed which directs light beams from more than two directions onto the yarn.
- my invention is also suited to the use of several light sources for producing the plurality of light beams. It is in fact also possible to employ diffused light which will impinge on the yarn from a virtually infinite number of directions. Also in such a case, it would be found, in accordance with the invention. that the shadow effect of the yarn in the position F is considerably less than in the the position F,, and accordingly no switching or activating pulse is released by the photoelectric cell 4 when the yarn is in the position F I claim:
- Device for electro optically monitoring continuous filiform material alternately stationary and traveling in the longitudinal direction thereof comprising a light-sensitive element disposed back of the continuous filiform material.
- Device comprising a translucent cover for said light-sensitive element spaced a predetermined distance therefrom, the filiform material in said traveling condition thereof being in abutting relation to said translucent cover so as to determine the spacing from said light-sensitive element of the filiform material in said traveling condition thereof.
- Device according to claim 2 including abutment means spaced from said said light-sensitive element and being adopted for engagement in abutting relationship therewith by the filiform material in said stationary condition thereof.
- Device including air nozzle means coordinated with said abutment means for acting on the filiform material in said stationary condition thereof.
- Device including at least one contour member coordinated with said means for spacing from said light-sensitive element the filiform material in the traveling condition thereoffor limiting a lateral movement of the filiform material.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Quality & Reliability (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Filamentary Materials, Packages, And Safety Devices Therefor (AREA)
- Treatment Of Fiber Materials (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19681710131 DE1710131C3 (de) | 1968-01-20 | 1968-01-20 | Vorrichtung zur elektro-optischen überwachung von fadenförmigem Gut |
Publications (1)
Publication Number | Publication Date |
---|---|
US3557377A true US3557377A (en) | 1971-01-19 |
Family
ID=5689207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US791738*A Expired - Lifetime US3557377A (en) | 1968-01-20 | 1969-01-16 | Device for electro-optically monitoring filiform material |
Country Status (6)
Country | Link |
---|---|
US (1) | US3557377A (zh) |
BE (1) | BE727069A (zh) |
CH (1) | CH485586A (zh) |
ES (1) | ES360019A1 (zh) |
FR (1) | FR1600953A (zh) |
GB (1) | GB1241084A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5030841A (en) * | 1987-07-06 | 1991-07-09 | Zellweger Uster Ag | Process and device for measuring the twist of a running, elongate test body |
US5383776A (en) * | 1992-12-31 | 1995-01-24 | Hoechst Celanese Corporation | Apparatus for analyzing polymer defects |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3506489C1 (de) * | 1985-02-23 | 1986-08-28 | Sobrevin Société de brevets industriels-Etablissement, Vaduz | Fadenliefervorrichtung |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2413486A (en) * | 1943-03-31 | 1946-12-31 | American Viscose Corp | Method and apparatus for detecting irregularities of filaments, yarns, and the like |
US2438365A (en) * | 1944-11-17 | 1948-03-23 | Alfred Hofmann & Company | Stop means for textile apparatus and the like |
US3016207A (en) * | 1958-12-15 | 1962-01-09 | Potter Instrument Co Inc | Vacuum loop tape handler |
US3053986A (en) * | 1959-12-31 | 1962-09-11 | Loepfe Erich | Thread cleaner for textile machines |
US3461299A (en) * | 1965-05-25 | 1969-08-12 | Zellweger Uster Ag | Apparatus for photo-electric detection of double threads |
-
1968
- 1968-11-08 ES ES360019A patent/ES360019A1/es not_active Expired
- 1968-12-16 FR FR1600953D patent/FR1600953A/fr not_active Expired
-
1969
- 1969-01-16 US US791738*A patent/US3557377A/en not_active Expired - Lifetime
- 1969-01-16 CH CH57469A patent/CH485586A/de not_active IP Right Cessation
- 1969-01-16 GB GB2569/69A patent/GB1241084A/en not_active Expired
- 1969-01-17 BE BE727069D patent/BE727069A/xx unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2413486A (en) * | 1943-03-31 | 1946-12-31 | American Viscose Corp | Method and apparatus for detecting irregularities of filaments, yarns, and the like |
US2438365A (en) * | 1944-11-17 | 1948-03-23 | Alfred Hofmann & Company | Stop means for textile apparatus and the like |
US3016207A (en) * | 1958-12-15 | 1962-01-09 | Potter Instrument Co Inc | Vacuum loop tape handler |
US3053986A (en) * | 1959-12-31 | 1962-09-11 | Loepfe Erich | Thread cleaner for textile machines |
US3461299A (en) * | 1965-05-25 | 1969-08-12 | Zellweger Uster Ag | Apparatus for photo-electric detection of double threads |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5030841A (en) * | 1987-07-06 | 1991-07-09 | Zellweger Uster Ag | Process and device for measuring the twist of a running, elongate test body |
US5383776A (en) * | 1992-12-31 | 1995-01-24 | Hoechst Celanese Corporation | Apparatus for analyzing polymer defects |
Also Published As
Publication number | Publication date |
---|---|
BE727069A (zh) | 1969-07-01 |
ES360019A1 (es) | 1970-06-16 |
FR1600953A (zh) | 1970-08-03 |
CH485586A (de) | 1970-02-15 |
GB1241084A (en) | 1971-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SU428616A3 (ru) | Способ образования резерва и присучки пряжи при бескольцевом прядении | |
US3557377A (en) | Device for electro-optically monitoring filiform material | |
KR850002294A (ko) | 무저직기에 있어서 위사 결점직입 방지장치 | |
ES8304230A1 (es) | "sistema de control de mudada para una devanadora automatica". | |
US3447213A (en) | Method and apparatus for detecting irregularities in a moving sheet of yarn | |
GB1256619A (zh) | ||
US3929297A (en) | Automatic winding machine having a clamping device | |
US3558026A (en) | Yarn feeder | |
US3677307A (en) | Arrangement provided with a photo-cell and controlling the detecting means and the stop motion in a loom upon breaking of a thread in the warping, weaving and knitting systems | |
US3727393A (en) | Thread breakage detector | |
US4376516A (en) | Spooling machine, method and apparatus to prevent formation of cut remnant thread pieces | |
US2246217A (en) | Knot tying | |
US5237359A (en) | Storage for strip material | |
IT7821371A0 (it) | Procedimento e dispositivo di infilatura automatica di un filo in un organo cursore di una macchina tessile di filatura o di ritorcitura. | |
GB1113031A (en) | Cutting mechanism for automatic winding machines | |
ES457271A1 (es) | Perfeccionamientos introducidos en un aparato automatico para mudar tubos que da servicio a una continua de hilar textil o una maquina similar. | |
US3329359A (en) | Thread guide device | |
GB1078255A (en) | A method of and means for detecting yarn breakage in yarn making and yarn handling machines | |
JPH0138126Y2 (zh) | ||
JPH0610382U (ja) | 糸シート用糸切れ検出器 | |
JPS5716949A (en) | Definite tension sending mechanism for positively sending plural yarns , especially , warp yarn in loom | |
FR2050766A5 (en) | Stop-motion for yarn winding on mechanism | |
JPH0328047Y2 (zh) | ||
JPS58216869A (ja) | ビリ防止装置を有する自動ワインダ− | |
FR2066400A5 (en) | Shuttle-less loom |