US3556409A - Fluid control device - Google Patents
Fluid control device Download PDFInfo
- Publication number
- US3556409A US3556409A US769645A US3556409DA US3556409A US 3556409 A US3556409 A US 3556409A US 769645 A US769645 A US 769645A US 3556409D A US3556409D A US 3556409DA US 3556409 A US3556409 A US 3556409A
- Authority
- US
- United States
- Prior art keywords
- channels
- channel
- inlet
- fluid
- control device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15C—FLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
- F15C1/00—Circuit elements having no moving parts
- F15C1/08—Boundary-layer devices, e.g. wall-attachment amplifiers coanda effect
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/206—Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
- Y10T137/218—Means to regulate or vary operation of device
- Y10T137/2202—By movable element
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/206—Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
- Y10T137/2273—Device including linearly-aligned power stream emitter and power stream collector
Definitions
- a fluidistor fluid control device comprising a plurality of channels such as Laval nozzles, each channel extending from a control jet inlet to an outlet, such that the direction of flow of fluid through the channel is dependent on the relative flow characteristics of the channels. These flow characteristics can be varied by varying the shape or size of the channels, or by applying a separate control fluid to the interior of one or more of the channels.
- FIG! F/aa INVENTOR DAG O A. JOHANNISSON ATTORNEYS PATENTEU mu 9l97
- a known type of walllocking fluidistor is formed as a Laval nozzle according to the French patent specification l,2l0,899. Inside the Laval nozzle there is an inlet formed as a slot for the control jet.
- control jet follows the inside wall of the nozzle towards the outlet.
- the control jet causes suction in the inlet of the Laval nozzle and a power stream is thus created.
- a disadvantage of the known type of wall locking fluidistor is that the direction of the power stream cannot be reversed.
- a housing having at least one inlet for the control jet input and at least two outlet channels, the walls of the channels being ar ranged such that the fluid selects one or the other of the outlet channels.
- the device further includes control means located either inside or outside of the housing for determining the direction of flow of the power stream.
- the control jet generates, by the ejector effect, a suction in the channel or channels that are not operating as outlet channels. The suction causes a power stream in the channel or channels, which power stream leaves the fluidistor, together with the control jet, through the outlet channel as a mixed fluid.
- two Laval nozzles are arranged opposite each other with the control jet input inlet located between them.
- the control jet inlet may be in the form of an annular slot or in the form of a plurality of a annularly arranged passages.
- Various means may be provided for changing the fluid characteristics of the individual channels.
- the channels can be replaced by other channels of varying sizes and shapes.
- fluid flow passages may be provided for introducing additional control fluid into the interior of one or more of the channels to affect the fluid flow characteristics of the channel.
- FIG. 1 is cross-sectional view showing a fluid control device constructed in accordance with the present invention.
- FIG. 2 is a cross-sectional view showing another embodiment of the invention.
- FIG. 3 is a sectional view taken along line 3-3 of FIG. 2.
- FIG. 4 illustrates, in cross section. a modified construction of the control channel, and is taken along line 4-4 of FIG. 5.
- FIG. 5 is a cross-sectional view taken along line 5-5 of FIG. 4.
- FIG. 6 is a cross-sectional view illustrating still another embodiment of the invention, and is taken along line 6-6 of FIG. 7.
- FIG. 7 is a cross-sectional view taken along line 7-7 of FIG. 6.
- FIG. 1 illustrates a first embodiment of the invention.
- a fluid control device 1 comprising a pair of channels 2 and 3 which are suitably formed as 2 Laval nozzles in alignment with each other and directed away from each other.
- An inlet 4 is formed as an annular slot between the channels 2 and 3.
- the control jet enters the central housing section 11 and enters the inlet 4.
- the direction of further travel of the control jet is determined by the fluid characteristics of the nozzles 2 and 3.
- the nozzles can have inlets of different shapes or different areas, whereby the nozzle having the smaller area has a larger flow resistance.
- the direction of flow may also be controlled by shutting off one of the nozzles 2 or 3 thereby forcing the fluid flow through the other nozzle; and this flow continues even after the first nozzle has been uncovered (assuming that the areas of the nozzles are otherwise such as to provide equal flow resistance).
- a collapsible resilient bag (now shown) can be connected to one of the channels. Assuming that the fluid flows to this channel, the bag will then become filled with fluid. At a certain pressure in the bag, the fluid will change its direction and flow out through the other channel. The pressure at which this occurs depends on the dimensions of the channels. The ejector effect causes the bag to be emptied and a subatmospheric pressure appears again in the channel connected to the bags. The fluid is then again caused to change its direction and the bag is refilled.
- the fluid control device can be provided with various control means for controlling the direction of flow through the channels.
- the channels may be constructed of different sizes and shapes.
- the housing can be constructed in three sections, a central section 11 and two lateral sections containing the channels 2 and 3.
- the channel members can be threadedly engaged in the central section 11 whereby the spacing between the channel and the inlet are individually adjustable, and whereby channels of various sizes may be screwed into place on either side of the central section I 1.
- FIGS. 2 and 3 illustrate another embodiment of the invention 1a having channels 2a and 3a joined together at a central section 1111 and having formed therebetween an annular inlet slot 4a.
- the control means comprises control passages 5 and 6, located in the channel members 2a and
- FIGS. 4 and 5 illustrate another embodiment of the invention, 1b, wherein the passageways 5 and I3 and the annular slot '7 in the member 2a are replaced by a plurality of annulariy arranged openings 14.
- the same modification couid concurrently be made in the other channel member 3a.
- the fluid control device is constructed as one eiongated member wherein the central section 11 is eliminated and the control jet enters the device through a plurality of annularly arranged openings 15.
- the channels 2c or 30 could also be provided with the. type of control means as illustrated in H05. 2 through 5.
- the illustrated embodiments of the invention show two channels aligned with each other, However, it is clearly within the context of the present invention to provide any number of outlet channels.
- the plurality of outlet channels need only extend outwardly from a common control jet inlet point.
- a plurality of channels may be arranged like spokes about a central control jet inlet opening, whereby the relative flow characteristics of the various channels would determine to which channel the control jet flowed.
- a fluid control device comprising a housing having at least one inlet for a fluid control jet input, at least two channels each being a Laval nozzle, the two Laval nozzles arranged opposite each other on opposite sides of the said inlet, each channel in fluid communication" with the said inlet at one end, the other end of each channel being an outlet end, such that the channel into which the control jet flows from the inlet is dependent upon the relative flow characteristics of the channels.
- a fluid control device according to claim 1 wherein the inlet is formed as a plurality of openings arranged annularly between the channels.
- a fluid control device according to claim 1 wherein the inlet is formed as an annular slot between the channels.
- a fluid control device according to claim 1 wherein at least one of said channels includes a control passage arranged to direct fluid directly into its respective channel for affecting the flow characteristics of that channel.
- control passage terminates in an annular passage in its respective channel.
- control passage comprises a plurality of separate passages extending through the housing and terminating in its respective channel.
- a fluid control device including means for mounting the channels such that the distance between them can be varied.
- a fluid control device according to claim 7 wherein said means for mounting further permits at least one of said channels to be removed and replaced by another channel of a different size, whereby the relative areas of the channels can be varied.
- a fluid control device comprising a housing having at least one inlet for a fluid control jet input, a plurality of channels, each channel in fluid communication with the said inlet at one end, the other end of each channel being an outlet end, each of said channels being Laval nozzles such that the channel into which the control jet flows from the inlet is dependent upon the relative flow characteristics of the channels, the inlet being formed as a plurality of openings arranged annularly between the channels.
- a fluid control device comprising a housing having at least one inlet for a fluid control jet input, a plurality of channels, each channel in fluid communication with the said inlet at one end, the other end of each channel being an outlet end,
- each of said channels being Laval nozzles such that the channel into which the control et flows from the inlet is dependent upon the relative flow characteristics of the channels, the inlet being formed as an annular slot between the channels.
- a fluid control device comprising a housing having at least one inlet for a fluid control jet input, a plurality of channels, each channel in fluid communication with the said inlet at one end, the other end of each channel being an outlet end, each of said channels being Laval nozzles such that the channel into which the control jet flows from the inlet is dependent upon the relative flow characteristics of the channels, at least one of said channels including a control passage arranged to direct fluid directly into its respective channel for effecting the flow characteristics of that channel, said control passage terminating in an annular passage in its respective channel.
- a fluid control device comprising a housing having at least one inlet for a fluid control jet input, a plurality of channels, each channel in fluid communication with the said inlet at one end, the other end of each channel being an outlet end, each of said channels being Laval nozzles such that the channel into which the control jet flows from the inlet is dependent upon the relative flow characteristics of the channels, and in-
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- Devices For Medical Bathing And Washing (AREA)
- Nozzles (AREA)
- Jet Pumps And Other Pumps (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE16492/67A SE311449B (da) | 1967-11-30 | 1967-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3556409A true US3556409A (en) | 1971-01-19 |
Family
ID=20302327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US769645A Expired - Lifetime US3556409A (en) | 1967-11-30 | 1968-10-22 | Fluid control device |
Country Status (6)
Country | Link |
---|---|
US (1) | US3556409A (da) |
DE (1) | DE1802978A1 (da) |
FR (1) | FR1586733A (da) |
GB (1) | GB1243016A (da) |
NL (1) | NL6816296A (da) |
SE (1) | SE311449B (da) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3802283A (en) * | 1970-12-22 | 1974-04-09 | P Bahrton | Device for measuring the velocity of a flowing or streaming media |
US3912470A (en) * | 1973-06-27 | 1975-10-14 | Balzers Patent Beteilig Ag | Separator for separating gases of different molecular weight and chromatography arrangement |
WO1985000187A1 (en) * | 1983-06-27 | 1985-01-17 | Gaston County Dyeing Machine Company | Apparatus for wet treatment of cloth in endless rope form |
FR2579487A1 (fr) * | 1985-03-26 | 1986-10-03 | Canon Kk | Appareil pour reguler l'ecoulement de particules fines |
GB2174509A (en) * | 1985-03-26 | 1986-11-05 | Canon Kk | Controlling velocity of particles |
GB2175413A (en) * | 1985-03-26 | 1986-11-26 | Canon Kk | Controlling flow |
GB2175708A (en) * | 1985-05-11 | 1986-12-03 | Canon Kk | Reaction apparatus |
US5979444A (en) * | 1997-06-17 | 1999-11-09 | Sherrod; James B. | Portable CPR breathing apparatus |
US6701960B1 (en) * | 1999-08-31 | 2004-03-09 | Dct Double-Cone Technology Ag | Double cone for generation of a pressure difference |
US20040159357A1 (en) * | 1999-08-31 | 2004-08-19 | Dct Double-Cone Technology Ag | Separating arrangement for treatment of fluids |
US20070257136A1 (en) * | 2003-12-02 | 2007-11-08 | Siegfried Kogelbauer | Through-Flow Volume Limiters |
US20110084000A1 (en) * | 2009-10-14 | 2011-04-14 | Marathon Oil Canada Corporation | Systems and methods for processing nozzle reactor pitch |
US20110180454A1 (en) * | 2010-01-28 | 2011-07-28 | Marathon Oil Canada Corporation | Methods for preparing solid hydrocarbons for cracking |
US8636958B2 (en) * | 2011-09-07 | 2014-01-28 | Marathon Oil Canada Corporation | Nozzle reactor and method of use |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3285262A (en) * | 1962-08-07 | 1966-11-15 | Snecma | Aerodynamic or hydrodynamic servovalve, especially for use for the guidance and stabilisation of rockets |
-
1967
- 1967-11-30 SE SE16492/67A patent/SE311449B/xx unknown
-
1968
- 1968-09-24 GB GB45289/68A patent/GB1243016A/en not_active Expired
- 1968-10-07 FR FR1586733D patent/FR1586733A/fr not_active Expired
- 1968-10-14 DE DE19681802978 patent/DE1802978A1/de active Pending
- 1968-10-22 US US769645A patent/US3556409A/en not_active Expired - Lifetime
- 1968-11-15 NL NL6816296A patent/NL6816296A/xx unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3285262A (en) * | 1962-08-07 | 1966-11-15 | Snecma | Aerodynamic or hydrodynamic servovalve, especially for use for the guidance and stabilisation of rockets |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3802283A (en) * | 1970-12-22 | 1974-04-09 | P Bahrton | Device for measuring the velocity of a flowing or streaming media |
US3912470A (en) * | 1973-06-27 | 1975-10-14 | Balzers Patent Beteilig Ag | Separator for separating gases of different molecular weight and chromatography arrangement |
WO1985000187A1 (en) * | 1983-06-27 | 1985-01-17 | Gaston County Dyeing Machine Company | Apparatus for wet treatment of cloth in endless rope form |
US4716744A (en) * | 1983-06-27 | 1988-01-05 | Gaston County Dyeing Machine Company | Apparatus for wet treatment of cloth in endless rope form |
FR2579487A1 (fr) * | 1985-03-26 | 1986-10-03 | Canon Kk | Appareil pour reguler l'ecoulement de particules fines |
GB2174509A (en) * | 1985-03-26 | 1986-11-05 | Canon Kk | Controlling velocity of particles |
GB2175413A (en) * | 1985-03-26 | 1986-11-26 | Canon Kk | Controlling flow |
US4911805A (en) * | 1985-03-26 | 1990-03-27 | Canon Kabushiki Kaisha | Apparatus and process for producing a stable beam of fine particles |
GB2175413B (en) * | 1985-03-26 | 1989-06-28 | Canon Kk | Apparatus and process for controlling flow of fine particles |
US4909914A (en) * | 1985-05-11 | 1990-03-20 | Canon Kabushiki Kaisha | Reaction apparatus which introduces one reacting substance within a convergent-divergent nozzle |
GB2175708B (en) * | 1985-05-11 | 1989-07-05 | Canon Kk | Reaction apparatus |
GB2175708A (en) * | 1985-05-11 | 1986-12-03 | Canon Kk | Reaction apparatus |
US5979444A (en) * | 1997-06-17 | 1999-11-09 | Sherrod; James B. | Portable CPR breathing apparatus |
US6701960B1 (en) * | 1999-08-31 | 2004-03-09 | Dct Double-Cone Technology Ag | Double cone for generation of a pressure difference |
US20040159357A1 (en) * | 1999-08-31 | 2004-08-19 | Dct Double-Cone Technology Ag | Separating arrangement for treatment of fluids |
US7128092B2 (en) | 1999-08-31 | 2006-10-31 | Dct Double-Cone Technology Ag | Separating arrangement for treatment of fluids |
US20070257136A1 (en) * | 2003-12-02 | 2007-11-08 | Siegfried Kogelbauer | Through-Flow Volume Limiters |
US20110084000A1 (en) * | 2009-10-14 | 2011-04-14 | Marathon Oil Canada Corporation | Systems and methods for processing nozzle reactor pitch |
US20110180454A1 (en) * | 2010-01-28 | 2011-07-28 | Marathon Oil Canada Corporation | Methods for preparing solid hydrocarbons for cracking |
US8636958B2 (en) * | 2011-09-07 | 2014-01-28 | Marathon Oil Canada Corporation | Nozzle reactor and method of use |
Also Published As
Publication number | Publication date |
---|---|
DE1802978A1 (de) | 1970-03-12 |
NL6816296A (da) | 1969-06-03 |
GB1243016A (en) | 1971-08-18 |
FR1586733A (da) | 1970-02-27 |
SE311449B (da) | 1969-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3556409A (en) | Fluid control device | |
US3267946A (en) | Flow control apparatus | |
US3148691A (en) | Fluid controlled device | |
US5931643A (en) | Fluid jet ejector with primary fluid recirculation means | |
US3563462A (en) | Oscillator and shower head for use therewith | |
US3124999A (en) | Fluid oscillator | |
US3209774A (en) | Differential fluid amplifier | |
US3216439A (en) | External vortex transformer | |
US3741481A (en) | Shower spray | |
EP0319594A1 (en) | Fluidic oscillator with resonant inertance and dynamic compliance circuit | |
US3204652A (en) | Fluid signal generator | |
US3122062A (en) | Arc discharge controlled fluid amplifier | |
US3468326A (en) | Triggerable flip-flop fluid device | |
US3002658A (en) | Nozzle for applying colors | |
US3386366A (en) | Air mixing device | |
USRE27938E (en) | Oscillator and shower head for use therewith | |
US3425431A (en) | Control apparatus and methods | |
US3461898A (en) | Fluid pulse device | |
US3411520A (en) | Maximum pressure selector | |
US3580265A (en) | Bistable fluidic amplifier | |
US3662772A (en) | Laminar fluidic devices | |
US3468327A (en) | Core bleed for vortex readout device | |
US3958602A (en) | Flueric laminar digital amplifier | |
US3442279A (en) | Self-biased pure fluid amplifier | |
US3492920A (en) | Vacuum operated fluid device |