US3524286A - Resin bonded abrasive wheels containing fibrous and non-fibrous fillers - Google Patents
Resin bonded abrasive wheels containing fibrous and non-fibrous fillers Download PDFInfo
- Publication number
- US3524286A US3524286A US630333A US3524286DA US3524286A US 3524286 A US3524286 A US 3524286A US 630333 A US630333 A US 630333A US 3524286D A US3524286D A US 3524286DA US 3524286 A US3524286 A US 3524286A
- Authority
- US
- United States
- Prior art keywords
- fibers
- abrasive
- filler
- resin
- bond
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D3/00—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
- B24D3/34—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties
- B24D3/342—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties incorporated in the bonding agent
- B24D3/344—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties incorporated in the bonding agent the bonding agent being organic
Definitions
- FIG. 3 BY LUIS C. WOHRER L. c. WOHR-ER RESIN BONDED ABRASIVE WHEELS CONTAINING Aug. 18, 1970 2 Sheets-Sheet 2 FIBROUS AND NON-FIBROUS FILLERS Filed April 12, 1967 l 50% PERCENT OF FILLER REPLACED BY FIBER FIG. 3
- a bonded abrasive article incorporating in the bond a filler material, at least volume percent of said filler consisting of ceramic fibers having a length to diameter ratio of between 3:1 and 500:1 and an average length of 5 mm. or less.
- the fibers may be distributed uniformly throughout the bonded abrasive article or may be distributed only in areas of high stress, such as about the arbor of a bonded abrasive wheel.
- This invention relates to bonded abrasive articles and more particularly to bonded abrasive articles wherein the bond contains a filler, at least a portion of which filler consists of fibers of controlled length to diameter ratio.
- Abrasive articles and more particularly bonded abrasive grinding wheels are often provided with a reinforcing member or reinforcing material in order to improve the strength and increase the bursting speed of the article.
- a reinforcing member or reinforcing material in order to improve the strength and increase the bursting speed of the article.
- Such is often the case for heavy-duty grinding wheels which incorporate coarse abrasive grit, 624' grit, since wheels having coarse abrasive grit generally have lower strengths and lower bursting speeds than wheels using the same bonding material but having fine grit abrasive. Wheels containing still coarser grit could probably be reinforced more efficiently with short glass fibers because of reduced processing problems. Reinforcing materials are also used in Wheels designed for high speed grinding operations since such Wheels must have high strength to withstand the high speeds at which they are operated.
- Another object of this invention is to provide improved resin bonded abrasive articles having higher strength and improved bursting speeds as well as improved grinding efficiencies.
- FIG. 1 is a side view of an abrasive article made according to this invention showing fibers uniformly distributed throughout the article.
- FIG. 2 is a side view of an embodiment of this invention showing fibers distributed in an area of high stress.
- FIG. 3 shows the improvement in tensile strength with increased amount of fiber in the bond.
- FIG. 4 shows improved grinding efficiency of an abrasive article containing fibers according to this invention compared to an abrasive article similar in all respects except the bond contain no fiber.
- novel bonded abrasive articles of this invention comprise abrasive grains united by a resin bond wherein said bond includes fibers having a length to diameter ratio of between 3 :1 and about 500:1.
- Abrasive articles made according to this invention comprise abrasive grain united by a resin bond into an integral body.
- the abrasive grain may be any abrasive material, for example, silicon carbide, alumina, glass, garnet, quartz, diamond or mixtures thereof.
- the grit size may be varied in accordance with the usual practice in order to achieve specific types of abrasive articles.
- resins are used as the bond to unite the abrasive grains and the selection of a particular resin depends, among other things, on the nature of the material to be ground, wheel speed, type of grinding machine, and other factors well-known to one skilled in the art.
- resins used are natural and synthetic rubber, shellac, phenolic resins, epoxy resins, and others wellknown in the industry as a suitable bond for abrasive articles.
- the bond is improved by the addition of fibers having a length to diameter ratio of between 3:1 and 500:1 to the resin. It is preferred that the fibers range in length from between about microns to about 1 mm. although fibers that range in length from 30 microns up to about 5 mm. have been used.
- the fibers which either occur naturally or are produced by well-known methods such as spinning or drawing, are produced from materials which form relatively high strength fibers able to withstand the temperature encountered during production of the abrasive article and the temperatures and conditions encountered during use of the article.
- materials silica, glass, mineral wool, quartz, silicates such as aluminum silicate, asbestos and mixtures thereof.
- Fibers used in this invention normally range from about 8 to about 40 microns in diameter. They may be formed from staple fibers, i.e. fibers having a length to diameter ratio greater than 500:1, by such means as ball milling to reduce the length to diameter ratio of the fibers to the desired range of between 3:1 to 500:1.
- the fibers in the bond are considered as a filler material and, as is well-known in the abrasive field, proportions of filler may vary widely depending on application and the bonding used in forming the abrasive article.
- the fibers may be used in conjunction with nonfibrous filler materials such as pyrites, cryolite, common salt, calcium oxide and the like.
- the fibers may be uniformly distributed throughout the abrasive article a is shown in FIG. 1 wherein a bonded abrasive grinding wheel 10 is shown having fibers 11 of a length to diameter ratio of between 3:1 and 500:1, said fibers being uniformly distributed throughout said wheel, in the bond thereof.
- the presence of fibers in the Working area of the abrasive article may be undesirable while fiber reinforcement around areas of high stress is desired.
- reinforcement of the article at high stress areas is accomplished by modifying the bond around such high stress area with fibers in accordance with this invention while the bond of the remaining portion of the article contains no filler or only a nonfibrous filler.
- FIG. 2 Such an embodiment of this invention is shown in FIG. 2.
- An abrasive wheel 20 is shown wherein the fibers 21 are distributed in the bond around arbor hole 22.
- the outer portion 23 of the wheel contains no fiber.
- Abrasive articles may be made according to this invention by commonly known methods of manufacture such as cold pressing or hot pressing.
- One such method of producing abrasive articles according to this invention comprises the steps of distributing the fiber in a resin, forming a mixture of said fiber-including resin and abrasive grain and molding said mixture under compression and at a sufiicient temperature to cure the resin and unite the abrasive grain. It is important to obtain an even distribution of the fiber in resin and it has been found that for best results the fiber should be mixed with the resin while the latter is maintained slightly above its melting point. Adequate mixing of fiber and resin, however, is also achieved by mixing the fibers and resin in a mill, such as a hammer mill.
- the average length of the fibers be mm. or less.
- Example 1 A standard abrasive wheel, 12 inches in diameter, 1 inch thick and having an arbor hole 2 inches in diameter (12" x 1" x 2 /2") was made from the following raw batch.
- test wheel was made in the same manner and using the same materials and proportions as is the standard wheel except that about 50 volume percent of the nonfibrous filler was replaced by glass fibers having a length to diameter ratio of between 3:1 and 500:1. The average length of the fibers was 0.793 mm.
- the resin and fibers were first mixed while the resin was in a melted condition. This was accomplished by mixing the resin and fibers on heated rolls of a two roll mill. The resin temperature was maintained at about C. which is slightly above the resin melting temperature of 98 C.-104 C. After mixing, the resin-fiber mix was allowed to cool and then crushed. The crushed resin-fiber mix was combined with the filler and abrasive grain to form a raw batch which was then compression molded in the same manner as for the standard abrasive wheel.
- the bursting speeds of the standard abrasive wheel and the test abrasive wheel containing fiber made according to the above procedure were determined.
- the standard wheel had a bursting speed of 21,600 r.p.m. while the test wheel containing fibers had a bursting speed of 25,700 r.p.m., which represented a l7 percent improvement in bursting strength over the standard wheel which contained no fibers.
- Example 2 Two standard 12" x 1" x 2 /2" abrasive wheels and two test wheels of the same dimensions as the standard wheels were produced as in Example 1.
- the filler of the test wheels including about 50 volume percent of glass fibers.
- the wheels were tested for grinding eificiency on a rotary tester using type 304 stainless steel billets as the material to be ground. The wheels were run at 9500 s.f.p.m. The wheels were tested at grinding pressures of 450 lbs., 550 lbs., 650 lbs. and 750 lbs. The results of the grinding tests are shown in Table A.
- FIG. 4 is a plot of grinding efliciency M/ W vs. metal removal rate kg./ 5 min. as taken from Table A.
- the test wheel results are plotted as crosses while the standard wheel results are plotted as circles.
- Line A is a straight line fit to the plot of the test wheel results;
- line B represents a straight line fit to the standard wheel test results.
- Example 3 To determine the effect of increasing percentages of fiber on bond strength a series of 8" x 1 x 1" bars consisting of 52 volume percent 8 grit sintered bauxite abrasive and 48 volume percent bond were made. Control bars were produced having the following two bond formulas:
- 1 M is kg./ min. of stainless steel removed by abrasive wheel.
- the bars were compression molded at 171 C. at a pressure of 2700 psi.
- Test bars having 25 volume percent, 50 volume percent, 75 volume percent and 100 volume percent of the nonfibrous filler replaced by glass fibers of the type used in Example 1 were made in the same manner as the control bars from each of Formulae 1 and 2.
- the control and test bars were tested for tensile strength by the internal split method.
- This method comprises supporting the bar to be tested by appropriate means between opposed knife-edge jaws running across the width of the bar. The jaws are urged together with increasing force thereby setting up internal tensile stress in the bar. Force on the jaws is increased until the bar fails. The results are reported as tensile strength in pounds per square inch.
- FIG. 3 is a plot of tensile strength vs. volume percent fiber present in the filler.
- the solid line represents Formula 1 bond composition while Formula 2 bond compositions are represented by the dashed line.
- the fibers may constitute the entire filler of the bond or may be used in conjunction with nonfibrous fillers.
- nonfibrous fillers it has been found that best results are achieved when at least 10 Volume percent of the filler consists of fibers.
- a bonded abrasive grinding wheel consisting of abrasive grains united into an integral body, at least a part of the grinding wheel being united by a bond comprising a resin selected from the group consisting of natural and synthetic rubber, shellac, phenol aldehyde resins and epoxy resins and a filler consisting essentially of from 0% to about 90% by volume of the total amount of filler of nonfibrous filler selected from the group consisting of pyrites, cryolite, sodium chloride, calcium oxide, potassium sulfate and mixtures thereof, and from 100% to about 10% by volume of the total amount of filler of fibrous filler consisting of fibers selected from the group consisting of silica, glass, mineral wool, quartz, aluminum silicate, asbestos and mixtures thereof, having a length to diameter ratio of between about 3:1 and 500:1 and an 1 W is kg./5 min. of wheel loss.
- average length of between about 100 microns and about 1 millimeter.
- the bonded abrasive grinding wheel of claim 1 wherein the fibrous filler comprises from about 30 to about 60 volume percent of the total amount of filler.
- a raw batch suitable for producing a bonded abrasive grinding wheel comprising a resin selected from the group'consisting of natural and synthetic rubber, shellac, phenol aldehyde resins and epoxy resins, abrasive grain and a filler consisting essentially of from 0% to about by volume of the total amount of filler of nonfibrous filler selected from the group consisting of pyrites, cryolite, sodium chloride, calcium oxide, potassium sulfate and mixtures thereof, and from to about 10% by volume of the total amount of filler of fibrous filler comprising fibers selected from the group consisting of silica, glass, mineral wool, quartz, aluminum silicate, asbestos and mixtures thereof, having a length to diameter ratio of between about 3:1 and about 500:1, the fibers ranging in length from about 100 microns to about 1 millimeter.
- a process for producing the bonded abrasive grinding wheel of claim 1 comprising the steps of forming a raw batch consisting essentially of a resin selected from the group consisting of natural and synthetic rubber, shellac, phenol aldehyde resins and epoxy resins, abrasive grains, and a filler consisting essentially of from 0% to about 90% by volume of the total amount of filler ofnonfibrous filler selected from the group consisting of pyrites, cryolite, sodium chloride, calcium oxide, potassium sulfate and mixtures thereof, and from 100% to about 10% by volume of the total amount of filler of fibrous filler consisting of fibers selected from the group consisting of silica, glass, mineral wool, quartz, aluminum silicate, asbestos and mixtures thereof, having a length of between about 100 microns and about 1 millimeter and a length to diameter ratio of between 3:1 and 500:1, and forming the bonded abrasive grinding wheel from the raw batch by the application of pressure and heat.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Polishing Bodies And Polishing Tools (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US63033367A | 1967-04-12 | 1967-04-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3524286A true US3524286A (en) | 1970-08-18 |
Family
ID=24526755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US630333A Expired - Lifetime US3524286A (en) | 1967-04-12 | 1967-04-12 | Resin bonded abrasive wheels containing fibrous and non-fibrous fillers |
Country Status (6)
Country | Link |
---|---|
US (1) | US3524286A (enrdf_load_stackoverflow) |
JP (1) | JPS5410751B1 (enrdf_load_stackoverflow) |
DE (1) | DE1752171A1 (enrdf_load_stackoverflow) |
ES (1) | ES352624A1 (enrdf_load_stackoverflow) |
FR (1) | FR1563341A (enrdf_load_stackoverflow) |
GB (1) | GB1225175A (enrdf_load_stackoverflow) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3615304A (en) * | 1970-05-25 | 1971-10-26 | Red Hill Grinding Wheel Corp | Method of manufacturing a fibrous reinforced grinding wheel |
US3876579A (en) * | 1972-03-27 | 1975-04-08 | Rexnord Inc | Composition to be applied to a surface to increase its wear resistance |
US3916583A (en) * | 1971-12-02 | 1975-11-04 | Norton Co | Cut-off wheels of fused alumina-zirconia alloy abrasive grains |
US3925034A (en) * | 1973-05-14 | 1975-12-09 | Res Abrasive Products Inc | Resin bonded grinding wheel containing gas-filled thermoplastic resin beads and method of making it |
US4018944A (en) * | 1973-11-12 | 1977-04-19 | Rexnord Inc. | Method of applying a wearing surface |
US4128972A (en) * | 1975-04-14 | 1978-12-12 | The Osborn Manufacturing Corporation | Flexible polishing wheel and method for producing same |
US4259089A (en) * | 1978-08-10 | 1981-03-31 | Tyrolit Schleifmittelwerke Swarovski K.G. | Grinding wheel containing grain-coated reinforcement fibers and method of making it |
USRE30691E (en) * | 1972-03-27 | 1981-07-28 | Method of applying a wearing surface | |
US4475926A (en) * | 1982-02-25 | 1984-10-09 | Norton Company | Active filler for grinding wheels |
US4594106A (en) * | 1983-02-22 | 1986-06-10 | Tateho Kagaku Kogyo Kabushiki Kaisha | Spraying materials containing ceramic needle fiber and composite materials spray-coated with such spraying materials |
US4762533A (en) * | 1981-07-21 | 1988-08-09 | Daichiku Co., Ltd. | Flat type resinoid grinding wheel |
GB2205840B (en) * | 1987-06-02 | 1991-04-03 | Ecc Int Ltd | Wear resistant material |
US5224970A (en) * | 1989-03-01 | 1993-07-06 | Sumitomo Chemical Co., Ltd. | Abrasive material |
US20080072500A1 (en) * | 2006-09-15 | 2008-03-27 | Klett Michael W | Microfiber reinforcement for abrasive tools |
US20100162632A1 (en) * | 2008-12-30 | 2010-07-01 | Saint-Gobain Abrasives Inc. | Bonded abrasive tool and method of forming |
US20120100784A1 (en) * | 2006-09-15 | 2012-04-26 | Saint-Gobain Abrasifs | Microfiber Reinforcement for Abrasive Tools |
CN102653078A (zh) * | 2012-05-16 | 2012-09-05 | 常州市洪福砂轮有限公司 | 含硫酸渣的磨钢轨树脂砂轮 |
US20140073230A1 (en) * | 2012-08-28 | 2014-03-13 | Kelley McNeal | Large Diameter Cutting Tool |
EP2623264A3 (de) * | 2012-02-06 | 2017-08-23 | Egon Evertz K.G. (GmbH & CO) | Schleifscheibe, insbesondere zum Längs- oder Querschleifen |
CN108453911A (zh) * | 2017-02-17 | 2018-08-28 | 株式会社迪思科 | 电铸切削刀具和切削装置 |
US10815329B2 (en) | 2016-07-08 | 2020-10-27 | The University Of Massachusetts | Plasticized thermoset resin, and associated cured resin, method of curing, and article comprising cured resin |
US10913844B2 (en) | 2016-07-08 | 2021-02-09 | The University Of Massachusetts | Plasticized thermoset resin, and associated cured resin, method of curing, and article comprising cured resin |
CN114808514A (zh) * | 2021-01-29 | 2022-07-29 | 晋中宏辰机械有限公司 | 一种非金属磨盘磨浆的磨浆工艺 |
US11458594B2 (en) | 2015-12-21 | 2022-10-04 | Tokyo Seimitsu Co., Ltd. | Method for manufacturing cutting blade, and cutting blade |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4233203A (en) | 1977-12-22 | 1980-11-11 | Hooker Chemicals & Plastics Corp. | Moldable thermosetting phenol-aldehyde resin compositions and process for making the compositions |
DE3404871A1 (de) * | 1983-02-14 | 1984-08-23 | Rands, Mary, Los Angeles, Calif. | Schleif-, hon- oder abreibkoerper |
US4609381A (en) * | 1984-12-13 | 1986-09-02 | Norton Company | Grinding aid |
US4657563A (en) * | 1985-10-31 | 1987-04-14 | Norton Company | Resin bonded grinding wheels with fillers |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2862806A (en) * | 1955-05-02 | 1958-12-02 | Minnesota Mining & Mfg | Molded rotative abrasive articles and method of making |
US2873181A (en) * | 1954-09-01 | 1959-02-10 | Carborundum Co | Coated abrasive article and method of making |
US2913858A (en) * | 1957-09-04 | 1959-11-24 | Nat Broach & Mach | Gear honing tool |
US2943926A (en) * | 1958-07-18 | 1960-07-05 | Cincinnati Milling Machine Co | Abrasive wheel composition |
US2972527A (en) * | 1959-03-03 | 1961-02-21 | Chemical Res Corp | Abrasive products and method of making |
US3102011A (en) * | 1959-12-21 | 1963-08-27 | Conversion Chem Corp | Tumbling chips |
US3387980A (en) * | 1965-04-07 | 1968-06-11 | Raybestos Manhattan Inc | Heat resistant inorganic bodies |
-
1967
- 1967-04-12 US US630333A patent/US3524286A/en not_active Expired - Lifetime
-
1968
- 1968-04-10 GB GB1225175D patent/GB1225175A/en not_active Expired
- 1968-04-10 ES ES352624A patent/ES352624A1/es not_active Expired
- 1968-04-11 FR FR1563341D patent/FR1563341A/fr not_active Expired
- 1968-04-12 JP JP2431768A patent/JPS5410751B1/ja active Pending
- 1968-04-13 DE DE19681752171 patent/DE1752171A1/de active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2873181A (en) * | 1954-09-01 | 1959-02-10 | Carborundum Co | Coated abrasive article and method of making |
US2862806A (en) * | 1955-05-02 | 1958-12-02 | Minnesota Mining & Mfg | Molded rotative abrasive articles and method of making |
US2913858A (en) * | 1957-09-04 | 1959-11-24 | Nat Broach & Mach | Gear honing tool |
US2943926A (en) * | 1958-07-18 | 1960-07-05 | Cincinnati Milling Machine Co | Abrasive wheel composition |
US2972527A (en) * | 1959-03-03 | 1961-02-21 | Chemical Res Corp | Abrasive products and method of making |
US3102011A (en) * | 1959-12-21 | 1963-08-27 | Conversion Chem Corp | Tumbling chips |
US3387980A (en) * | 1965-04-07 | 1968-06-11 | Raybestos Manhattan Inc | Heat resistant inorganic bodies |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3615304A (en) * | 1970-05-25 | 1971-10-26 | Red Hill Grinding Wheel Corp | Method of manufacturing a fibrous reinforced grinding wheel |
US3916583A (en) * | 1971-12-02 | 1975-11-04 | Norton Co | Cut-off wheels of fused alumina-zirconia alloy abrasive grains |
US3876579A (en) * | 1972-03-27 | 1975-04-08 | Rexnord Inc | Composition to be applied to a surface to increase its wear resistance |
USRE30691E (en) * | 1972-03-27 | 1981-07-28 | Method of applying a wearing surface | |
US3925034A (en) * | 1973-05-14 | 1975-12-09 | Res Abrasive Products Inc | Resin bonded grinding wheel containing gas-filled thermoplastic resin beads and method of making it |
US4018944A (en) * | 1973-11-12 | 1977-04-19 | Rexnord Inc. | Method of applying a wearing surface |
US4128972A (en) * | 1975-04-14 | 1978-12-12 | The Osborn Manufacturing Corporation | Flexible polishing wheel and method for producing same |
US4259089A (en) * | 1978-08-10 | 1981-03-31 | Tyrolit Schleifmittelwerke Swarovski K.G. | Grinding wheel containing grain-coated reinforcement fibers and method of making it |
US4762533A (en) * | 1981-07-21 | 1988-08-09 | Daichiku Co., Ltd. | Flat type resinoid grinding wheel |
US4475926A (en) * | 1982-02-25 | 1984-10-09 | Norton Company | Active filler for grinding wheels |
US4594106A (en) * | 1983-02-22 | 1986-06-10 | Tateho Kagaku Kogyo Kabushiki Kaisha | Spraying materials containing ceramic needle fiber and composite materials spray-coated with such spraying materials |
GB2205840B (en) * | 1987-06-02 | 1991-04-03 | Ecc Int Ltd | Wear resistant material |
US5224970A (en) * | 1989-03-01 | 1993-07-06 | Sumitomo Chemical Co., Ltd. | Abrasive material |
US20080072500A1 (en) * | 2006-09-15 | 2008-03-27 | Klett Michael W | Microfiber reinforcement for abrasive tools |
US9586307B2 (en) | 2006-09-15 | 2017-03-07 | Saint-Gobain Abrasives, Inc. | Microfiber reinforcement for abrasive tools |
US20120100784A1 (en) * | 2006-09-15 | 2012-04-26 | Saint-Gobain Abrasifs | Microfiber Reinforcement for Abrasive Tools |
CN101528418B (zh) * | 2006-09-15 | 2013-03-06 | 圣戈本磨料股份有限公司 | 以短纤维增强的磨具 |
US8808412B2 (en) * | 2006-09-15 | 2014-08-19 | Saint-Gobain Abrasives, Inc. | Microfiber reinforcement for abrasive tools |
US8252075B2 (en) | 2008-12-30 | 2012-08-28 | Saint-Gobain Abrasives, Inc. | Bonded abrasive tool and method of forming |
US9409279B2 (en) | 2008-12-30 | 2016-08-09 | Saint-Gobain Abrasives, Inc. | Bonded abrasive tool and method of forming |
US8540785B2 (en) | 2008-12-30 | 2013-09-24 | Saint-Gobain Abrasives, Inc. | Bonded abrasive tool and method of forming |
US20100162632A1 (en) * | 2008-12-30 | 2010-07-01 | Saint-Gobain Abrasives Inc. | Bonded abrasive tool and method of forming |
KR20140061445A (ko) * | 2011-08-24 | 2014-05-21 | 생-고뱅 어브레이시브즈, 인코포레이티드 | 연마 도구용 극세섬유 보강재 |
EP2623264A3 (de) * | 2012-02-06 | 2017-08-23 | Egon Evertz K.G. (GmbH & CO) | Schleifscheibe, insbesondere zum Längs- oder Querschleifen |
CN102653078A (zh) * | 2012-05-16 | 2012-09-05 | 常州市洪福砂轮有限公司 | 含硫酸渣的磨钢轨树脂砂轮 |
CN102653078B (zh) * | 2012-05-16 | 2014-11-26 | 常州市洪福砂轮有限公司 | 含硫酸渣的磨钢轨树脂砂轮 |
US9138869B2 (en) * | 2012-08-28 | 2015-09-22 | Saint-Gobain Abrasives, Inc. | Large diameter cutting tool |
US20140073230A1 (en) * | 2012-08-28 | 2014-03-13 | Kelley McNeal | Large Diameter Cutting Tool |
US11458594B2 (en) | 2015-12-21 | 2022-10-04 | Tokyo Seimitsu Co., Ltd. | Method for manufacturing cutting blade, and cutting blade |
US10815329B2 (en) | 2016-07-08 | 2020-10-27 | The University Of Massachusetts | Plasticized thermoset resin, and associated cured resin, method of curing, and article comprising cured resin |
US10913844B2 (en) | 2016-07-08 | 2021-02-09 | The University Of Massachusetts | Plasticized thermoset resin, and associated cured resin, method of curing, and article comprising cured resin |
CN108453911A (zh) * | 2017-02-17 | 2018-08-28 | 株式会社迪思科 | 电铸切削刀具和切削装置 |
CN114808514A (zh) * | 2021-01-29 | 2022-07-29 | 晋中宏辰机械有限公司 | 一种非金属磨盘磨浆的磨浆工艺 |
Also Published As
Publication number | Publication date |
---|---|
DE1752171A1 (de) | 1971-04-01 |
FR1563341A (enrdf_load_stackoverflow) | 1969-04-11 |
ES352624A1 (es) | 1970-01-01 |
GB1225175A (enrdf_load_stackoverflow) | 1971-03-17 |
JPS5410751B1 (enrdf_load_stackoverflow) | 1979-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3524286A (en) | Resin bonded abrasive wheels containing fibrous and non-fibrous fillers | |
US2216728A (en) | Abrasive article and method of making the same | |
US3183071A (en) | Abrasive article | |
DE10392532B4 (de) | Poröse Schleifgegenstände mit Schleifagglomeraten und Verfahren zum Herstellen der Schleifagglomerate | |
DE69611372T2 (de) | Verfahren zum herstellen von einem nahtlosen uberzogenen schleifband | |
RU2421322C2 (ru) | Абразивный инструмент, армированный короткими волокнами | |
US2138882A (en) | Abrasive | |
CN105437090B (zh) | 一种超高切割垂直度整体型超薄树脂砂轮及制备方法 | |
DE2056820A1 (de) | Schleifkörper | |
US3471276A (en) | Peripheral abrasive wheels with composite rims | |
KR101602639B1 (ko) | 연마 도구용 극세섬유 보강재 | |
PL189790B1 (pl) | Sposób wytwarzania związanego wyrobu ściernego | |
US2460367A (en) | Method of making abrasive articles | |
US2405524A (en) | Abrasive article and method of making | |
CN106891276A (zh) | 一种粉末纤维增强树脂砂轮及其制备方法 | |
US4883501A (en) | Alumina bonded abrasive for cast iron | |
US2022893A (en) | Rubber bonded abrasive article | |
US3329488A (en) | Resin bonded abrasive articles containing olivine | |
US2173833A (en) | Abrasive article and its manufacture | |
JPH03264263A (ja) | 多孔質メタルボンド砥石およびその製造方法 | |
KR100624237B1 (ko) | 연마재 | |
US2294239A (en) | Abrasive article | |
US3772042A (en) | Molybdenum silicide bonded boron carbide | |
US3476537A (en) | Abrasive composition with limestone as the porosity-inducing agent | |
JPH10202539A (ja) | 加工材並びに回転工具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: KENNECOTT CORPORATION Free format text: MERGER;ASSIGNORS:BEAR CREEK MINING COMPANY;BEAR TOOTH MINING COMPANY;CARBORUNDUM COMPANY THE;AND OTHERS;REEL/FRAME:003961/0672 Effective date: 19801230 |
|
AS | Assignment |
Owner name: STEMCOR CORPORATION, 200 PUBLIC SQUARE, CLEVELAND, Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:KENNECOTT MINING CORPORATION;REEL/FRAME:004815/0091 Effective date: 19870320 |