US3513096A - Oil concentrate containing a compatible mixture of polyisobutylene and ethylene-alpha olefin copolymer - Google Patents
Oil concentrate containing a compatible mixture of polyisobutylene and ethylene-alpha olefin copolymer Download PDFInfo
- Publication number
- US3513096A US3513096A US781708A US3513096DA US3513096A US 3513096 A US3513096 A US 3513096A US 781708 A US781708 A US 781708A US 3513096D A US3513096D A US 3513096DA US 3513096 A US3513096 A US 3513096A
- Authority
- US
- United States
- Prior art keywords
- viscosity
- ethylene
- polyisobutylene
- oil
- percent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 title description 65
- 229920002367 Polyisobutene Polymers 0.000 title description 31
- 239000012141 concentrate Substances 0.000 title description 9
- 229920006213 ethylene-alphaolefin copolymer Polymers 0.000 title description 5
- 229920000642 polymer Polymers 0.000 description 53
- 239000003921 oil Substances 0.000 description 38
- 239000002904 solvent Substances 0.000 description 30
- 239000004711 α-olefin Substances 0.000 description 25
- 229920001577 copolymer Polymers 0.000 description 24
- 239000003054 catalyst Substances 0.000 description 19
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 18
- 239000005977 Ethylene Substances 0.000 description 18
- 229910052782 aluminium Inorganic materials 0.000 description 18
- 229940093470 ethylene Drugs 0.000 description 18
- 238000000034 method Methods 0.000 description 18
- 239000010705 motor oil Substances 0.000 description 17
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 16
- 239000000178 monomer Substances 0.000 description 16
- -1 e.g. Substances 0.000 description 15
- 239000000654 additive Substances 0.000 description 14
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 13
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 13
- 230000007935 neutral effect Effects 0.000 description 11
- 238000006116 polymerization reaction Methods 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 239000002480 mineral oil Substances 0.000 description 10
- 229920000098 polyolefin Polymers 0.000 description 10
- 235000010446 mineral oil Nutrition 0.000 description 8
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 230000000996 additive effect Effects 0.000 description 6
- 239000000460 chlorine Substances 0.000 description 6
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 239000010687 lubricating oil Substances 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 229920001897 terpolymer Polymers 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000003085 diluting agent Substances 0.000 description 5
- 229920002959 polymer blend Polymers 0.000 description 5
- 150000003682 vanadium compounds Chemical class 0.000 description 5
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- 150000001993 dienes Chemical class 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 238000005727 Friedel-Crafts reaction Methods 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- 125000005234 alkyl aluminium group Chemical group 0.000 description 3
- 239000003426 co-catalyst Substances 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229920006158 high molecular weight polymer Polymers 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 3
- 238000010587 phase diagram Methods 0.000 description 3
- 230000008719 thickening Effects 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 3
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- DFVOXRAAHOJJBN-UHFFFAOYSA-N 6-methylhept-1-ene Chemical compound CC(C)CCCC=C DFVOXRAAHOJJBN-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000012986 chain transfer agent Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 2
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 2
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 2
- 229910000039 hydrogen halide Inorganic materials 0.000 description 2
- 239000012433 hydrogen halide Substances 0.000 description 2
- 239000012442 inert solvent Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 150000003609 titanium compounds Chemical class 0.000 description 2
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- RDAFFINKUCJOJK-UYIJSCIWSA-N (1z,5e)-cyclodeca-1,5-diene Chemical compound C1CC\C=C/CC\C=C\C1 RDAFFINKUCJOJK-UYIJSCIWSA-N 0.000 description 1
- PRBHEGAFLDMLAL-UHFFFAOYSA-N 1,5-Hexadiene Natural products CC=CCC=C PRBHEGAFLDMLAL-UHFFFAOYSA-N 0.000 description 1
- VYXHVRARDIDEHS-UHFFFAOYSA-N 1,5-cyclooctadiene Chemical compound C1CC=CCCC=C1 VYXHVRARDIDEHS-UHFFFAOYSA-N 0.000 description 1
- 239000004912 1,5-cyclooctadiene Substances 0.000 description 1
- JTPNRXUCIXHOKM-UHFFFAOYSA-N 1-chloronaphthalene Chemical class C1=CC=C2C(Cl)=CC=CC2=C1 JTPNRXUCIXHOKM-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- CMAOLVNGLTWICC-UHFFFAOYSA-N 2-fluoro-5-methylbenzonitrile Chemical compound CC1=CC=C(F)C(C#N)=C1 CMAOLVNGLTWICC-UHFFFAOYSA-N 0.000 description 1
- 125000006020 2-methyl-1-propenyl group Chemical group 0.000 description 1
- SUJVAMIXNUAJEY-UHFFFAOYSA-N 4,4-dimethylhex-1-ene Chemical compound CCC(C)(C)CC=C SUJVAMIXNUAJEY-UHFFFAOYSA-N 0.000 description 1
- KLCNJIQZXOQYTE-UHFFFAOYSA-N 4,4-dimethylpent-1-ene Chemical compound CC(C)(C)CC=C KLCNJIQZXOQYTE-UHFFFAOYSA-N 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- BFGOGLKYJXQPJZ-UHFFFAOYSA-N 4-methylhept-1-ene Chemical compound CCCC(C)CC=C BFGOGLKYJXQPJZ-UHFFFAOYSA-N 0.000 description 1
- SUWJESCICIOQHO-UHFFFAOYSA-N 4-methylhex-1-ene Chemical compound CCC(C)CC=C SUWJESCICIOQHO-UHFFFAOYSA-N 0.000 description 1
- PDDZRMMIMNABGD-UHFFFAOYSA-N 5,5,6-trimethylhept-1-ene Chemical compound CC(C)C(C)(C)CCC=C PDDZRMMIMNABGD-UHFFFAOYSA-N 0.000 description 1
- FYZHLRMYDRUDES-UHFFFAOYSA-N 5,7-dimethylocta-1,6-diene Chemical compound CC(C)=CC(C)CCC=C FYZHLRMYDRUDES-UHFFFAOYSA-N 0.000 description 1
- WTQBISBWKRKLIJ-UHFFFAOYSA-N 5-methylidenebicyclo[2.2.1]hept-2-ene Chemical group C1C2C(=C)CC1C=C2 WTQBISBWKRKLIJ-UHFFFAOYSA-N 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- ZHXZNKNQUHUIGN-UHFFFAOYSA-N chloro hypochlorite;vanadium Chemical compound [V].ClOCl ZHXZNKNQUHUIGN-UHFFFAOYSA-N 0.000 description 1
- 150000008422 chlorobenzenes Chemical class 0.000 description 1
- RCTYPNKXASFOBE-UHFFFAOYSA-M chloromercury Chemical compound [Hg]Cl RCTYPNKXASFOBE-UHFFFAOYSA-M 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- JJSGABFIILQOEY-UHFFFAOYSA-M diethylalumanylium;bromide Chemical compound CC[Al](Br)CC JJSGABFIILQOEY-UHFFFAOYSA-M 0.000 description 1
- YNLAOSYQHBDIKW-UHFFFAOYSA-M diethylaluminium chloride Chemical compound CC[Al](Cl)CC YNLAOSYQHBDIKW-UHFFFAOYSA-M 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910000286 fullers earth Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 150000002367 halogens Chemical group 0.000 description 1
- PYGSKMBEVAICCR-UHFFFAOYSA-N hexa-1,5-diene Chemical compound C=CCCC=C PYGSKMBEVAICCR-UHFFFAOYSA-N 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 229910000042 hydrogen bromide Inorganic materials 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 229910000043 hydrogen iodide Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000006078 metal deactivator Substances 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- KWKAKUADMBZCLK-UHFFFAOYSA-N methyl heptene Natural products CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 1
- YSTQWZZQKCCBAY-UHFFFAOYSA-L methylaluminum(2+);dichloride Chemical compound C[Al](Cl)Cl YSTQWZZQKCCBAY-UHFFFAOYSA-L 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- AFFLGGQVNFXPEV-UHFFFAOYSA-N n-decene Natural products CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- AKIVCSUYCHLJHX-UHFFFAOYSA-N octadeca-1,5-diene Chemical compound CCCCCCCCCCCCC=CCCC=C AKIVCSUYCHLJHX-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000011027 product recovery Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical group C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M1/00—Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants
- C10M1/08—Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants with additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/02—Well-defined aliphatic compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/02—Well-defined aliphatic compounds
- C10M2203/022—Well-defined aliphatic compounds saturated
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/02—Well-defined aliphatic compounds
- C10M2203/024—Well-defined aliphatic compounds unsaturated
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/04—Well-defined cycloaliphatic compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/108—Residual fractions, e.g. bright stocks
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/026—Butene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/06—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/10—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing cycloaliphatic monomers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/14—Electric or magnetic purposes
- C10N2040/16—Dielectric; Insulating oil or insulators
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/14—Electric or magnetic purposes
- C10N2040/17—Electric or magnetic purposes for electric contacts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2050/00—Form in which the lubricant is applied to the material being lubricated
- C10N2050/10—Form in which the lubricant is applied to the material being lubricated semi-solid; greasy
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2070/00—Specific manufacturing methods for lubricant compositions
- C10N2070/02—Concentrating of additives
Definitions
- This invention relates to oil compositions that are useful primarily as engine lubricating oils and are characterized by a unique and most desirable low viscosity at low temperatures and high viscosity at higher temperatures.
- the invention relates to an additive concentrate comprising a compatible mixture of polyisobutylene and ethylene-alpha olefin in mineral oil.
- oils are generally oils or oil blends containing at least about 1% and as much as by volume of one or more high molecular weight polymers, which are well known in the industry as viscosity index improvers.
- One such problem relates to means for accurately predieting the engine cold cranking characteristics (i.e., engine viscosity) of an oil.
- cranking characteristics of the socalled straight mineral oils can, in general, be predicted adequately (i.e., without actual cranking) by using the viscosity at the temperature of interest, e.g., 0 to 20 F.
- the straight mineral oil viscosity is obtained by extrapolating low-shear viscosities obtained at and 210 F. on the ASTM viscosity-temperature chart.
- the method involves the use of an engine viscosity simulator of improved characteristics predicting the relative distribution of the viscous forces and the hydrodynamic forces in a liquid system particularly, a non-Newtonian liquid system.
- the viscosity of a motor oil will thereby actually be measured at 0 and 210 F. This change will enhance the true contribution of the V.I. improver to the viscosity properties of the motor oil.
- V.I. improvers e.g., polyisobutylene, polymers of methacrylic acid esters and higher fatty alcohols, copolymers of styrene and C -C olefins, etc. thicken motor oils to an undesirably large degree at 0 F.
- V.I. improvers e.g., polyisobutylene, polymers of methacrylic acid esters and higher fatty alcohols, copolymers of styrene and C -C olefins, etc.
- viscosity for the mixture of polyisobutylene plus ethylene-propylene copolymer or terpolymer may be lower than with either polymer alone. This may be referred to as the delta viscosity; that is, the viscosity difference between the viscosity measured for mixtures of polyisobutylene plus ethylene-propylene copolymer in mineral oil solvent, e.g., Solvent 150 Neutral, and the viscosity calculated from the measured viscosities of either polyisobutylene or ethylene-propylene copolymer or terpolymer alone in said Solvent 150 Neutral.
- the delta viscosity that is, the viscosity difference between the viscosity measured for mixtures of polyisobutylene plus ethylene-propylene copolymer in mineral oil solvent, e.g., Solvent 150 Neutral, and the viscosity calculated from the measured viscosities of either polyisobutylene or ethylene-propylene copolymer or
- the applicable isobutylene polymers generally have a viscosity average molecular weight of between about 20,000 and about 200,000 and preferably between about 100,000 and 150,000.
- the polymerization reaction and the conditions utilized are well-known in the art and the polymerization reaction per se does not constitute a part of the present invention.
- the polymerization of the isobutylene comprising monomer may be carried out in a wide variety of Ways.
- the reaction process may be carried out as either a batch or a continuous operation and with or without the use of an inert organic diluent as a reaction medium. Usually a diluent is preferred for carrying out the process.
- any inert organic solvent may be used as a diluent, as for example, aliphatic hydrocarbons such as hexane, heptane, isooctane, etc., cycloaliphatic hydrocarbons such as cyclohexane, aromatic hydrocarbons, such as benzene, toluene, xylene, etc., or any mixture of such hydrocarbons, or halogenated aromatic hydrocarbons such as chlorobenzenes, chloronaphthalenes, etc.
- aliphatic hydrocarbons such as hexane, heptane, isooctane, etc.
- cycloaliphatic hydrocarbons such as cyclohexane
- aromatic hydrocarbons such as benzene, toluene, xylene, etc.
- halogenated aromatic hydrocarbons such as chlorobenzenes, chloronaphthalenes, etc.
- the selection of the temperatures and the pressures utilized for the polymerization reaction will depend upon a number of factors, e.g., the purity of the monomer utilized, the activity of the catalyst system being used, the degree of polymerization desired, etc. In general, the polymerization will be carried out at temperatures within the range of from about C. to about 150 C. and preferably from about -20 C. to about C. Similarly, while atmospheric pressure or pressure of only a few pounds may be used, the polymerization reaction may be carried out at a wide range of pressures, as for example, through a partial vacuum to about 1,000 p.s.i. and preferably from about atmospheric to about 500 p.s.i. High pressures may, of course, be used, but generally do not appreciably alter the course of polymerization reaction.
- Suitable catalysts systems include the Friedel-Crafts catalysts which are well-known in the art, e.g., Schildknecht, Vinyl and Related Polymers Wiley (1952), page 541. These materials include HgCl BeCl ZnCl ZnBr CdCl CaCl BF B01 BBr AlCl AlBr A113, TIBI4, ZI'C14, ZIBL ⁇ , SnCl SIIBI'4, SbCl SbCl MoCl BiCl FeCl UCl It is contemplated that the above Friedal-Crafts catalysts may be employed in a catalyst system consisting essentially of said Friedel-Crafts compound and an aluminum alkyl compound wherein the molar ratio of Friedel-Crafts compound to aluminum alkyl is a minimum of one.
- the alkyl component of the alkyl aluminum compound preferably has from 1 to about 8 carbon atoms.
- Specific examples of the preferred alkyl aluminum compounds include aluminum triethyl, aluminum triisobutyl, aluminum diethyl chloride, aluminum sesquichloride, aluminum ethyl dichloride, aluminurn ethyl dibromide, aluminum diethyl bromide, aluminum ethyl diiodide, aluminum diethyl iodide, aluminum methyl dichloride, aluminum dimethyl chloride, aluminum methyl dibromide, aluminum dimethyl bromide, aluminum methyl diiodidc, aluminum dimethyl iodide, aluminum trimethyl, and the like.
- catalyst systems used in the preparation of the polyisobutylene component utilized herein include boron trifluoride, titanium tetrachloride, aluminum trichloride, and a combination of stannic chloride and aluminum triethyl.
- catalysts may also be used in preparation of the isobutylene polymer such as natural earths of the type of fullers earth, bauxite, natural and artificial clays, active carbon and other similar well-known polymerizing agents.
- the second component of the polymeric mixtures of the instant invention are oil-soluble polymers of ethylene and alpha-olefin, e.g., ethylene-propylene copolymers. These polymers will contain from about 40 to about 90 mole percent, preferably 50 to 88 mole percent, of ethylene; from about 60 to about 10 mole percent, preferably 50 to 12 mole percent, of a C3-C13 alpha-olefin and from about to about mole percent, e.g., 2 to 8 mole percent, of a third monomer selected from the group consisting of the hereinafter described C C alphaolefins and polyolefins.
- ethylene-propylene copolymers will contain from about 40 to about 90 mole percent, preferably 50 to 88 mole percent, of ethylene; from about 60 to about 10 mole percent, preferably 50 to 12 mole percent, of a C3-C13 alpha-olefin and from about to about mole percent, e.g.
- the ethylene-alpha olefin polymers useful in this invention exhibit a degree of crystallinity up to about 25%.
- the ethylene-alpha olefin polymer of this invention may be further characterized as having a viscosity average molecular weight within the range between about 10,000 and 250,000, preferably 50,000 to 100,000.
- the ethylene-alpha olefin polymer of this invention need only be oil-soluble and have the requisite crystallinity, molecular weight and monomer content.
- the ethylene-alpha olefin copolymers of this invention may be prepared, for example, by reacting from about 2 to about 98 wt. percent ethylene with about 98 to about 2 Wt. percent of alpha-olefin, preferably propylene, in the presence of a soluble species of Ziegler catalyst, preferably a catalyst prepared by activating VCL; or VOCl with an alkyl aluminum chloride.
- a conventional chain transfer agent such as hydrogen fluoride, hydrogen chloride, hydrogen bromide, hydrogen iodide, hydrogen, etc.
- the ethylene-alpha olefin polymer of this invention may be prepared by chemically, thermally, or mechanically degrading high molecular weight polymer in accordance with well-known techniques to produce a polymer having the requisite molecular weight and oilsolubility characteristics.
- Other methods of preparing the ethylene-alpha olefin polymer of the instant invention are given in copending application Ser. No. 657,064, filed July 31, 1967, which disclosure is incorporated herein in its entirety by express reference.
- the resultant product which finds utility in the present invention has a viscosity average molecular weight (Mv.) of about 10,000 to 250,000 preferably from about 40,000 to 150,000 and most preferably from about 50,000 to 100,000.
- Mv. viscosity average molecular weight
- the term molecular weight as used herein means molecular weight based on viscosity measurement. The molecular weights indicated herein and in the claims hereof were estimated on the basis of viscosity measurement at 135 F. of solutions which contained 0.5 milligram of polymer per milliliter of decalin.
- the soluble catalysts which may be used in polymerizing the monomers of this invention can be formed by mixing an organo-aluminum halide with various vanadium compounds. These vanadium compounds may then be reacted with an aluminum alkyl compound in order to produce the final catalyst composition.
- the vanadium compounds which may be used include the vanadium oxyhalides, the vanadium tetrahalides, the vanadium oxyacetylacetonates, the alkyl vanadates, and the like.
- the copolymers may also be prepared with certain titanium compounds.
- the titanium compounds suitably employed are those that can be reacted with a selected vanadium compound to produce a reaction product which is a complex.
- the alkyl aluminum compounds most conveniently used include those having the formula R AlX wherein R is a C to C preferably C to C monovalent hydrocarbon radical, X is a halogen having an atomic number above 17, preferably chlorine or a C to C preferably C to C monovalent hydrocarbon radical or hydrogen, in is an integer between 1 and 3 and the sum of in plus it is equal to 3.
- R groups include methyl, ethyl, propyl, n-butyl, n-amyl, isoamyl, phenyl, tolyl, and cyclopentyl radicals.
- Ethylene and a C to C alpha-olefin can be copolymerized to prepare the additives of this invention.
- the alpha-olefin may be linear or branched where the branching occurs three or more carbon atoms from the double bond, and, while a single olefin is preferably, mixtures of these C to C olefins may be employed.
- C to C alpha-olefins include: propylene, 1- butene, l-pentene, l-hexene, l-he'ptane, l-octene, 1- nonene, l-decene, 4-methyl-l-pentene, 4-methyl-1-hexene, S-methyl-l-hexen, 4,4-dimethyl 1 pentene, 4-methyl-1- heptene, S-methyl-l-heptene, 6-methyl- 1 -heptene, 4,4- dimethyl-l-hexene, 5,6,5-trimethyl-l-heptene and mixtures thereof.
- the present invention also contemplates the use of a C to C alpha-olefin and/or diolefin, polyolefin and the like which is copolymerized with ethylene and propylene to produce terpolymers.
- These unsaturated monomers are also preferably linear, but may be branched where' the branching occurs three or more carbon atoms from the double bond, and, while a single olefinic monomer is preferable, mixtures of these C to C olefinic monomers may be employed.
- the diolefins which are useful for copolymerization with ethylene and propylene include the bicyclic, alicyclic or aliphatic nonconjugated diolefins containing from about 6 to about 28 carbon atoms, preferably from about 6 to 12 carbon atoms.
- suitable' monomers include 1,5-cyclooctadiene, 1,5-hexadiene, dicyclopentadiene, vinyl 2 norbornene, 1,5-cyclodecadiene, 2,4-dimethyl-2,7-octadiene, 3(2-methyl-1-propenyl) cyclopentene, 1,5-octadecadiene, and the like.
- methylene-norborene that is:
- a preferred embodiment of the instant invention is an ethylenepropylene-methylene norbornene terpolymer.
- the polymer mixture of this invention is employed as an additive concentrate, i.e., a polymer blend in an inert solvent or neutral oil, in concentrations of about 0.1 to about wt. percent, preferably between about 0.5 and about 5.0 wt. percent based on the oleaginous composition being treated, so as to accomplish the desired objects. It is to be understood that such ranges are flexible and will be determined by the particular character of the oleaginous composition to which the additive concentrate is added. However, no more polymer mixture will be added than will be in solution in the oleaginous composition.
- the additives are sold as concentrates wherein the polymeric blend is present in amounts of from about 5 to 50 wt. percent, preferably 8 to 40 wt.
- Suitable solvents and/or oils are' well-lenown to the art and nonlimiting examples include mineral oils, hexane, heptane and the like.
- Example I The following example is presented in order to illustrate a typical method of preparing the polyisobutylene component employed in the blends of this invention.
- the polymeric blend of the present invention can be employed alone in oleaginous compositions or, if desired, can be employed in combination with other viscosity index improvers in order to affect that characteristic of the base oleaginous composition. If desired, said blend may be employed in combination with other additives, for example, pour point depressants, detergent type additives corrosion inhibitors, anti-oxidants, sludge inhibitors, metal deactivators, etc.
- oleaginous composition comprised of a lubricating oil
- present invention also contemplates that the additives defined herein may, if desired be employed with various other oleaginous compositions such as, for example, gasoline, middle distillate fuels, transformer oils, greases, etc.
- the above-described polymers of isobutylene and ethylene-alpha-olefin copolymers represent mutually soluble polymeric components and that mixtures of these two polymers in oil have highly unusual viscosity properties. It must be noted, however, that, in addition to using the polymers in the manner hereinbefore described, to achieve the desired properties, said polymers must be employed in certain relative weight ratios. Accordingly, the additive products which attain the objectives described above are derived exclusively from the foregoing polymers and used in such Weight proportions so that the solvated individual polymeric components are miscible with each other.
- compositions of said mixture lie approximately within the area similar to the ternary phase diagram of FIG. 1 which is incorporated herein by reference.
- FIG. 1 represents an embodiment of the present invention wherein various blends of polyisobutyleneethylene-propylene, in Solvent Neutral oil are represented.
- the temperature of the blend concentrate is a factor of miscibility, however, it is well within the bounds of facile experimentation to complete ternary phase diagrams for other temperatures, as Well as for different polymeric components, e.g., components of different monomeric origin, molecular weight, etc.
- the curves of the figure represent compositional threshold values at which phase separation just begins to occur.
- a blend of about 10.5 weight percent ethylene/propylene copolymer with 5.5 wt. percent polyisobutylene in 84 wt. percent Solvent 150 Neutral oil would be miscible at temperatures of about 20 C. and above.
- a 10-10 wt. percent blend of ethylene/propylene copolymer with polyisobutylene in 80 wt. percent solvent would not be miscible at 25 C. and lower and would separate into phases.
- FIG. 1 is in keeping with the spirit of phase separation occurrence and that other factors, e.g., pressure, polymer purity, other blend components will affect the ternary phase behaviors but, as mentioned, the actual phase behaviors are easily ascertainable for each specific composition mixture.
- the blends of the instant invention will range from about 3.0 to about 20.0 wt. percent of polyisobutylene and from about 2.0 to about 25.0 wt. percent of ethylene-alpha-olefin polymer, the remainder of the blend comprising neutral solvent for the components.
- the resulting treated composition will usually contain from about 0.3 to about 2.0 wt. percent of polyisobutylene and about 0.2 to about 2.5 wt. percent of ethylenealpha-olefin polymer.
- the relative amounts of polymeric constituents, without solvent, etc. will generally be from about 10 to about 90 wt.
- a sleeve is fixed within said cavity with a spindle adapted to rotate within said sleeve.
- the spindle comprises, in combination, a shaft, an insulator and a drum.
- the drum is provided with a pair of substantially symmetrical flats which create a continuously varying shear weight which simulates, to a degree heretofore unattainable, engine viscosity.
- the spindle is driven by means of a gear train responsive to a motor which gear train and motor also drive a tachometer for measuring rate of evolution of said spindle.
- the method of simulating the engine viscosity of a test oil comprises (a) cranking, at a substantially constant voltage, first oil sample of known viscosity (b) recording the thus-known viscosity and the corresponding cranking speed (c) repeating steps (a) and (b) using a second oil sample of known viscosity, thereby generating a positive viscosity versus speed (d) repeating step (a) using an oil of unknown viscosity (e) noting the cranking speed resulting from step (d) and reading the engine viscosity of said oil of unknown viscosity from said plot.
- Example 3 In this example the efiicacy of the polyisobutylene-
- the foregoing data illustrate that a mixture of polyisobutylene and ethylene-propylene copolymer prepared using hydrogen halide exhibits a synergistic improvement when compared with either polyisobutylene or the ethylene-propylene copolymer per se or the numerical average thereof.
- Example 4 This example serves to illustrate the fact that conventional polymeric V.I. improvers, other than those of the present invention, are not compatible for blending.
- Table IV illustrates systems in which two conventional V.I. improvers were employed and the amounts utilized thereof. In each instance it is noteworthy that the components used were not compatible.
- Example An ethylene-propylene-methylene-norbornene copolymer is prepared in accordance with conventional procedures.
- the resulting terpolymer is blended with an isobutylene polymer prepared in accordance with Example 1.
- the resultant blend evidences utility as a viscosity improver for lubricating oils.
- Example 6 Ethylene and propylene were continuously polymerized in the'presence of n-heptane solvent, VOCl -Al Et Cl and hydrogen.
- the polymerization reaction was carried out in a two-liter glass reactor equipped with a monomer inlet tube, catalyst inlet, co-catalyst inlet, solvent inlet, reflux condenser, stirrer, product recovery outlet and a temperature control jacket. Provision was made to continuously control the rate of addition of monomer, hydrogen, solvent, catalyst and co-catalyst.
- the reaction was carried out continuously under conditions of constant volume and pressure (i.e., 1 atm.) by controlling the rate of fed introduction and product removal.
- the ethylene and propylene monomers were purified by contact with hot (e.g., 150 C.) copper oxide and molecular sieves. Purification of the solvent, i.e., n-heptane, was effected by passage through a bed of alumina and silica gel. Similarly, the hydrogen gas was dried by passage through a silica gel bed. The entire system was maintained oxygen and moisture-free by blanketing with bonedry nitrogen.
- VOCl in n-heptane corresponding to a 0.03 molar solution A solution of vanadium oxychloride (VOCl in n-heptane corresponding to a 0.03 molar solution was introduced through the catalyst inlet while a solution of ethyl aluminum sesquichloride (Al Et Cl in n-heptane corresponding to a 0.12 molar solution was introduced through the co-catalyst inlet.
- Al Et Cl in n-heptane corresponding to a 0.12 molar solution A solution of vanadium oxychloride (VOCl in n-heptane corresponding to a 0.03 molar solution was introduced through the catalyst inlet while a solution of ethyl aluminum sesquichloride (Al Et Cl in n-heptane corresponding to a 0.12 molar solution was introduced through the co-catalyst inlet.
- the reactor operating conditions were as shown in Table V.
- Viscosity Index as determined by ASTM D-567 in Reference 011 1150 which is a solvent extracted, neutral, paraflimctype oil of about 46.53 SUS at 210 F. and 189.9 SUS at 100 F
- Thickening etficiency is the ratio of wt. percent polyisob'utylene (20,000 Staudinger mol. wt.) required to thicken Reference 011 150 to a viscosity of 12:5 cs. at 210 F./ ⁇ vt. percent ethylenepropylene copolymer required to thicken Reterence Oil 150 to the same viscosity.
- the ethylenepropylene copolymer prepared in this example was blended with various amounts of the polyisobutylene of Example 12' 3 in Solvent 150 Neutral Oil. A'ternary phase diagram essentially similar to FIG. 1 was obtained.
- a compatible composition which comprises a major proportion of a hydrocarbon solvent and from about 3.0 to about 20.0 wt. percent of polyisobutylene having a molecular weight within the range between about 20,000 and 200,000 and from about 2.0 to about 25.0 wt. percent of a second polymer comprised of 40 to 90 mole percent ethylene and 10 to 60 mole percent C -C alphaolefin; said second polymer being further characterized as having a viscosity average molecular weight within the range between about 10,000 and 250,000 and a crystallinity ofless than 25% 2.
- said hydrocarbon solvent is a mineral oil.
- composition of claim 2 wherein said alphaolefin is propylene.
- composition of claim 3 wherein said second polymer contains 0-10 mole percent of a third monomer selected from the group consisting of C C alpha-olefins, C -C nonconjugated diolefins and combinations thereof.
- composition of claim 4 wherein said third monomer is methylene-norbornene.
- composition of claim 3 wherein said second polymer comprises 50 to 88 mole percent ethylene and 12 to 50 mole percent propylene.
- composition of claim 6 wherein said second polymer has a viscosity average molecular weight Within the range between about 50,000 and 100,000.
- composition of claim 7 wherein said second polymer comprises to 88 mole percent ethylene and 12 to 20 mole percent propylene.
- said alphaolefin is propylene.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US78170868A | 1968-12-03 | 1968-12-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3513096A true US3513096A (en) | 1970-05-19 |
Family
ID=25123646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US781708A Expired - Lifetime US3513096A (en) | 1968-12-03 | 1968-12-03 | Oil concentrate containing a compatible mixture of polyisobutylene and ethylene-alpha olefin copolymer |
Country Status (6)
Country | Link |
---|---|
US (1) | US3513096A (enrdf_load_stackoverflow) |
AU (1) | AU447999B2 (enrdf_load_stackoverflow) |
DE (1) | DE1952574C2 (enrdf_load_stackoverflow) |
FR (1) | FR2063976B1 (enrdf_load_stackoverflow) |
GB (1) | GB1230714A (enrdf_load_stackoverflow) |
NL (1) | NL6915687A (enrdf_load_stackoverflow) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2126952A1 (de) * | 1970-06-02 | 1971-12-16 | Esso Research And Engineering Co., Linden, N.J. (V.St.A.) | Schmierölmischung |
US3668111A (en) * | 1970-07-16 | 1972-06-06 | Union Oil Co | Fouling rate reduction in heated hydrocarbon streams with degraded polyisobutylene |
US4290925A (en) * | 1979-02-16 | 1981-09-22 | Rohm Gmbh | Lubricating oil additives |
EP0262977A3 (en) * | 1986-10-03 | 1988-10-12 | World Oil Kabushiki Kaisha | Liquid lubricant mixture composite |
US4968444A (en) * | 1983-10-28 | 1990-11-06 | Rohm Gmbh | Lubricating oil additives |
US5116795A (en) * | 1985-08-02 | 1992-05-26 | Quantum Chemical Corporation | Alpha olefin oligomerization catalyst |
US5122581A (en) * | 1985-08-02 | 1992-06-16 | Quantum Chemical Corporation | Polymerization method |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1088446A (en) * | 1976-05-25 | 1980-10-28 | Polysar Limited | Mineral oil compositions |
GB1592553A (en) * | 1976-12-20 | 1981-07-08 | Orobis Ltd | Viscosity index improver additive composition |
NO145408C (no) * | 1977-05-19 | 1982-03-17 | Orobis Ltd | Smoeremiddeltilsetning. |
US4507515A (en) * | 1983-12-21 | 1985-03-26 | Exxon Research & Engineering Co. | Lubricating oil compositions containing ethylene-alpha-olefin polymers of controlled sequence distribution and molecular heterogeneity |
DE102009015911A1 (de) | 2009-04-03 | 2010-10-07 | Carl Zeiss Meditec Ag | Vorrichtung und Verfahren zur Entfernung eines Lentikels aus der Hornhaut |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2779753A (en) * | 1952-12-29 | 1957-01-29 | Exxon Research Engineering Co | Process for preparing high molecular polymers from isobutylene |
US2791576A (en) * | 1956-01-12 | 1957-05-07 | Standard Oil Co | Process of polymerizing olefins with group 6a oxide |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2462360A (en) * | 1949-02-22 | Method of preparing lubricating | ||
BE560366A (enrdf_load_stackoverflow) * | 1956-08-28 | |||
US2980744A (en) * | 1959-12-18 | 1961-04-18 | Sun Oil Co | Preparation of viscous polymers |
NL230196A (enrdf_load_stackoverflow) * | 1960-06-24 | |||
CH488003A (de) * | 1967-03-08 | 1970-03-31 | Geigy Ag J R | Zusatz zur Verbesserung der Eigenschaften von Schmierölen |
-
1968
- 1968-12-03 US US781708A patent/US3513096A/en not_active Expired - Lifetime
-
1969
- 1969-10-16 NL NL6915687A patent/NL6915687A/xx unknown
- 1969-10-17 GB GB5117769A patent/GB1230714A/en not_active Expired
- 1969-10-17 FR FR6935767A patent/FR2063976B1/fr not_active Expired
- 1969-10-18 DE DE1952574A patent/DE1952574C2/de not_active Expired
-
1970
- 1970-02-11 AU AU11282/70A patent/AU447999B2/en not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2779753A (en) * | 1952-12-29 | 1957-01-29 | Exxon Research Engineering Co | Process for preparing high molecular polymers from isobutylene |
US2791576A (en) * | 1956-01-12 | 1957-05-07 | Standard Oil Co | Process of polymerizing olefins with group 6a oxide |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2126952A1 (de) * | 1970-06-02 | 1971-12-16 | Esso Research And Engineering Co., Linden, N.J. (V.St.A.) | Schmierölmischung |
US3668111A (en) * | 1970-07-16 | 1972-06-06 | Union Oil Co | Fouling rate reduction in heated hydrocarbon streams with degraded polyisobutylene |
US4290925A (en) * | 1979-02-16 | 1981-09-22 | Rohm Gmbh | Lubricating oil additives |
US4968444A (en) * | 1983-10-28 | 1990-11-06 | Rohm Gmbh | Lubricating oil additives |
US5116795A (en) * | 1985-08-02 | 1992-05-26 | Quantum Chemical Corporation | Alpha olefin oligomerization catalyst |
US5122581A (en) * | 1985-08-02 | 1992-06-16 | Quantum Chemical Corporation | Polymerization method |
EP0262977A3 (en) * | 1986-10-03 | 1988-10-12 | World Oil Kabushiki Kaisha | Liquid lubricant mixture composite |
Also Published As
Publication number | Publication date |
---|---|
AU1128270A (en) | 1971-08-12 |
FR2063976A1 (enrdf_load_stackoverflow) | 1971-07-16 |
AU447999B2 (en) | 1974-04-19 |
NL6915687A (enrdf_load_stackoverflow) | 1971-04-20 |
FR2063976B1 (enrdf_load_stackoverflow) | 1974-05-03 |
DE1952574A1 (de) | 1971-04-29 |
DE1952574C2 (de) | 1983-08-04 |
GB1230714A (enrdf_load_stackoverflow) | 1971-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3551336A (en) | Lubricant containing ethylene-alpha-olefin polymer | |
US3691078A (en) | Oil compositions containing ethylene copolymers | |
US3389087A (en) | Lubricant containing ethylene-alpha-olefin polymers | |
US3513096A (en) | Oil concentrate containing a compatible mixture of polyisobutylene and ethylene-alpha olefin copolymer | |
US5420372A (en) | Alpha-olefin oligomers useful as base stocks and viscosity index improvers, and lubricating oils containing same and method of making the oligomers | |
US2895915A (en) | Polymeric pour point depressant compositions | |
KR20010053003A (ko) | 메탈로센 촉매 반응에 의해 제조된 올리고데켄 및 그 제조방법과, 윤활유 성분으로서의 그 용도 | |
US4666619A (en) | Ethylene polymer useful as a lubricating oil viscosity modifier E-25 | |
US3795616A (en) | Shear stable,multiviscosity grade lubricating oils | |
US4575574A (en) | Ethylene polymer useful as a lubricating oil viscosity modifier | |
US4613712A (en) | Alpha-olefin polymers as lubricant viscosity properties improvers | |
US5315053A (en) | Normally liquid alpha-olefin oligomers useful as base stocks and viscosity index improvers, and lubricating oils containing same | |
GB1441949A (en) | Mineral oil composition | |
US3509056A (en) | Viscosity index improvers | |
US2993942A (en) | Polymerized ethylene lubricating oils | |
FI62334C (fi) | Smoerjmedelstillsats | |
US4510342A (en) | High viscosity index synthetic oils and synthesis thereof | |
US4018695A (en) | Polymer-modified automatic transmission fluid | |
JP2908560B2 (ja) | 新規な分散剤粘度指数向上剤組成物 | |
US3157624A (en) | Copolymer of a straight chain olefin and a styrene | |
JP2503536B2 (ja) | 潤滑油組成物 | |
EP0372735B1 (en) | Procédé pour réduire trouble dans des huiles lubrifiantes | |
US3499052A (en) | Styrene and/or indene and normal alpha-olefin copolymer | |
JPH06336590A (ja) | オレフィンオリゴマーの製造方法 | |
US3448050A (en) | Mineral oil containing polymer of styrene or indene and a higher alpha olefin,as a pour depressant |