US3494527A - Web stretching devices having silicone resin surfaces - Google Patents
Web stretching devices having silicone resin surfaces Download PDFInfo
- Publication number
- US3494527A US3494527A US705951A US3494527DA US3494527A US 3494527 A US3494527 A US 3494527A US 705951 A US705951 A US 705951A US 3494527D A US3494527D A US 3494527DA US 3494527 A US3494527 A US 3494527A
- Authority
- US
- United States
- Prior art keywords
- web
- weight
- organopolysiloxane
- resin
- clamp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920002050 silicone resin Polymers 0.000 title description 3
- 229920001296 polysiloxane Polymers 0.000 description 41
- 229920005989 resin Polymers 0.000 description 37
- 239000011347 resin Substances 0.000 description 37
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 24
- 239000000945 filler Substances 0.000 description 14
- 239000004744 fabric Substances 0.000 description 13
- 239000004753 textile Substances 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 8
- 239000011521 glass Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000012744 reinforcing agent Substances 0.000 description 6
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000000975 dye Substances 0.000 description 5
- 235000013312 flour Nutrition 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- -1 siloxane units Chemical group 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- FYGHSUNMUKGBRK-UHFFFAOYSA-N 1,2,3-trimethylbenzene Chemical compound CC1=CC=CC(C)=C1C FYGHSUNMUKGBRK-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- CIUQDSCDWFSTQR-UHFFFAOYSA-N [C]1=CC=CC=C1 Chemical group [C]1=CC=CC=C1 CIUQDSCDWFSTQR-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229910052573 porcelain Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000005488 sandblasting Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 2
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- IHEDBVUTTQXGSJ-UHFFFAOYSA-M 2-[bis(2-oxidoethyl)amino]ethanolate;titanium(4+);hydroxide Chemical compound [OH-].[Ti+4].[O-]CCN(CC[O-])CC[O-] IHEDBVUTTQXGSJ-UHFFFAOYSA-M 0.000 description 1
- MBRFPVDRWWZMQS-UHFFFAOYSA-N 3,3-bis(tert-butylperoxy)but-1-ene Chemical compound CC(C)(C)OOC(C)(C=C)OOC(C)(C)C MBRFPVDRWWZMQS-UHFFFAOYSA-N 0.000 description 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- 241001379910 Ephemera danica Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 1
- 229920005645 diorganopolysiloxane polymer Polymers 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- GIWKOZXJDKMGQC-UHFFFAOYSA-L lead(2+);naphthalene-2-carboxylate Chemical compound [Pb+2].C1=CC=CC2=CC(C(=O)[O-])=CC=C21.C1=CC=CC2=CC(C(=O)[O-])=CC=C21 GIWKOZXJDKMGQC-UHFFFAOYSA-L 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000005055 methyl trichlorosilane Substances 0.000 description 1
- JLUFWMXJHAVVNN-UHFFFAOYSA-N methyltrichlorosilane Chemical compound C[Si](Cl)(Cl)Cl JLUFWMXJHAVVNN-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 239000010695 polyglycol Substances 0.000 description 1
- 229920000151 polyglycol Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- WSFQLUVWDKCYSW-UHFFFAOYSA-M sodium;2-hydroxy-3-morpholin-4-ylpropane-1-sulfonate Chemical compound [Na+].[O-]S(=O)(=O)CC(O)CN1CCOCC1 WSFQLUVWDKCYSW-UHFFFAOYSA-M 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- GJBRNHKUVLOCEB-UHFFFAOYSA-N tert-butyl benzenecarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC=C1 GJBRNHKUVLOCEB-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000009988 textile finishing Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06C—FINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
- D06C3/00—Stretching, tentering or spreading textile fabrics; Producing elasticity in textile fabrics
- D06C3/02—Stretching, tentering or spreading textile fabrics; Producing elasticity in textile fabrics by endless chain or like apparatus
- D06C3/04—Tentering clips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H23/00—Registering, tensioning, smoothing or guiding webs
- B65H23/02—Registering, tensioning, smoothing or guiding webs transversely
- B65H23/022—Registering, tensioning, smoothing or guiding webs transversely by tentering devices
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06C—FINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
- D06C3/00—Stretching, tentering or spreading textile fabrics; Producing elasticity in textile fabrics
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06C—FINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
- D06C2700/00—Finishing or decoration of textile materials, except for bleaching, dyeing, printing, mercerising, washing or fulling
- D06C2700/10—Guides or expanders for finishing
Definitions
- the present invention related to textile coating equipment or other web feeding equipment wherein widths of the web are stretched by wedging contact with the edges of the web, and more particularly relates to prevention of build-up of deposits on the web contacting surfaces.
- At least the portion of the clamp surfaces which come into contact with the web of material passing through the clamps consists of a cured organopolysiloxane resin such as those known for the preparation of molded articles, and which has a content of between 35 and 900 percent by weight calculated on the weight of the organopolysiloxane resins, of fillers which term includes reinforcing agents.
- the layer of organopolysiloxane resin is between 0.5 and 3 mm. in thickness.
- the present invention avoids the above disadvantages. No deposits, or at least none that are difficult to remove, can form on the stretching devices of the present invention even when these devices are run at temperatures of up to 220 C. Furthermore, the resin does not rub off on the web and thereby create problems with further processing, nor is it eliminated from the surfaces of the clamping devices during operation.
- FIG. 1 is a somewhat diagrammatic view in perspective of a web being fed through a treating roller and being held taut by clamping devices according to the present invention
- FIG. 2 is a fragmentary view of a portion of the system shown in FIG. 1 showing the position of one of the clamping devices made according to the present invention.
- FIG. 3 is a fragmentary view partly in cross-section showing an elevation of one of the clamping devices shown in FIG. 1 or 2.
- FIG. 1 a web 11 which may be, for example, a textile being fed through a treatment roller 12 driven by a motor 13.
- the web 11 is held stretched in a width-wise direction by a plurality of pinchers or clamping devices 14 positioned at the edges of the web.
- the web 11 is provided with a selvage 16 at each edge, which selvage is kept in position by a presser foot 17 of the clamping device 14 in contact with the web.
- Biasing means such as a spring 18 are provided to maintain the presser foot 17 in constant wedging contact wtih the web 11.
- a pivot pin 19 is preferably provided to allow the presser foot 17 to be raised for insertion of a new web whenever such is desired.
- the web 11 passes over a table 21 which serves to support the web 11 and offer counterpressure to the presser foot 17.
- Both the presser foot 17 and the table 21 are conventionally made of metal material.
- the web contacting surfaces are provided with a layer of organopolysiloxane resin having a filler therein, the layer being shown in the drawing as 22.
- a layer of like material 23 is applied to the opposing surface of the table 21.
- the organopolysiloxane resin should have a filler or reinforcing agent content between 35 and 900 percent by weight, calculated on the weight of the organopolysiloxane resins.
- the shape or form of the stretching devices can be any of those used in known clamps on present machines. It is generally sufficient if only those portions of the presser foot 17 by which the web is contacted and the portions of the table, lying in juxtaposition thereto, are coated with the resin containing fillers. Preferably such layer is between 0.5 and 3 mm. thick, although thicker layers may also be provided. If desired, the presser foot or portions thereof may be molded entirely of the resin-filler combination.
- the known organopolysiloxane resins which are used for preparing the stretching devices of the present invention are those known for the preparation of molded articles and which are cured at temperatures above 100 C. when they are employed for preparing pressure molded articles.
- Those organopolysiloxane resins consisting of (a) 0.1 to mol percent units of the formula R SiO wherein each R is a methyl or phenyl radical, (b) 99.9 to mol percent units of the formula R SiO, wherein each R is a vinyl, methyl or phenyl radical, and optionally, (c) units of the formula RSiO wherein R is as above defined, and wherein 2.0 to 3.5 mol siloxane units with vinyl groups are present per kilogram of organopolysiloxane, having a viscosity of 200 to 20,000 cs./25 C.
- organopolysiloxane resins are especially suitable.
- the quantity of (0) units in mol percent is taken from the difference of the sums of the (a) and (b) units present in mol percent to 100.
- radical formers such as dicumylperoxide, cumene hydroperoxide, 2,2-bis (tert-butylperoxy)-butene, tert-butyl perlaurinate, tert-butylperbenzoate and tert-butylhydroperoxide by heating to between 140 and 250 C.
- R is as above defined, R" is an alkyl radical with 1 to 4 carbon atoms, generally methyl or ethyl, x, y, z are 0, 1, 2, or 3, the sum of x+y+z is not greater than 3, the average value of x is 0.9 to 1.7, the average values of y and z are 0.00 to 0.20, where y and z must, of course, not be 0.00 at the same time.
- these vinyl-group-free organopolysiloxane resins contain not more than mol percent of units wherein x is 2 or 3, and preferably their viscosity in 50 percent toluene solution does not exceed 1000 cs./ 25 C.
- These organopolysiloxane resins are cured by heating to between 90 and 25 0 C., optionally with the use of condensation catalysts, as they are commonly used for curing vinyl-group-free organopolysiloxanes, for example, triethanolamine titanate, lead and/or zinc naphthenate, and/ or superatmospheric pressure.
- organopolysiloxane resins described here are already known to those skilled in the art. organopolysiloxane resins of the type described here are commercially available.
- fillers and reinforcing agents which heretofore have been or could have been used for the preparation of molded organopolysiloxane resin articles can also be used for the present discovery. This includes use of known fillers (which term is used herein to include reinforcing agents) for organopolysiloxanes which will cure to non-elastomeric articles.
- suitable fillers are silicon dioxide obtained pyrogenically in the gas phase, silicic acid hydrogel dehydrated while maintaining the structure, precipitated silicon dioxide, quartz flour, mica flour, pure, white fibrous magnesium silicate occurring in nature, asbestos in the form of, for example, powders, fibers, cloths or foils; zirconium silicate, titanium dioxide, aluminum oxide, glass in the form of powders, threads, fibers, yarns, cloths or foils; ground porcelain dishes, i.e., the so-called shard flour; iron powder and aluminum powder.
- the organopolysiloxane resins used within the framework of the present invention may contain solvents conventionally used for the processing of organopolysiloxane resins before curing.
- solvents are hydrocarbons such as toluene, xylene, and trimethylbenzene; chlorohydrocarbons such as trichloroethylene; ethers such as di-n-butylether; alcohols, such as ethanol; and ketones such as methyl ethyl ketone.
- hydrocarbons such as toluene, xylene, and trimethylbenzene
- chlorohydrocarbons such as trichloroethylene
- ethers such as di-n-butylether
- alcohols such as ethanol
- ketones such as methyl ethyl ketone
- organopolysiloxane resins used within the framework of the present discovery can also contain conventionally used additives such as heat stabilizers and soluble dyes.
- the fillers, the optional or requisite hardeners which are used and all of the optionally used other additives are incorporated in the organopolysiloxane resins.
- Example 1 The surfaces of the metal clamp and juxtaposed metal table surface for a stretching frame which are designed to face the textile web are roughened in the known manner by sand blasting.
- Heat cleaned glass cloth is cut into pieces of the same size as the areas of the clamp and table which will be in contact with the textile. These pieces weigh 1.5 g. each.
- One of these pieces is placed on the organopolysiloxane coated side of the clamp table and the abovedescribed mixture of organopolysiloxane resin and dicumyl peroxide is poured over it (again about 0.2 g. resin per clamp table).
- the applied material is cured by heating for 3 hours to C. and further heating to 200 C. for 3 hours.
- a smooth layer is obtained which is very stable to mechanical strain, and to which neither dyes nor textile finishing agents will adhere.
- the nominal residues of dyes and other deposits can be readily and rapidly removed by washing with water containing a wetting agent or simply by rubbing, after having been in use for some time in a textile stretching frame, operating at temperatures between and 200 C.
- Example 2 33 parts by weight of the organopolysiloxane described in Example 1 are mixed while heating to 70 C. with 1 part by weight of dicumyl peroxide and 66 parts by weight of shard (ground porcelain) flour. The mixture thus obtained is formed into clamping surfaces of the clamp and table by pouring and is cured as described in Example 1.
- the clamp-table thus obtained is similar in characteristics to that set forth in Example 1. Similar results are obtained when a clamp-table is prepared as described above, with the exception that in place of the 66 parts by weight of shard flour, 100 parts by weight of zirconium silicate are used. The resulting clamp-table can be kept clean without difficulty.
- Example 3 An organopolysiloxane resin is prepared as follows: A mixture of 90 parts by weight of methyltrichlorosilane and parts by weight of dimethyldichlorosilane is added, while stirring, to 70 parts by weight ethanol. To the mixture thus obtained, 15 parts by weight of Water are added slowly while stirring is continued. After 10 minutes, 90 parts by weight of toluene and 50 parts by weight of water are added while still stirring. The stirrer is shut off, the aqueous phase is discarded and the toluene phase is cleared of hydrogen chloride by washing with water. The toluene is distilled 01f.
- the organopolysiloxane remaining as a residue after this distillation is mixed with 1.4 parts by weight of a paste containing 0.5 part by weight of boric acid and 0.9 part by weight of methanol and heated to 150 C. until a 50 percent by weight of a toluene solution of this resin has a viscosity of ca./ 80 cs./ C. (75:10 sec. with a DIN cup having an opening of 2 mm).
- the organopolysiloxane is then dissolved in an equal quantity by weight of toluene and filtered.
- Heat cleaned glass cloth is saturated with the above prepared weight percent solution of organopolysiloxane resin in toluene, until it has absorbed about percent by weight, calculated on the weight of the cloth, of organopolysiloxane.
- the cloth is then dried at to C. in a drying tower.
- Four layers are placed over each other, with the warp thread alternating at an angle of 90 to each other in adjacent layers.
- the glass cloth thus impregnated is heated to C. for 2 hours at a pressure of 50 kg./cm. it is then allowed to cool to 60 C. and removed from the press. Finally, the laminate is heated for another 2 hours to 250 C.
- the laminate After cooling, the laminate is cut into pieces, with which the portions of the metal clamp are covered.
- the laminate is attached to the clamp and table with screws. After 600 hours in a textile dryer its properties are still unchanged, and it can easily be cleaned,
- Example 4 20 parts by weight of the organopolysiloxane described in Example 1 are mixed while heating to 80 C. with 79 parts by weight of iron powder and 1 part by weight of dicumyl peroxide. The mixture thus obtained is cured by pouring in the form of a contact ledge of a clamp and cured as described in Example 1.
- a surface on those portions of the clamping device which are designed to be contacted by the moving web made of a cured organopolysiloxane resin having a filler content of between 35 and 900 percent by weight based on the weight of the organopolysiloxane resin.
- the filler includes a glass cloth reinforcement.
- said filler containing organopolysiloxane resin comprises a layer between 0.5 mm. and 3 mm. in thickness over those portions of the clamping device which are to be contacted by the moving web.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Reinforced Plastic Materials (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEW0043407 | 1967-02-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3494527A true US3494527A (en) | 1970-02-10 |
Family
ID=7603645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US705951A Expired - Lifetime US3494527A (en) | 1967-02-21 | 1968-02-16 | Web stretching devices having silicone resin surfaces |
Country Status (5)
Country | Link |
---|---|
US (1) | US3494527A (en, 2012) |
BE (1) | BE710992A (en, 2012) |
DE (1) | DE1635364B1 (en, 2012) |
FR (1) | FR1555998A (en, 2012) |
GB (1) | GB1186828A (en, 2012) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3647128A (en) * | 1969-09-17 | 1972-03-07 | Burroughs Corp | Web-tensioning device |
US4076161A (en) * | 1976-05-10 | 1978-02-28 | Scribner Albert W | Stock feeder for punch presses and the like |
FR2384687A1 (fr) * | 1977-03-22 | 1978-10-20 | Dornier Gmbh Lindauer | Dispositif de nettoyage des surfaces de serrage, notamment d'une rame a pinces |
US4636090A (en) * | 1985-05-22 | 1987-01-13 | Theta Industries, Inc. | Low temperature dilatometer |
US4658482A (en) * | 1985-08-26 | 1987-04-21 | E. I. Du Pont De Nemours And Company | Tenter frame clip |
US4896405A (en) * | 1988-01-21 | 1990-01-30 | Marshall And Williams Company | Tenter clip |
US5488467A (en) * | 1994-06-24 | 1996-01-30 | Rjs, Inc. | Laser printer paper handling system |
US5996195A (en) * | 1998-07-20 | 1999-12-07 | Morrison Berkshire, Inc. | Cross machine tensioning system and method |
CN108557549A (zh) * | 2018-04-24 | 2018-09-21 | 东莞顺裕纸业有限公司 | 一种瓦楞纸检测平整装置 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4939825A (en) * | 1989-05-10 | 1990-07-10 | Mobil Oil Corporation | Lightweight tenter frame clip |
DE8915880U1 (de) * | 1989-08-10 | 1991-11-14 | Brückner Trockentechnik GmbH & Co KG, 7250 Leonberg | Warenbahn-Transportkette für Spannmaschinen |
DE102012025486A1 (de) * | 2012-12-20 | 2014-06-26 | Brückner Maschinenbau GmbH & Co. KG | Kluppen-Transporteinheit |
DE102012025487A1 (de) | 2012-12-20 | 2014-06-26 | Brückner Maschinenbau GmbH & Co. KG | Transportsystem, insbesondere Querreckanlage |
JP6086995B2 (ja) | 2012-12-20 | 2017-03-01 | ブリュックナー・マシーネンバウ・ゲーエムベーハー・ウント・コー・カーゲー | 延伸装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1703586A (en) * | 1927-08-15 | 1929-02-26 | Charles P Jahnke | Feeding apparatus for ironing machines |
US2774593A (en) * | 1952-12-02 | 1956-12-18 | Armco Steel Corp | Apparatus for guiding strip material |
US3110439A (en) * | 1960-04-25 | 1963-11-12 | Holley Carburetor Co | Tape feeding mechanism |
-
1967
- 1967-02-21 DE DE19671635364 patent/DE1635364B1/de active Pending
-
1968
- 1968-02-16 GB GB7713/68A patent/GB1186828A/en not_active Expired
- 1968-02-16 US US705951A patent/US3494527A/en not_active Expired - Lifetime
- 1968-02-19 BE BE710992D patent/BE710992A/xx unknown
- 1968-02-20 FR FR1555998D patent/FR1555998A/fr not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1703586A (en) * | 1927-08-15 | 1929-02-26 | Charles P Jahnke | Feeding apparatus for ironing machines |
US2774593A (en) * | 1952-12-02 | 1956-12-18 | Armco Steel Corp | Apparatus for guiding strip material |
US3110439A (en) * | 1960-04-25 | 1963-11-12 | Holley Carburetor Co | Tape feeding mechanism |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3647128A (en) * | 1969-09-17 | 1972-03-07 | Burroughs Corp | Web-tensioning device |
US4076161A (en) * | 1976-05-10 | 1978-02-28 | Scribner Albert W | Stock feeder for punch presses and the like |
FR2384687A1 (fr) * | 1977-03-22 | 1978-10-20 | Dornier Gmbh Lindauer | Dispositif de nettoyage des surfaces de serrage, notamment d'une rame a pinces |
US4636090A (en) * | 1985-05-22 | 1987-01-13 | Theta Industries, Inc. | Low temperature dilatometer |
US4658482A (en) * | 1985-08-26 | 1987-04-21 | E. I. Du Pont De Nemours And Company | Tenter frame clip |
US4896405A (en) * | 1988-01-21 | 1990-01-30 | Marshall And Williams Company | Tenter clip |
US5488467A (en) * | 1994-06-24 | 1996-01-30 | Rjs, Inc. | Laser printer paper handling system |
US5996195A (en) * | 1998-07-20 | 1999-12-07 | Morrison Berkshire, Inc. | Cross machine tensioning system and method |
CN108557549A (zh) * | 2018-04-24 | 2018-09-21 | 东莞顺裕纸业有限公司 | 一种瓦楞纸检测平整装置 |
CN108557549B (zh) * | 2018-04-24 | 2019-07-09 | 东莞顺裕纸业有限公司 | 一种瓦楞纸检测平整装置 |
Also Published As
Publication number | Publication date |
---|---|
BE710992A (en, 2012) | 1968-07-01 |
DE1635364B1 (de) | 1971-12-16 |
GB1186828A (en) | 1970-04-08 |
FR1555998A (en, 2012) | 1969-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3494527A (en) | Web stretching devices having silicone resin surfaces | |
US2329622A (en) | Treatment of woolen textile materials | |
US2649396A (en) | Method of producing a bonded structure | |
KR890000239B1 (ko) | 친츠직물 및 그의 제조방법 | |
US3619252A (en) | Manufacture of elastomer coated glass fibers | |
GB2086444A (en) | Process for continuous production of prepreg sheets | |
EP0758666B1 (de) | Beschichtete Airbags, Beschichtungsmaterial und Beschichtungsverfahren | |
CN110846902A (zh) | 一种具备防水阻燃功能的涂层织物 | |
US2823156A (en) | Vinyl coated knit fabric | |
WO1986003449A1 (en) | Impregnating fibres reinforcement with polymer materials | |
GB1036752A (en) | Process for improving textile material consisting at least partly of cellulosic fibres | |
JPS6037227B2 (ja) | シリコ−ン塗布伸縮性布製品の製造方法および装置 | |
US2768092A (en) | Method for imparting waved finish to textile fabrics | |
US3383259A (en) | Method of making a tufted fabric | |
US3518152A (en) | Apparatus for producing fabric-film laminates | |
DE1635364C (de) | Spannvorrichtungen in Textilmaschinen | |
US3759740A (en) | Process for binding pigments to glass fabrics | |
US1318742A (en) | Composite product | |
US3878281A (en) | Process for the manufacture of intermediates for the production of molded electric insulating elements | |
GB1028926A (en) | A process for improving the bonding of polyester spun yarns or fabrics with rubber | |
US2503629A (en) | Web carrier and method of making same | |
US2525476A (en) | Process for laminating starch-free resin sized fabrics | |
US2485250A (en) | Treatment of wool and the like | |
US2036036A (en) | Fabric finishing | |
US3644140A (en) | Method for rendering cellulosic materials flame retardant |