US3486912A - Nonaqueous ink - Google Patents
Nonaqueous ink Download PDFInfo
- Publication number
- US3486912A US3486912A US502288A US3486912DA US3486912A US 3486912 A US3486912 A US 3486912A US 502288 A US502288 A US 502288A US 3486912D A US3486912D A US 3486912DA US 3486912 A US3486912 A US 3486912A
- Authority
- US
- United States
- Prior art keywords
- ink
- formamide
- vehicle
- inks
- molecules
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000976 ink Substances 0.000 description 99
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 72
- 239000003981 vehicle Substances 0.000 description 34
- 239000001257 hydrogen Substances 0.000 description 32
- 229910052739 hydrogen Inorganic materials 0.000 description 32
- 239000007788 liquid Substances 0.000 description 32
- 239000000654 additive Substances 0.000 description 31
- 239000000975 dye Substances 0.000 description 27
- 230000000996 additive effect Effects 0.000 description 20
- 239000000126 substance Substances 0.000 description 20
- 238000001035 drying Methods 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 12
- 239000003086 colorant Substances 0.000 description 11
- 235000019441 ethanol Nutrition 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- -1 aliphatic alcohols Chemical class 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 8
- 229920002472 Starch Polymers 0.000 description 8
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 8
- 229930006000 Sucrose Natural products 0.000 description 8
- 125000004429 atom Chemical group 0.000 description 8
- 239000012530 fluid Substances 0.000 description 8
- 235000019698 starch Nutrition 0.000 description 8
- 239000008107 starch Substances 0.000 description 8
- 239000005720 sucrose Substances 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 7
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 230000000149 penetrating effect Effects 0.000 description 7
- 238000004513 sizing Methods 0.000 description 7
- 239000002202 Polyethylene glycol Substances 0.000 description 6
- 150000001298 alcohols Chemical class 0.000 description 6
- 229920001223 polyethylene glycol Polymers 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- OCRUMFQGIMSFJR-FSAWCSQFSA-N [(2s,3s,4r,5r)-4-hydroxy-5-(hydroxymethyl)-3-[(z)-octadec-9-enoyl]oxy-2-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxolan-2-yl]methyl (z)-octadec-9-enoate Chemical compound O([C@@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)[C@]1(COC(=O)CCCCCCC\C=C/CCCCCCCC)O[C@H](CO)[C@@H](O)[C@@H]1OC(=O)CCCCCCC\C=C/CCCCCCCC OCRUMFQGIMSFJR-FSAWCSQFSA-N 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- HEBKCHPVOIAQTA-QWWZWVQMSA-N D-arabinitol Chemical compound OC[C@@H](O)C(O)[C@H](O)CO HEBKCHPVOIAQTA-QWWZWVQMSA-N 0.000 description 4
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N butyl alcohol Substances CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 4
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 4
- BOSAWIQFTJIYIS-UHFFFAOYSA-N 1,1,1-trichloro-2,2,2-trifluoroethane Chemical compound FC(F)(F)C(Cl)(Cl)Cl BOSAWIQFTJIYIS-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 229920002907 Guar gum Polymers 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 3
- 235000010290 biphenyl Nutrition 0.000 description 3
- 239000004305 biphenyl Substances 0.000 description 3
- 125000006267 biphenyl group Chemical group 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 239000000665 guar gum Substances 0.000 description 3
- 229960002154 guar gum Drugs 0.000 description 3
- 235000010417 guar gum Nutrition 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical group 0.000 description 3
- BAMUPQJDKBGDPU-UHFFFAOYSA-N n-(2-hydroxyethyl)formamide Chemical compound OCCNC=O BAMUPQJDKBGDPU-UHFFFAOYSA-N 0.000 description 3
- 239000002687 nonaqueous vehicle Substances 0.000 description 3
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 3
- MUPFEKGTMRGPLJ-ZQSKZDJDSA-N raffinose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)O1 MUPFEKGTMRGPLJ-ZQSKZDJDSA-N 0.000 description 3
- YBRBMKDOPFTVDT-UHFFFAOYSA-N tert-butylamine Chemical compound CC(C)(C)N YBRBMKDOPFTVDT-UHFFFAOYSA-N 0.000 description 3
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical group F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006664 bond formation reaction Methods 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- JZGWEIPJUAIDHM-UHFFFAOYSA-N chembl2007771 Chemical compound C1=CC=C2C(N=NC3=C4C(=CC(=CC4=CC=C3O)S(O)(=O)=O)S(O)(=O)=O)=CC=C(S(O)(=O)=O)C2=C1 JZGWEIPJUAIDHM-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- FTZLWXQKVFFWLY-UHFFFAOYSA-L disodium;2,5-dichloro-4-[3-methyl-5-oxo-4-[(4-sulfonatophenyl)diazenyl]-4h-pyrazol-1-yl]benzenesulfonate Chemical compound [Na+].[Na+].CC1=NN(C=2C(=CC(=C(Cl)C=2)S([O-])(=O)=O)Cl)C(=O)C1N=NC1=CC=C(S([O-])(=O)=O)C=C1 FTZLWXQKVFFWLY-UHFFFAOYSA-L 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000003230 hygroscopic agent Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 235000012731 ponceau 4R Nutrition 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- 229950011008 tetrachloroethylene Drugs 0.000 description 2
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- UGCSPKPEHQEOSR-UHFFFAOYSA-N 1,1,2,2-tetrachloro-1,2-difluoroethane Chemical compound FC(Cl)(Cl)C(F)(Cl)Cl UGCSPKPEHQEOSR-UHFFFAOYSA-N 0.000 description 1
- BFBFWIRQMNHWEY-UHFFFAOYSA-N 1-bromo-2,2,2-trichloro-1,1-difluoroethane Chemical compound FC(C(Cl)(Cl)Cl)(Br)F BFBFWIRQMNHWEY-UHFFFAOYSA-N 0.000 description 1
- AKEMKVAVTALIKF-UHFFFAOYSA-N 1-bromo-2,2-dichloro-1,1-difluoro-2-iodoethane Chemical compound FC(F)(Br)C(Cl)(Cl)I AKEMKVAVTALIKF-UHFFFAOYSA-N 0.000 description 1
- LHYQAEFVHIZFLR-UHFFFAOYSA-L 4-(4-diazonio-3-methoxyphenyl)-2-methoxybenzenediazonium;dichloride Chemical compound [Cl-].[Cl-].C1=C([N+]#N)C(OC)=CC(C=2C=C(OC)C([N+]#N)=CC=2)=C1 LHYQAEFVHIZFLR-UHFFFAOYSA-L 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 150000002989 phenols Chemical group 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000013079 quasicrystal Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- YDXDLXHWUFRUQU-SGSPRHBESA-N sodium 4-amino-6-[[4-[(E)-2-[4-[(8-amino-1-hydroxy-5,7-disulfonaphthalen-2-yl)diazenyl]-2-sulfophenyl]ethenyl]-3-sulfophenyl]diazenyl]-5-hydroxynaphthalene-1,3-disulfonic acid Chemical compound C1=CC(=C(C=C1N=NC2=C(C3=C(C=C2)C(=CC(=C3N)S(=O)(=O)O)S(=O)(=O)O)O)S(=O)(=O)O)/C=C/C4=C(C=C(C=C4)N=NC5=C(C6=C(C=C5)C(=CC(=C6N)S(=O)(=O)O)S(=O)(=O)O)O)S(=O)(=O)O.[Na+] YDXDLXHWUFRUQU-SGSPRHBESA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 229960001124 trientine Drugs 0.000 description 1
- ROVRRJSRRSGUOL-UHFFFAOYSA-N victoria blue bo Chemical compound [Cl-].C12=CC=CC=C2C(NCC)=CC=C1C(C=1C=CC(=CC=1)N(CC)CC)=C1C=CC(=[N+](CC)CC)C=C1 ROVRRJSRRSGUOL-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/16—Writing inks
Definitions
- the present invention relates to nonaqueous inks and more particularly to instant drying, nonevaporating inks of low viscosity.
- Organic vehicles selected generally have shown good drying properties, that is, they did not dry so rapidly that plugging of the pens resulted. However, with few exceptions they have exhibited one very undesirable property. Organic vehicles which have heretofore been used have exhibited too high a paper penetrating ability causing staining and strike-through onto the back of the web.
- Inks of the present invention are designed to be used with nib-type pens as well as felt and wick writers. They are substantially instant drying, nonevaporating, nonpenetrating, of high surface tension and of low viscosity.
- the three solution properties can all be controlled individually without any great difficulty.
- the paper penetrating ability of ink is dependent on both the solution properties of the ink and on the design of the pen delivering the ink to the web. If too much ink leaves the point of a pen while writing, then drying time is prolonged and the ink tends to be drawn into the capillaries of the web causing undesirable strike-through and feathering of the written character.
- the most desirable writing condition is flat-line delivery, that is, the cross section of the ink line leaving the point is flat rather than hemispherical.
- a flat line has good drying properties since it contains a minimum of Patented Dec. 30, 1969 volume of ink and therefore also gives maximum length of line per gram of ink.
- the physical characteristics of the nib and felt writer tip should be determined so that a fiat or starved ink line is delivered to the web. If the properties of the pen are controlled, then the only remaining variable is the ink solution itself.
- Paper upon which writing or printing is to be made is usually coated with a sizing that may include a base sizing of rosin and a surface sizing of a material such as starch.
- the starch sizing molecules are held on the surface of the paper by the base sizing of rosin molecules that have a tendency to orient themselves to the base web fibers and to align themselves closely together normal to the coated surface. This rosin size obstructs the water of the starch size from penetrating to the web, while the starch surface size provides the dominant effect for ink control.
- starch molecules do not align themselves as do the rosin molecules, but, rather, the starch molecules lie at random and act to prevent ink feathering by limiting the spaces through which the ink vehicle molecules can penetrate to the web, and in addition to this physical effect, by chemically adsorbing the vehicle molecules at the numerous hydroxyl sites.
- starch increases the sizing efficiency by providing both a physical and a chemical exclusion, while still providing a passageway for ink to penetrate the web sutficiently for good drying rates based on limited absorption into the paper web.
- the problem with organic ink systems is now believed to be due to the fact that most organic vehicle molecules are small enough to penetrate between the oriented starch molecules so that they reach the base web and cause feathering.
- molecular associated liquids are a superior nonaqueous vehicle for use in a low viscosity ink which is to be used in conventional nib-type pens as well as felt or wick writers.
- the present invention provides an instant drying, nonevaporating, low viscosity ink comprising a major proportion of a nonaqueous liquid vehicle selected from the class consisting of (i) a substance exhibiting intramolecular association in the liquid state through hydrogen bonding between different molecules of the same substance, and mixtures of such substances, (ii) a solution of a substance containing at least one hydrogen bonding site per molecule, dissolved in a solvent which is itself capable of hydrogen bond formation by intermolecular association between solvent and solute molecules, and (iii) mixtures of (i) and (ii), and a minor proportion of a coloring agent, present in an amount at least sufficient to provide a minimumly acceptable coloration for marking purposes when used with a writing instrument.
- a nonaqueous liquid vehicle selected from the class consisting of (i) a substance exhibiting intramolecular association in the liquid state through hydrogen bonding between different molecules of the same substance, and mixtures of such substances, (ii) a solution of a substance containing at least one hydrogen bond
- a molecular associated liquid is one comprising molecules in which an atom of hydrogen is attracted by rather strong forces to two atoms, instead of only one, so that it may be considered to be acting as a bond between them.
- This hydrogen bond is largely electric in character and can form only between the most electronegative atoms. Its existence is generally established by conventional spectroscopic and crystal-structure studies and by the analysis of physico-chemical data. Fluorine, oxygen and nitrogen all form strong hydrogen bonds, the strength of the bond increasing as the electronegativity of the atoms, which are bridged by hydrogen, increases. For example, the phenols form stronger hydrogen bonds than aliphatic alcohols because of the increase in electronegativity of the oxygen atom resulting from resonance. Examples of hydrogen bonds existing in molecular associated liquids are given below:
- molecular associated liquids are those which contain relatively complex molecular species formed by the linking together of a relatively large, but indefinite, number of single molecules by hydrogen bonds.
- the hydrogen bond is between two similar atoms derived from different molecules of the same substance, as in the case of the alcohols, or the bond is between two dissimilar atoms derived from different molecules of the same substance as in the case of formamide.
- intermolecular association refers to the formation of molecular compounds between two substances by hydrogen bonding in the liquid state, for example, when a hydroxylic compound is mixed with another similar compound, or with an ether, ester, ketone or the like.
- the organic vehicle chosen will be a small molecule which exhibits dior poly-functional hydrogen bonding to the extent that even in the liquid state it appears to have quasi-crystalline properties.
- This hydrogen bonding causes the organic molecules to group or clump together in a three-dimensional network.
- the clumps of molecules are too large to penetrate between the sizing molecules on the base web and are therefore precluded from marking and penetrating the web.
- Such materials were tested on sized webs, they were found not to penetrate the web to any appreciable amount.
- a novel series of nonaqueous inks has now been developed.
- any of the commonly available coloring agents can be used to form a molecular associated organic ink system in accordance with the present invention.
- the coloring agent can be an organic dye or an inorganic pigment.
- organic dyes selected for use with the nonaqueous vehicle should be soluble in both the vehicle and in water. If a water soluble dye is not used, the dye has a tendency to precipitate out of solution as the vehicle picks up moisture. The precipitated dye can cause plugging and poor start-up of the pen, thereby obviating the advantages obtained through the use of a nonaqueous vehicle.
- organic dyes have been found particularly suitable in the nonaqueous ink system of the present invention. They are each soluble in water as well as in molecular associated liquids such as formamide:
- the first five of the above dyes are made by National Analine Division of The Allied Chemical and Dye Corporation, 40 Rector Street, New York, N.Y., while the 4 Diphenyl Dark Blue R dye is made by The Geigy Company, 899l Barclay Street, New York, N.Y., and the Ink Blue PP dye is as disclosed in the U.S. Patent 2,489,- 463 issued to The Parker Pen Company as assignee of William B. Reynolds.
- the molecular associated liquid is the principal vehicle and does not require the use of any other materials which might be termed a solvent for the ink. While various additives can be incorporated into the ink system to control the amount of paper penetration, the drying rate and surafce tension to viscosity relationship, these materials are added in minor amount sleaving the molecular associated liquid in excess of the total concentration of the additives, i.e., in excess of 50 mole fraction percent.
- nonaqueous inks of the present invention comprise in the range of 9965 percent by weight of a molecular associated liquid or solution and in the range of 135 percent by weight of a coloring agent.
- the draftsmans ruling pen is a practical device for determining a preferred upper limit for dye concentration.
- the nib acts as its own capillary reservoir and flow problems at the upper limits of fluid ink vis- V cosities are greatly reduced because of the nibs simple nature.
- approximately 1-25 percent by weight of dye appears to represent the preferred range for the associated liquid based ink.
- the ink generally is too viscous to be delivered freely from the nib.
- An additional feature of the present invention is the discovery that additives containing at least one hydrogen bonding site per molecule advantageously can be incorporated into a molecular associated liquid-base ink to produce nonaqueous inks that are substantially nonevaporating, nonpenetrating, of high surface tension and of low viscosity.
- additives containing at least one hydrogen bonding site per molecule advantageously can be incorporated into a molecular associated liquid-base ink to produce nonaqueous inks that are substantially nonevaporating, nonpenetrating, of high surface tension and of low viscosity.
- molecular associated liquids such as formamide as the principal ink vehicle.
- Organic materials containing amino, hydroxyl, and fluoride groups are suitable clumping agents.
- suitable clumping agents are substances such as sucrose, sucrose dioleate, arabitol, guar gum, raflinose and trimethylol propane. When added to molecular associated liquids exhibiting di-functional hydrogen bonding in minor amounts, these substances were found to decrease the paper penetrating ability of the ink vehicle.
- the monofluoro-halo-mono alcohols are generally structured as follows:
- the monofluoro-halo-mono alcohols contain the property of dye solubility by virtue of their polarity adjustment so the delivery off the end of a nib would be dominated by the surface tension toward properly starved lines with flat cross sectional shapes.
- the halogen substitution provides heavy molecules which are hard for the thermal energy to eject into the atmosphere and volatility is thus controlled downward. Viscosity is low and the surface tension is usually higher than normal in quasi crystalline liquids.
- An example of a suitable nonevaporating additive is 2, 3 tetrachloro-4- monofluoro butyl alcohol.
- the inmportance of nonevaporating additives results from the relationship which was found to exist between the surface tension and viscosity of the vehicle. If the surface tension is stronger than the viscosity so that the surface tension dominates the flow properties of the vehicle, less ink will be delivered from a nib to the paper during writing. It is possible then to provide an almost instantaneously drying ink which will not strike through the paper or cause feathering in view of the small amount of ink deposited in forming a line. If the fluid vehicle has a low enough viscosity, and a high enough surface tension, it will form lines as well as a water-based ink. Viscosity must be low with respect to the fluid surface tension for this control to function.
- Suitable nonaqueous diluents are the halogen substituted hydrocarbons in that they, for the most part, have low viscosities and can be obtained in pure form.
- the following are representative halogen susbtituted non-aqueous diluents: trifluoro trichloroethane, trichloroethylene, perchloroethylene, mono bromo difluoro trichloroethane and mono bromo difluoro mono iodo dichlorethane.
- nonaqueous ink is a new convenience in writing. This goal is met by the production of essentially nonvolatile fluids which will not evaporate as quickly as water and thus dry out in pens. On the other hand, they must also dry rapidly on paper.
- halogen compounds have advantages.
- the halogen atoms are all heavy atoms. When used to replace hydrogen, they increase the weight of the new molecule. Being substantially heavier, it takes more kinetic energy to hurl them from their liquid surface into the atmosphere. In other words, they do not evaporate rapidly.
- other chemical principles apply and because of their highly negative properties, they do evaporate somewhat more rapidly.
- Hydrazine is also an excellent diluent for use in lowering the viscosity of the nonaqueous inks.
- inks prepared with hydrazine require special handling when 6 used because of the toxicity and explosion hazard involved.
- the high surface tension of hydrazine and low viscosity would permit greater amounts to be added to the molecular associated liquid without averaging down its surface tension, and in principle it would be a preferred diluent.
- concentration of additive or additives in the finished associated liquid-base inks is not critical. Various concentrations of clumping agents, hygroscopic agents and/ or evaporation inhibitors can be employed depending upon the properties of the ink desired and the intended use. In general, a minor but specific property improving amount of each will be utilized. Specific concentrations can vary in the range of about 1 to 34 percent by weight.
- the maximum additive concentration in associated liquid-based inks would occur at fifty mole fraction percent of additive. Beyond this concentration, there would be more additive molecules than there are vehicle molecules. The practical range is, therefore, not greater than thirty-three mole fraction percent. This occurs when the additive has two hydrogen bonding sites per molecule and thus two di-functional vehicle molecules can associate with one additive molecule.
- Inks prepared as described above have been found to be substantially nonevaporating, nonpenetrating, of high surface tension, of low viscosity and capable of producing sharply defined markings on a web.
- the low viscosity inks of the present invention can be formulated from a variety of constituents. They include ink systems in which the vehicle consists of a single substance, i.e., a molecular associated liquid through di-functional or poly-functional hydrogen bonding between different molecules of the same substance. Mixtures of such substances can also be employed as vehicles forming the principal constituent of the ink.
- the properties of the ink can be controlled further through the use of additives which are mono-, di-, or polyfunctional hydrogen bond formers. Mixtures of such additives can also be utilized to produced inks of high surface tension and low viscosity. By the use of such additives, it is even possible to use a mono-functional molecule having only one hydrogen bonding site for the principal ink vehicle.
- Mono-functional hydrogen bonding liquids suitable for use as a vehicle in inks having a viscosity not in excess of 1000 cps. include aliphatic alcohols, e.g. methyl, ethyl, etc., simple amines, e.g. n-butyl amine, tert.-butyl amine, etc., ketones, e.g. acetone, etc., and the like.
- suitable di-functional liquids include hydrazine, formamide, dihydroxy alcohols, esters, diamines, symmetrical difluoro-tetrachloro ethane, and the like.
- Suitable polyfunctional vehicles include polyhydroxy alcohols, e.g.
- glycerol trimethylol propane, etc.
- polyamines e.g. triethylene, tetramine, hydrazine polymers, fluorinated hydrocarbons, e.g. trifluorotrichloro ethane, and the like.
- Each of the above substances can also be used as an additive in an ink system in accordance with the present invention.
- Additional additives are solid and liquid substances containing amino, hydroxyl or fluoride groups which are soluble in the above ink vehicles, e.g. sucrose, sucrose dioleate, arabitol, guar gum, raflinose, trimethylol propane, and the like.
- EXAMPLE 1 An example of a basic formula comprising a dye in a formamide vehicle.
- the novel formamide-based inks of the present invention are prepared by first insuring that the formamide is ammonia-free, as by a moderate heating and stirring, and thereupon adding the dyestauif and in some cases other additives to form a solution. The solution is ready for use after filtering. Where convenient, the additive is dissolved in the formamide prior to addition of the dyestuff.
- EXAMPLE 3 An example of a formamide ink including an anhydrous deliquescent agent.
- EXAMPLE 4 An example of a formamide ink including a nonevaporating additive.
- EXAMPLE 5 A second example of a formamide ink including a nonevaporating solvent additive. Hydroxyethyl formamide is particularly desirable in that it is a heavier molecule that increases the viscosity of the solution Without materially affecting its surface tension.
- EXAMPLE 6 An example of a formamide ink including a nonevaporating additive and a deliquescent additive.
- EXAMPLE 7 An example of a formamide ink including a non-evaporating additive and a deliquescent additive that is controlled by water addition.
- EXAMPLE 8 An example of a formamide ink that includes additional clumping molecules to aid the normally self-clumping solvent molecules of formamide and to improve their paper performance.
- Formamide Arabitol (a sugar relation) Dye EXAMPLE 9 An example of a formamide ink including pure sucrose as a clumping agent. Here the sucrose is soluble in its pure, unesterified form, and acts as a clumping agent. The built-in di-functional hydrogen bonding effect of the formamide vehicle makes it a good solvent for the sucrose.
- EXAMPLE 10 An example of a formamide ink including a. monofluoro-halo-mono alcohol as an evaporation inhibitor.
- a rapid-drying, nonevaporating, writing ink having a viscosity not in excess of 1000 c.p.s. consisting essentially of the range of from 65 to 99 weight percent of formamide and in the range of from 1 to 35 weight percent of a coloring agent present in an amount at least sufiicient to provide an acceptable coloration for marking purposes when used with a writing instrument.
- Writing ink according to claim 1 consisting essentially of from 65 to 99 Wt. percent formamide, from 1 to 35 wt. percent of a coloring agent and from 1 to 34 wt. percent of an additive comprising a compound having at least one hydrogen bonding site per molecule selected from the group consisting of sucrose, sucrose dioleate, arabitol, guar gum, If'gtifillQSti.
- trimethylolproprane polyethylene glycol, 2, 3, tetrachloro-4, monofluoro butyl alcohol, hydroxyethyl formamide, methyl alcohol, ethyl alcohol, n-butyl amine, t-butyl amine, acetone, hydrazine, difiuoro-tetrachloro ethane, glycerol, triethylene tetramine, trifluoro trichloro ethane and mixtures thereof.
- a rapid-drying, nonevaporating, low viscosity writing ink consisting essentially of from 65 to 99 wt. percent formamide, from 1 to 35 wt. percent of a coloring agent and from 1 to 34 wt. percent polyethylene glycol.
- a rapid-drying nonevaporating, low viscosity writing ink consisting essentially of from 65 to 99 -Wt. percent formamide, from 1 to 35 Wt. percent of a coloring agent and from 1 to 34 wt. percent hydroxyethyl formarnide.
- a rapid-drying, nonevaporating, low viscosity Writing ink consisting essentially of from 65 to 99 wt. percent formamide, from 1 to 35 Wt. percent of a coloring agent and from 1 to 34 wt. percent sucrose.
- a rapid-drying, nonevaporating, low viscosity Writing ink consisting essentially of from 65 to 99 Wt. percent formamide, from 1 to 35 Wt. percent of a coloring agent
- References Cited 2 UNITED STATES PATENTS 10/1950 Voet 106-30 2,684,909 7/1954 Leekley et al. 106-24 2,690,973 10/1954 Voet 106-20 2,966,417 12/1960 Anderson 106-22 JULIUS FROME, Primary Examiner I B. EVANS, Assistant Examiner US. Cl. X.R.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US50228865A | 1965-10-22 | 1965-10-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3486912A true US3486912A (en) | 1969-12-30 |
Family
ID=23997157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US502288A Expired - Lifetime US3486912A (en) | 1965-10-22 | 1965-10-22 | Nonaqueous ink |
Country Status (5)
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3779780A (en) * | 1971-06-07 | 1973-12-18 | Parker Pen Co | Writing ink containing nonanoic acid |
US3816144A (en) * | 1970-07-11 | 1974-06-11 | Agfa Gevaert Ag | Marking ink and method of using the same |
US4153467A (en) * | 1974-09-03 | 1979-05-08 | Dai Nippon Toryo Co., Ltd. | Method of ink jet printing |
US4256492A (en) * | 1978-05-02 | 1981-03-17 | Taihei Chemicals Ltd. | Marker ink for writing board |
US5076843A (en) * | 1989-10-27 | 1991-12-31 | Lexmark, International, Inc. | Nonaqueous thermaljet ink compositions |
US5324348A (en) * | 1993-07-13 | 1994-06-28 | Perret Jr Gerard A | Disposable orthodontic wire marker |
US20040181925A1 (en) * | 2000-12-28 | 2004-09-23 | Darif Mary M. | Paint color card and methods of using the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2525433A (en) * | 1947-09-23 | 1950-10-10 | Huber Corp J M | Inks |
US2684909A (en) * | 1951-09-11 | 1954-07-27 | Time Inc | Zein ink vehicle |
US2690973A (en) * | 1952-04-17 | 1954-10-05 | Huber Corp J M | Printing ink and varnish therefor |
US2966417A (en) * | 1958-01-03 | 1960-12-27 | Allied Chem | Red ball point fountain pen inks and colorants therefor |
-
1965
- 1965-10-22 US US502288A patent/US3486912A/en not_active Expired - Lifetime
-
1966
- 1966-10-12 DE DE19661669263 patent/DE1669263A1/de not_active Withdrawn
- 1966-10-21 ES ES0332893A patent/ES332893A1/es not_active Expired
- 1966-10-21 DK DK551166AA patent/DK129944B/da unknown
- 1966-10-21 BR BR183887/66A patent/BR6683887D0/pt unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2525433A (en) * | 1947-09-23 | 1950-10-10 | Huber Corp J M | Inks |
US2684909A (en) * | 1951-09-11 | 1954-07-27 | Time Inc | Zein ink vehicle |
US2690973A (en) * | 1952-04-17 | 1954-10-05 | Huber Corp J M | Printing ink and varnish therefor |
US2966417A (en) * | 1958-01-03 | 1960-12-27 | Allied Chem | Red ball point fountain pen inks and colorants therefor |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3816144A (en) * | 1970-07-11 | 1974-06-11 | Agfa Gevaert Ag | Marking ink and method of using the same |
US3779780A (en) * | 1971-06-07 | 1973-12-18 | Parker Pen Co | Writing ink containing nonanoic acid |
US4153467A (en) * | 1974-09-03 | 1979-05-08 | Dai Nippon Toryo Co., Ltd. | Method of ink jet printing |
US4256492A (en) * | 1978-05-02 | 1981-03-17 | Taihei Chemicals Ltd. | Marker ink for writing board |
US5076843A (en) * | 1989-10-27 | 1991-12-31 | Lexmark, International, Inc. | Nonaqueous thermaljet ink compositions |
US5324348A (en) * | 1993-07-13 | 1994-06-28 | Perret Jr Gerard A | Disposable orthodontic wire marker |
US20040181925A1 (en) * | 2000-12-28 | 2004-09-23 | Darif Mary M. | Paint color card and methods of using the same |
US20040181981A1 (en) * | 2000-12-28 | 2004-09-23 | Darif Mary M. | Paint color card and methods of using the same |
US6994553B2 (en) | 2000-12-28 | 2006-02-07 | The Sherwin-Williams Company | Paint color card and methods of using the same |
Also Published As
Publication number | Publication date |
---|---|
BR6683887D0 (pt) | 1973-08-02 |
DK129944B (da) | 1974-12-02 |
DE1669263A1 (de) | 1970-09-24 |
DK129944C (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1975-05-12 |
ES332893A1 (es) | 1967-09-01 |
Similar Documents
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PARKER PEN (BENELUX) N.V., TAKKEBIJSTERS 1, (4811 Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:PARKER PEN COMPANY THE A CORP. OF DE.;REEL/FRAME:004562/0893 Effective date: 19860131 Owner name: BANKERS TRUST COMPANY Free format text: SECURITY INTEREST;ASSIGNOR:PARKER PEN (BENELUX) N.V.;REEL/FRAME:004547/0644 Effective date: 19860131 |
|
AS | Assignment |
Owner name: PARKER PEN (BENELUX) N.V.,NETHERLANDS Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:BANKERS TRUST COMPANY;REEL/FRAME:004823/0983 Effective date: 19871029 Owner name: PARKER PEN (BENELUX) N.V., TAKKEBIJSTERS 1, (4811 Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:BANKERS TRUST COMPANY;REEL/FRAME:004823/0983 Effective date: 19871029 |
|
AS | Assignment |
Owner name: PARKER PEN (BENELUX) B.V. Free format text: RE-RECORD OF INSTRUMENT RECORDED MARCH 5, 1986, AT REEL 4562 FRAMES 0893-898 TO CORRECT NAME OF ASSIGNEE IN A PREVIOUSLY RECORDED ASSIGNEE.;ASSIGNOR:PARKER PEN COMPANY, THE, A DE CORP.;REEL/FRAME:004880/0123 Effective date: 19880316 Owner name: BANKERS TRUST COMPANY Free format text: RE-RECORD OF INSTRUMENT RECORDED MARCH 5, 1986 AT REEL 4547 FRAMES -0644-0648 TO CORRECT NAME OF ASSIGNOR IN A PREVIOUSLY RECORDED ASSIGNMENT.;ASSIGNOR:PARKER PEN (BENELUX) B.V.;REEL/FRAME:004880/0131 Effective date: 19880316 |
|
AS | Assignment |
Owner name: PARKER PEN (BENELUX) B.V. Free format text: RE-RECORD OF AN INSTRUMENT RECORDED JAN. 14, 1988, AT REEL 4823, FRAME 983-987 TO CORRECT THE NAME OF THE ASSIGNEE;ASSIGNOR:BANKERS TRUST COMPANY, A DE. CORP.;REEL/FRAME:005093/0539 Effective date: 19871029 |