US3481999A - Process for the selective hydrogenation of butadiene-(1,3) in a hydrocarbon mixture containing it and a larger quantity of butene-(1) - Google Patents

Process for the selective hydrogenation of butadiene-(1,3) in a hydrocarbon mixture containing it and a larger quantity of butene-(1) Download PDF

Info

Publication number
US3481999A
US3481999A US576512A US3481999DA US3481999A US 3481999 A US3481999 A US 3481999A US 576512 A US576512 A US 576512A US 3481999D A US3481999D A US 3481999DA US 3481999 A US3481999 A US 3481999A
Authority
US
United States
Prior art keywords
butene
butadiene
percent
catalyst
hydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US576512A
Other languages
English (en)
Inventor
Manfred Reich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huels AG
Original Assignee
Chemische Werke Huels AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemische Werke Huels AG filed Critical Chemische Werke Huels AG
Application granted granted Critical
Publication of US3481999A publication Critical patent/US3481999A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel

Definitions

  • fractions are produced that consist principally of C -hydrocarbons such as n-butane, n-butene-l, cisbutene-2, transbutene-2 and butadiene-(1,3). Further fractionation will result in fractions consisting principally of butenes, butane and small quantities of butadiene. Further separation of the butadiene by fractionation is unrewarding but its presence interferes with the general use of these products.
  • C -hydrocarbons such as n-butane, n-butene-l, cisbutene-2, transbutene-2 and butadiene-(1,3).
  • a method has now been found for the selective hydrogenation of butadiene-(1,3) in a hydrocarbon mixture containing larger quantities of butene-(l) as well as lesser quantities of butadiene-( 1,3) by the use of a coppernickel carrier catalyst having a metal content within the Patented Dec. 2, 1969 range from 2 to 60. percent by weight and the coppernickel ratio within the ranges from 10:1 to 1:1.
  • the catalyst can contain the known modifiers for copper catalysts such as chromium, chromium oxide, phosphate or magnesium.
  • the modifiers are employed in quantities of from .05 to 15 percent by weight, preferably .2 to 3 percent by weight, relative to the total Weight of the catalyst.
  • the butadiene containing C -hydrocarbon mixtures employed comprising for example butene-l, cisand trans butene-Z, n-butane, isobutene and isobutane, have a content of butadiene-1,3 of up to approximately 5 mol-percent and small quantities of other hydrocarbons, for example C and C -hydrocarbons, can also be present. If small quantities of acetylenes such as ethylor vinylacetylene, or compounds with cumulated double bonds such as propadiene or butadiene-1,2 are present, they will be hydrogenated together with the butadiene-1,3.
  • hydrogen In order to carry out the hydrogenation, hydrogen must be added to the mixture unless it is already present.
  • the quantity of hydrogen required depends on the content of butadiene-1,3 or the compounds to be hydrogenated and must be at least equimolecular to them but can also be a multiple thereof, for example five or tenfold molarwise. Molar ratios between approximately 1.2 and 3 are advantageous.
  • the method permits the employment of hydrogen at such a specific quantity that for all practical purposes no hydrogen will be left in the hydrogenated hydrocarbon mixture which is an important feature in case of further processing, for example by polymerization, because small quantities of hydrogen will often interfere with the reaction.
  • the hydrogenation temperature should range from 40 to 200 C., and preferably between and C. It is advisable to set the temperature as low as feasible, depending on the quantity of the hydrogen and the quantity of throughput. A high hydrogen content and a low throughput will permit the use of a lower temperature.
  • the throughput quantity normally ranges from 2 to 12 kg. of hydrocarbon mixture per hour and per liter of catalyst at butadiene contents between approximately 4 and .4 mol-percent. A higher content of butadiene will lower the maximum throughput value but there is no need to maintain any specific throughput value.
  • the process can be carried out either under normal pressure or lower as well as higher pressure, ranging preferably from .2 to 30 atmospheres absolute pressure. If the C -hydrocarbon mixture is not to be further processed in the gaseous state, it is advantageous to operate at hydrogenation pressures of 4 to 8 atmospheres so that the mixture will be in the liquid state at room temperature.
  • the mixed catalysts are prepared by the simultaneous impregnation of a carrier with solution or suspension of a copper salt such as copper carbonate, copper acetate, copper formate or copper nitrate and a nickel salt such as nickel carbonate, nickel acetate, nickel formate or nickel nitrate, optionally with an addition of ammonia to improve solubilization.
  • a copper salt such as copper carbonate, copper acetate, copper formate or copper nitrate
  • a nickel salt such as nickel carbonate, nickel acetate, nickel formate or nickel nitrate
  • ammonia to improve solubilization.
  • chromic acid, phosphates or magnesium salts which are standard modifiers for copper catalysts can be added. It is also possible to fix these salts to the carrier by means of auxiliary materials such as sodium silicate.
  • the solutions or suspensions are prepared and applied to the carrier in such manner that the copper/ nickel ratio of the completely reduced carrier-catalyst will range from 10:1 to 1:1, and preferably from 5:1 to 2:1. It is expedient to desiccate the catalyst and it can be subjected to an intermediate thermal treatment at approximately 300 to 400 C. It is advisable to reduce the catalyst, in a manner known per se, by the use of hydrogen at approximately 100 to 250 C. prior to the addition of the mixture to be hydrogenated.
  • Suitable carrier materials are for example silica gel, pumice, kaolin, aluminum oxide and magnesium oxide.
  • the carrier material content of the total catalyzer ranges from 40 to 98 percent by weight, and corresponding thereto the content of the activating metals ranges from 2 to 60 percent by weight.
  • the method of the present invention offers the advantage of very high selectivity for the hydrogenation of the butadiene-1,3 to butene-l without any substantial isomerization to butene-2 and without the formation of significant quantities of butadiene. Also, the activity and selectivity of the catalyst will last for a long period of time.
  • this method is particularly suitable if it is desired to obtain butene-l for further processing. Also advantageous is the possibility to obtain a product which for practical purposes contains no hydrogen.
  • the hydrogenation product does not contain any sulphur compounds which will often interfere with further processing.
  • small quantities of sulphur for example p.p.m., which might be present in the original mixture, will be tolerated by the catalyst of the present invention.
  • the invention has the advantage of greater selectivity, and in case of activated copper catalysts the additional advantage of lower hydrogenation temperatures which in turn has a favorable effect on the suppression of the isomerization to butene-2 and on the durability of catalyst.
  • the method of the present invention again provides much better selectivity if utilization of the butene-l is desired as is proved by the literature (see i.e. Erdoel und Kohle) because the butadiene hydrogenated by use of the liquid phase method is obtained in the form of n-butene-2 and a certain isomerization from n-butene-l to n-butene-2 will take place also.
  • Example 1 The starting material was a C -fraction of the following compositions:
  • the fraction Prior to entering the hydrogenation furnace the fraction is mixed with 2.0 percent by volume of hydrogen and is then conducted in the gaseous state at a volume space velocity of 1500 Nl./h. at atmospheric pressure over 1 liter of catalyst.
  • the hydrogenation furnace has a temperature of 100 to 110 C.
  • the catalyst was prepared by simultaneous application of basic copper carbonate, nickel carbonate and magnesium carbonate onto pumice with the aid of sodium silicate so that the content of copper was 10.5%, the content of nickel 2.5% and the content of magnesium 1.1%. Prior to its use the catalyst was reduced by means of hydrogen at 200 C.
  • the hydrocarbon mixture leaving the hydrogenation furnace had the following composition (disregarding the sllght quantity of hydrogen): 8'
  • butadiene was eliminated .005% and selectively hydrogenated to butene-l without additional production of butane and without any isomerization from butene-l to butene-Z.
  • Example 3 A hydrocarbon mixture of the same composition as listed in Example 2 was conducted with a gradual addition of 2.0' mol-percent of hydrogen, at a pressure of 4 atmospheres gauge pressure, at the rate of 75 kg. per hour and at a hydrogenation temperature of approximately 100 to C. over 9 liter of a catalyst which contained 9% of Cu, 3% of Ni and .4% of Cr on silica gel.
  • the catalyst was prepared by impregnation of the carrier with the ammoniacal-aqueous solutions of the proper quantities of the carbonates, or formate of copper and nickel respectively and chromic acid, subsequent desiccation and reduction with hydrogen.
  • the hydrocarbon mixture upon leaving the furnace, had practically the same composition as the mixture obtained in case of Example 2, namely with the remainder being other hydrocarbons.
  • the butad1ene-1,3 was reduced to less than .005 mol-percent.
  • Example 4 A hydrocarbon mixture with a content of Mel percent n-Butane 6.5 n-Butene-l a- 23.5 Trans-butene-2 42.1 Cis-butene-Z 24.3
  • Example 5 A hydrocarbon mixture containing 99.1 molpercent of n-butene-l and a .3 mol-percent of butadiene-l,3 with the remainder of .6 mol-percent consisting primarily of isobutene was conducted, with the gradual addition of .5 mol-percent of hydrogen, at a pressure of 4 atmospheres gauge pressure, at the rate of approximately kg. per hour and at a hydrogenation temperature of 85 to 90 C. over 1 liter of a catalyst as described in Example 3.
  • the hydrocarbon mixture leaving the hydrogenation furnace had (disregarding the small quantity of hydrogen) a content of 99.3 moi-percent of n-butene-l, the remainder being primarily isobutene.
  • the butadiene- 1,3 was reduced to less than .005 mol-percent.
  • Example 2a A hydrocarbon mixture of the composition set forth in Example 2 was hydrogenated under the same conditions as given in Example 2, the only difference being that the catalyst, while. having been prepared in the same manner, container 10% of Cu and .2% of Ni on silica gel.
  • the hydrocarbon mixture upon leaving the furnace, had the following composition:
  • Method for the selective hydrogenation of butadiene- 1,3 in a hydrocarbon mixture containing only a small amount of butadiene-l,3 and a much larger quantity of butene-l which comprises hydrogenating said mixture at a temperature within the range 40 to C., in the presence of a copper-nickel-containing carrier catalyst having a metal content of from 2 to 60 percent by weight and a copper-nickel ratio from 10:1 to 1:1, whereby the butadiene-1,3 of the mixture is selectively hydrogenated whilst isomerization of butene-l is avoided.
  • Method according to claim 1 in which the catalyst contains a copper catalyst modifier in quantity from .05 to 15 percent by weight, relative to the total weight of the catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
US576512A 1965-10-29 1966-08-29 Process for the selective hydrogenation of butadiene-(1,3) in a hydrocarbon mixture containing it and a larger quantity of butene-(1) Expired - Lifetime US3481999A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DEC37273A DE1280845B (de) 1965-10-29 1965-10-29 Verfahren zur selektiven Hydrierung von Butadien-(1, 3) in einem groessere Mengen Buten-1 sowie geringe Mengen Butadien-(1, 3) enthaltenden C-Kohlenwasserstoffgemisch

Publications (1)

Publication Number Publication Date
US3481999A true US3481999A (en) 1969-12-02

Family

ID=7022729

Family Applications (1)

Application Number Title Priority Date Filing Date
US576512A Expired - Lifetime US3481999A (en) 1965-10-29 1966-08-29 Process for the selective hydrogenation of butadiene-(1,3) in a hydrocarbon mixture containing it and a larger quantity of butene-(1)

Country Status (4)

Country Link
US (1) US3481999A (enrdf_load_stackoverflow)
BE (1) BE689076A (enrdf_load_stackoverflow)
DE (1) DE1280845B (enrdf_load_stackoverflow)
GB (1) GB1146757A (enrdf_load_stackoverflow)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4260840A (en) * 1980-01-11 1981-04-07 Exxon Research & Engineering Co. Butene-1 containing feed purification process(CS-165)
WO2015170282A1 (en) 2014-05-07 2015-11-12 Sabic Global Technologies B.V. Methods and systems for separating c4 crude streams
WO2019081628A1 (de) 2017-10-25 2019-05-02 Basf Se Verfahren zur entfernung von dienen aus einem c3- bis c5-kohlenwasserstoffe enthaltenden stoffstrom durch selektivhydrierung
WO2019233961A1 (en) 2018-06-07 2019-12-12 Bp P.L.C. Selective hydrogenation of polyunsaturates
WO2022271796A3 (en) * 2021-06-22 2023-02-02 Battelle Memorial Institute Systems and methods for preparing butenes

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2482953A1 (fr) * 1980-05-22 1981-11-27 Inst Francais Du Petrole Procede d'hydrogenation selective d'une di-olefine dans un melange d'hydrocarbures renfermant au moins 4 atomes de carbone et contenant une olefine -a
IT1194351B (it) * 1983-07-28 1988-09-22 Snam Progetti Procedimento per il recupero di butene-1 grado polimerizzazione

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3076858A (en) * 1958-06-16 1963-02-05 Dow Chemical Co Selective hydrogenation in the presence of copper catalysts

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3076858A (en) * 1958-06-16 1963-02-05 Dow Chemical Co Selective hydrogenation in the presence of copper catalysts

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4260840A (en) * 1980-01-11 1981-04-07 Exxon Research & Engineering Co. Butene-1 containing feed purification process(CS-165)
WO2015170282A1 (en) 2014-05-07 2015-11-12 Sabic Global Technologies B.V. Methods and systems for separating c4 crude streams
US9957211B2 (en) 2014-05-07 2018-05-01 Sabic Global Technologies B.V. Methods and systems for separating C4 crude streams
WO2019081628A1 (de) 2017-10-25 2019-05-02 Basf Se Verfahren zur entfernung von dienen aus einem c3- bis c5-kohlenwasserstoffe enthaltenden stoffstrom durch selektivhydrierung
US11384037B2 (en) 2017-10-25 2022-07-12 Basf Se Method for removing dienes from a material stream containing C3 to C5 hydrocarbons by selective hydrogenation
WO2019233961A1 (en) 2018-06-07 2019-12-12 Bp P.L.C. Selective hydrogenation of polyunsaturates
CN112739669A (zh) * 2018-06-07 2021-04-30 英国石油有限公司 多不饱和物的选择性加氢
US11613505B2 (en) 2018-06-07 2023-03-28 Bp P.L.C. Selective hydrogenation of polyunsaturates
WO2022271796A3 (en) * 2021-06-22 2023-02-02 Battelle Memorial Institute Systems and methods for preparing butenes
US11840491B2 (en) 2021-06-22 2023-12-12 Battelle Memorial Institute Systems and methods for preparing butenes

Also Published As

Publication number Publication date
BE689076A (enrdf_load_stackoverflow) 1967-03-31
GB1146757A (en) 1969-03-26
DE1280845B (de) 1968-10-24

Similar Documents

Publication Publication Date Title
US2395875A (en) Dehydrogenation of hydrocarbons
US3437703A (en) Catalytic dehydrogenation process and compositions
US3485887A (en) Process for the treatment by hydrogenation of c4-hydrocarbons containing butadiene and n-but-1-ene
US3845156A (en) Processes for dehydrogenation of organic compounds
US3904703A (en) Dehydrogenation process
US2408140A (en) Dehydrogenation catalyst
US2837587A (en) Purification of olefin-rich feed prior to polymerization
KR20100075997A (ko) 올레핀의 이성질화 방법
US3662015A (en) Method of preventing double bond migration of mono-olefinic hydrocarbons in selective hydrogenation
US3810953A (en) Dehydrogenation of organic compounds
US3200167A (en) Process for the removal of acetylenic hydrocarbons by selective catalyst hydrogenation
US3098882A (en) Selective hydrogenation procedure and catalyst therefor
US2426118A (en) Process for the catalytic dehydrogenation of hydrocarbons
US3481999A (en) Process for the selective hydrogenation of butadiene-(1,3) in a hydrocarbon mixture containing it and a larger quantity of butene-(1)
US4658080A (en) Acetylene removal process
US2383643A (en) Catalytic dehydrogenation
US3634536A (en) Selective hydrogenation of alkynes
US3274286A (en) Process for the removal of acetylenic hydrocarbons from hydrocarbon mixtures containing diolefines
US3926845A (en) Catalysts compositions
US3320329A (en) Oxidative dehydrogenation over stannic phosphate catalyst
US4009126A (en) Catalyst for removing acetylenic impurities
US2395876A (en) Chemical process
US3679763A (en) Purification of process gas streams by hydrogenation
US3621073A (en) Process for producing 2-methyl-butene-2 from butene streams
US4334116A (en) Dehydrogenation using promoted molybdenum-copper-tin catalysts