US3478921A - Notched can body - Google Patents
Notched can body Download PDFInfo
- Publication number
- US3478921A US3478921A US642670A US3478921DA US3478921A US 3478921 A US3478921 A US 3478921A US 642670 A US642670 A US 642670A US 3478921D A US3478921D A US 3478921DA US 3478921 A US3478921 A US 3478921A
- Authority
- US
- United States
- Prior art keywords
- seam
- metal
- notch
- inch
- welded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D51/00—Making hollow objects
- B21D51/16—Making hollow objects characterised by the use of the objects
- B21D51/26—Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner
- B21D51/2676—Cans or tins having longitudinal or helical seams
Definitions
- This disclosure relates to a metal can body having a Welded side seam and wherein the ends of the can body are flanged preparatory to the double seaming of cans thereto.
- the extreme ends thereof are circumferentially tensibly stressed and the can bodies are subject to cracking.
- the undue stressing of the extreme ends of the can body during fianging is prevented by a notching arrangement which relieves 'the circumferential tensile stresses.
- This invention relates in general to new and useful improvements in can body construction and more particularly to a welded seam can body.
- the metal of the extreme ends of the can body is elongated approximately 8 percent.
- the can body ends are circumferentially tensibly stressed, to an extent which may cause cracking.
- the tendency of the can bodies to crack is increased. This may be due to several reasons. First, in the area of the welded seam, the thickness of the metal is substantially double that of the remainder of the can body with the result that the resistance to elongation of the double thickness area is much greater and the elongation which would normally occur in the double thickness area must occur in the adjacent metal.
- the metal immediately adjacent the side seam becomes softened due to annealing thereof and is subject to greater elongation.
- the metal immediately adjacent to the welded seam may be thinner than the remaining metal of the can body either due to the mechanical cleaning of the metal prior to welding or to the action of the welding rolls during the welding operation.
- FIGURE 1 is a fragmentary perspective view of an "ice end portion of a flanged welded seam can body and shows a typical crack formed therein.
- FIGURE 2 is a plan view on a reduced scale of a body blank formed in accordance with this invention.
- FIGURE 3 is a perspective view of an unflanged can body formed in accordance with this invention.
- FIGURE 4 is a fragmentary perspective view similar to FIGURE 1 and shows a flanged welded seam can body formed in accordance with this invention.
- FIGURE 5 is an enlarged fragmentary plan view of a corner of a body blank and shows a preferred notching arrangement.
- FIGURE 7 is a fragmentary plan view similar to FIG- URE 5 and shows a score line arrangement.
- This invention particularly relates to can bodies having welded side seams wherein the can bodies are formed from body blanks of a thin metal as compared to conventional can body constructions.
- This thin metal is work hardened.
- the edges of the blank to be welded be free of contamination.
- a practical method of accomplishing this is by way of a mechanical abrading operation wherein there is a slight thinning of the metal.
- the body blank is formed into a cylindrical configuration in the customary manner, after which the side seam is welded.
- the heat generated in the metal along the side seam during the welding operation partially flows into the adjacent metal of the can body and is dissipated.
- the heating of the metal adjacent the side seam is sufficient to anneal the work hardened metal with the result that the metal of the can body circumferentially adjacent the welded side seam is softer than the remainder of the metal and is subject to greater tensile elongation.
- the metal circumferentially adjacent the welded seam is further subject to greater elongation when tensibly stressed.
- the metal of the welded side seam is substantially twice as thick as that of the remainder of the can body, the metal of the welded side seam does not elongate proportionally and, therefore, the body material immediately adjacent the side seam is placed under severe stress to provide the normal increment of elongation plus the amount not contributed by the non-yielding side seam.
- the above described can body When the above described can body is flanged, at the extreme end thereof it is subjected to an elongation on the order of 8 percent. During fianging, the entire extreme end portion of the can body is circumferentially tensibly stressed. Additionally, the flanged portion of the can body has the internal surface thereof axially tensibly stressed and the external surface thereof axially compressibly stressed.
- FIGURE 1 With reference to FIGURE 1, it will be seen that there is illustrated a welded seam can body which is generally referred to by the numeral 10.
- the can body 10 is provided at the illustrated end thereof with a flange 11 preparatory to the securement of an end thereto by means of a double seaming operation.
- the double thickness of the welded side seam 12 is clearly visible in FIGURE 1.
- FIGURE 2 there is illustrated a body blank from which the can body 10 is formed.
- the notching system is provided in the body blank 15 While it is still in a fiat state. Thereafter, the body blank 15 is shaped into cylindrical form with the side edges thereof overlapped and the welded side seam 12 is formed. The notches 14 are then disposed on opposite sides of the welded side seam 12, as is best shown in FIGURE 3.
- the can body 10 of FIGURE 3 may have the extreme ends thereof flanged in any desired conventional manner.
- the portion of the can body 10 between the notches 14, which portion includes the welded side seam 12 is merely folded over during the flanging operation without any undue circumferential stressing thereof. While the remainder of the extreme edge of the can body 10 is stressed during the formation of the flange 11, there are no stress areas where undue stressing will occur and accordingly, the flanging will be without fear of cracking.
- the shape, depth and position of the notches 14 are critical.
- the depth of the notches 14 must be held to a minimum in order to provide for the proper forming of the required double seam during the securcment of a can end to the can body 10.
- the notches 14 must have a shape which will eliminate the formation of stress points generally along the periphery of the notches. Further, the notches 14 must be sufiiciently close to the welded seam 12 to perform their stress relieving function.
- FIGURE 5 it will be seen that there is illustrated enlarged details of one corner of the body blank 15.
- the body blank will have the opposite surfaces thereof covered with a coating 16. That surface of the body blank 15 which becomes the internal surface of the can body 10 will be coated with a suitable protective coating whereas the exterior surface will be coated with a decorative coating.
- the side edges of the body blank are cleaned as at 17.
- the width of the cleansed area 17 will at least be equal to the amount of overlap of the side edges during the formation of the welded side seam 12 and normally will be slightly greater to assure effective cleaning operation.
- the cleaning of the side edge portions 17 may be effected in various manners, it has been found that the most effective manner is by an abrading operation which also results in a minor thinning and weakening of the metal of the body blank 15.
- the notch 14- be spaced outwardly of the area of the edge portions 17 when there is a thinning of the body blank during the cleaning operation.
- the notch 14 is spaced from the extreme side edge of the body blank 15 a distance X. On a beverage can having a diameter of 2 inches, this should not exceed 0.250 inch. On the other hand, the minimum dimension of X should not fall below 0.040 inch.
- the notching 14 be accomplished by means of a circular punch 18 having a radius with a dimension Y. It has been found that the most effective range of the dimension Y is from inch to inch.
- the die 18 is offset relative to the end edge of the body blank 15 so as to provide for a notch depth of a dimension Z.
- the notched depth preferably should be in the range of 0.010 inch to 0.030 inch.
- the configuration of the notch 14 is not so limited.
- the body blank 15 is illustrated as being provided with a notch 20.
- the notch 20 has that ortion thereof adjacent the side edge of the body blank of a small diameter radius as at 21.
- the boundary of the notch 20 then slopes generally upwardly as at 22 away from the small radius portion 21.
- the sloping portion 22 is preferably arcuate but may be of a straight line configuration.
- the sloping portion 22 may have a relatively small radius curvature at the end thereof remote from the small radius portion 21 so that the notch 20 is generally U- shaped.
- the stress relieving means need not necessarily be in the form of a notch.
- a score line 23 having the same configuration as the boundary of an acceptable notch may be provided.
- any cracking which would normally occur will occur along the score line 23 and at a maximum would result in the complete breaking out of a chip24 defined by the score line 23.
- An outwardly flanged bonded side seam metal can body said can body having notch means formed in at least one of the flanges thereof on opposite sides of said bonded seam for preventing the cracking of said can body due to circumferential elongation during the formation of said flanges, and a portion of said side seam being circumferentially intermediate said notch means.
- the can body of claim 1 wherein the metal of said can body along said bonded seam has a greater resistance to circumferential elongation than the remainder of said can body whereby the metal of said can body at the ends thereof is subject to undue stress during the formation of said one flange.
- each of said notch means is in the form of a shallow notch.
- each of said notch means is formed to a depth ranging from 0.010 inch to 0.030 inch.
- each of said notch means is formed to a depth ranging from 0.010 inch to to 0.030 inch.
- each of said notch means is formed to a depth ranging from 0.010 inch to 0.030 inch and is circumferentially disposed from a corresponding free edge a distance ranging from .040 inch to 0.250 inch.
- the can body of claim 10 wherein the optimum dimensions of said notch are on the order of a depth of 0.022 inch, a spacing of 0.080 inch and a radius of 7 inch.
- each of said notch means is in the form of a score in said flange with the opposite ends of said score opening through the ends of said can body.
- a blank for a bonded side seam can body, said blank being flat and of single ply and being flat, of a single ply and having two side edges and two end edges, and a notch formed in at least one end edge adjacent each side edge for facilitating elongation of said blank along said at least one end edge.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Rigid Containers With Two Or More Constituent Elements (AREA)
- Arc Welding In General (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US64267067A | 1967-05-25 | 1967-05-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3478921A true US3478921A (en) | 1969-11-18 |
Family
ID=24577538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US642670A Expired - Lifetime US3478921A (en) | 1967-05-25 | 1967-05-25 | Notched can body |
Country Status (9)
Country | Link |
---|---|
US (1) | US3478921A (da) |
AT (1) | AT284599B (da) |
BE (1) | BE715295A (da) |
CH (1) | CH464836A (da) |
DK (1) | DK137566B (da) |
FR (1) | FR1567492A (da) |
GB (1) | GB1191564A (da) |
NL (1) | NL155744B (da) |
SU (1) | SU387545A3 (da) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3670921A (en) * | 1970-01-12 | 1972-06-20 | Continental Can Co | Stress relieved container and method of making same |
US3718107A (en) * | 1971-08-24 | 1973-02-27 | Continental Can Co | Method of making stress relieved containers |
US4473164A (en) * | 1982-08-25 | 1984-09-25 | Lorenzen Jan A | Helically formed container of the drum type |
EP1500598A1 (en) * | 2002-04-30 | 2005-01-26 | Daiwa Can Company | Opening curled part of metal container and method of forming the opening curled part |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106834858A (zh) * | 2017-03-02 | 2017-06-13 | 江苏峰峰钨钼制品股份有限公司 | 一种钼铼镧钾大棒及其制备方法 |
RU180392U1 (ru) * | 2017-07-18 | 2018-06-09 | Акционерное общество "Научно-производственный центр газотурбостроения "Салют" (АО НПЦ газотурбостроения "Салют") | Заготовка трубчатой детали с фланцем |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1643252A (en) * | 1926-05-10 | 1927-09-20 | Pittsburgh Steel Drum Company | Shipping drum |
US2120038A (en) * | 1935-06-18 | 1938-06-07 | Continental Can Co | Metal can body |
US2711147A (en) * | 1951-12-10 | 1955-06-21 | Continental Can Co | Method of forming can bodies |
US3179284A (en) * | 1957-10-10 | 1965-04-20 | Ard Corp | Metal container |
-
1967
- 1967-05-25 US US642670A patent/US3478921A/en not_active Expired - Lifetime
-
1968
- 1968-03-07 CH CH334968A patent/CH464836A/de unknown
- 1968-03-20 AT AT275768A patent/AT284599B/de not_active IP Right Cessation
- 1968-05-09 NL NL6806565.A patent/NL155744B/xx not_active IP Right Cessation
- 1968-05-17 BE BE715295D patent/BE715295A/xx not_active IP Right Cessation
- 1968-05-21 GB GB24205/68A patent/GB1191564A/en not_active Expired
- 1968-05-22 FR FR1567492D patent/FR1567492A/fr not_active Expired
- 1968-05-24 DK DK243668AA patent/DK137566B/da unknown
- 1968-05-24 SU SU1243043A patent/SU387545A3/ru active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1643252A (en) * | 1926-05-10 | 1927-09-20 | Pittsburgh Steel Drum Company | Shipping drum |
US2120038A (en) * | 1935-06-18 | 1938-06-07 | Continental Can Co | Metal can body |
US2711147A (en) * | 1951-12-10 | 1955-06-21 | Continental Can Co | Method of forming can bodies |
US3179284A (en) * | 1957-10-10 | 1965-04-20 | Ard Corp | Metal container |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3670921A (en) * | 1970-01-12 | 1972-06-20 | Continental Can Co | Stress relieved container and method of making same |
US3718107A (en) * | 1971-08-24 | 1973-02-27 | Continental Can Co | Method of making stress relieved containers |
US4473164A (en) * | 1982-08-25 | 1984-09-25 | Lorenzen Jan A | Helically formed container of the drum type |
US20050218140A1 (en) * | 2002-03-17 | 2005-10-06 | Yasushi Enoki | Opening curled part of metal container and method of forming the opening curled part |
EP1500598A1 (en) * | 2002-04-30 | 2005-01-26 | Daiwa Can Company | Opening curled part of metal container and method of forming the opening curled part |
EP1500598A4 (en) * | 2002-04-30 | 2007-06-13 | Daiwa Can Co Ltd | SPIRAL OPENING PART OF A METAL CONTAINER AND METHOD FOR FORMING SAID SPIRAL OPENING PART |
US20090035096A1 (en) * | 2002-04-30 | 2009-02-05 | Daiwa Can Company | Opening curled portion of metal can and forming method thereof |
US7497350B2 (en) | 2002-04-30 | 2009-03-03 | Daiwa Can Company | Opening curled part of metal container and method of forming the opening curled part |
US7721578B2 (en) | 2002-04-30 | 2010-05-25 | Daiwa Can Company | Opening curled portion of metal can and forming method thereof |
Also Published As
Publication number | Publication date |
---|---|
FR1567492A (da) | 1969-05-16 |
CH464836A (de) | 1968-11-15 |
SU387545A3 (da) | 1973-06-21 |
AT284599B (de) | 1970-09-25 |
BE715295A (da) | 1968-10-16 |
DE1657137A1 (de) | 1971-01-14 |
DK137566C (da) | 1978-09-11 |
GB1191564A (en) | 1970-05-13 |
NL155744B (nl) | 1978-02-15 |
DK137566B (da) | 1978-03-28 |
NL6806565A (da) | 1968-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3786957A (en) | Double stage necking | |
US1895133A (en) | Tubing | |
US3618817A (en) | Food container and method of making the same | |
EP0140924B1 (en) | Improved method and apparatus for making a necked container | |
US3478921A (en) | Notched can body | |
US3845653A (en) | Double stage necking | |
US2455737A (en) | Method of attaching metal closures to containers | |
US2306945A (en) | Method of edge conditioning sheet metal | |
US2335593A (en) | Attaching nut | |
US3566661A (en) | Metal forming | |
US2237102A (en) | Baking tray and method of making it | |
US4637521A (en) | Openable can body | |
US3191797A (en) | Sheet metal joint | |
JPS627056B2 (da) | ||
US3864813A (en) | Process for conditioning the welding area of the cylindrical body of a packing can | |
US3670921A (en) | Stress relieved container and method of making same | |
US3718107A (en) | Method of making stress relieved containers | |
US2012589A (en) | Process of making disks for centrifugal separator bowls | |
US1455525A (en) | Method of manufacturing sheet-metal receptacles or containers | |
US3690279A (en) | Necked-in can body and method and apparatus for making same | |
US2119999A (en) | Welding strip | |
US2303019A (en) | Method of flanging can bodies | |
US2295729A (en) | Metallic container | |
US2055934A (en) | Method of making can bodies from black plate | |
CA2023187C (en) | End shape modification to reduce end hook wrinkling |