US3469429A - Turn-layers with an edenborn rotating laying tube - Google Patents
Turn-layers with an edenborn rotating laying tube Download PDFInfo
- Publication number
- US3469429A US3469429A US615707A US3469429DA US3469429A US 3469429 A US3469429 A US 3469429A US 615707 A US615707 A US 615707A US 3469429D A US3469429D A US 3469429DA US 3469429 A US3469429 A US 3469429A
- Authority
- US
- United States
- Prior art keywords
- turns
- wire
- worm thread
- laying tube
- laying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES, PROFILES OR LIKE SEMI-MANUFACTURED PRODUCTS OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C47/00—Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
- B21C47/26—Special arrangements with regard to simultaneous or subsequent treatment of the material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES, PROFILES OR LIKE SEMI-MANUFACTURED PRODUCTS OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C47/00—Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
- B21C47/02—Winding-up or coiling
- B21C47/10—Winding-up or coiling by means of a moving guide
- B21C47/14—Winding-up or coiling by means of a moving guide by means of a rotating guide, e.g. laying the material around a stationary reel or drum
- B21C47/143—Winding-up or coiling by means of a moving guide by means of a rotating guide, e.g. laying the material around a stationary reel or drum the guide being a tube
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES, PROFILES OR LIKE SEMI-MANUFACTURED PRODUCTS OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C47/00—Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
- B21C47/26—Special arrangements with regard to simultaneous or subsequent treatment of the material
- B21C47/262—Treatment of a wire, while in the form of overlapping non-concentric rings
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/84—Controlled slow cooling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
- C21D9/573—Continuous furnaces for strip or wire with cooling
- C21D9/5732—Continuous furnaces for strip or wire with cooling of wires; of rods
Definitions
- This invention relates to a device for continuously forming rod or wire into a series of helical turns.
- a rotary laying tube is utilized for bending the rod or wire into the turns, and the tube has an inlet opening located adjacent the axis of rotation of the tube, and an outlet opening rotatable in a circular path.
- drive means which rotate the tube and the worm thread guide at the same speed.
- This invention relates to a turn-layer with a rotating laying tube on the Edenborn principle, by which the material is laid continuously in individual turns.
- the wire or rod coming from the last roll stand after running through a water cooling tract, is guided round in an arc in such a way it runs from above into a hollow shaft rotating about a vertical axis, and is thereby laid in turns.
- the hollow shaft at its outlet end, is constructed as a laying tube, and is angularly bent and spatially curved in such a way that the outlet aperture moves upon a circular path corresponding to the mean diameter of the wire rings, and the wire issues tangentially to this circular path, the peripheral speed of the outlet aperture being equal to the rolling speed .of the wire or rod.
- the term wire is meant to include wire rod and rod, namely, material from a rod mill, and such material after having been drawn.
- the wire is first fanned out into non-concentric turns by the laying tube of the turn-layer upon a conveying device, and then supplied to a collecting device, the individual turns of wire falling into a collecting device at the end of. the conveyor.
- the object of the present invention is to improve the devices for the formation of the individual turns of wire in such a way that they can also be employed with high rolling speeds, over a wide range of wire cross-sections and at a relatively low temperature, whilst the formation of a series or string of turns of wire with definite spacing of the turns is ensured. Furthermore the turns of wire are laid without disturbance upon a succeeding conveyor, in order thereby to ensure a high degree of reliability in the operation of the plant.
- a method for the formation of individual turns of wire, wherein the rolled stock is fed into a worm thread, rotating, jointly with the laying tube, about a vertical or a horizontal axis, and shaped into a series of turns of wire.
- the wire coming from the train of rolls for instance, is shaped in the worm thread into turns of wire with a definite spacing of turns, and is laid in turns of wire and guided to a subsequent conveyor, which takes over the turns of wire, and supplies them for instance to a collecting station.
- the conveyor may be of various designs.
- the worm thread may support and carry forward the turns of wire in the position in which they are formed by the worm thread, that is, with a laying tube rotatable about a horizontal longitudinal axis, standing in a vertical plane, or, in the case of a laying tube rotatable about a vertical longitudinal axis, which might be etfected for example by means of successive worm conveyors concentrically embracing the individual turns of wire, or by means of circulating conveyor belts concentrically arranged along the turns of wire.
- the lower portion of the turns of wire could be retarded, in the case of a laying tube rotatable about a horizontal longitudinal axis, after leaving the worm thread before running up on to a conveyor upon a chute, or on a tripping edge, a sprocket wheel, a cam disc or the like, and to be thereby titled forward and advanced horizontally.
- a definite guidance with a predetermined diameter of turn, is additionally given by the worm thread.
- this turnlayer there is associated with the laying tube a worm thread rotating jointly with the latter, and the outlet aperture of the laying tube is directed into the worm thread.
- the axis of rotation of the laying tube may be arranged in either a horizontal or a vertical plane.
- the wire introduced from the laying tube into the worm thread may be guided towards that wall of the worm thread, which is located in front of the outlet aperture of the laying tube, i.e. the wall of the worm thread which faces in the generally upstream direction.
- the wall of the worm thread which faces in the generally upstream direction is termed the leading wall herein, while the wall of the worm thread which faces in the generally downstream direction is termed the trailing wall.
- the worm thread wall may be adjusted for influencing the spacing of the turns and the axial speed of the turns of wire issuing from the turn-layer.
- the wire introduced from the laying tube into the worm thread may be guided parallel to the worm thread wall located behind the outlet aperture of the laying tube.
- the angle of swing of the laying tube can be altered, and the laying tube can be changed.
- This has the advantage that the wall of the worm thread punshes the wire out of the turn-layer, which is advantageous, particularly for the threading of the free end of the wire issuing from the last roll stand.
- a flatter inclination of the laying tube must be allowed for, with a greater turning around of the wire in the laying tube, and therefore a greater amount of friction with a longer laying tube.
- the expulsion of the wire from the turn-layer has the advantage that when conveying the turns of wire away, these are concentrically embraced by worm conveyors or by conveyor bands arranged around the turn-layer, whereby a guarantee is given for undisturbed operation.
- the wire issuing from the laying tube is guided towards the worm thread wall located behind the outlet aperture of the laying tube.
- This renders it possible to produce turns of wire of different diameters, within limits, which has the advantage of the uniform distribution of temperature and density of laying, in the case of tilted turns of wire overlapping upon a conveyor.
- the laying tube is preferably so arranged as to rotate about its longitudinal axis.
- the laying cone is surrounded, on grounds of safety, and for the sake of a uniform formation of turns, with a hollow cylinder, shutting off the laying cone itself and the worm thread from the exterior.
- the internal diameter of the hollow cylinder is somewhat greater than the external diameter of the walls of the worm.
- the laying tube is rockably or exchangeably arranged upon the rotary cone, so as to influence the axial issue speed and the spacing of the turns of wire from the laying tube.
- the pitch of the worm thread can be varied by displacing or adjusting the walls of the worm.
- the laying tube is preferably of divided construction, to enable the outlet aperture, which is particularly affected by wear, to be easily and quickly exchanged, and to enable the angle of issue to be varied.
- the worm thread is provided with a pitch that decreases in the conveying direction.
- the pitch of the worm thread is dimensioned to correspond to the turn spacing of the turns of wire.
- FIGURE 1 shows in side elevation a turn-layer, with a laying tube directed towards the leading wall of the worm thread, and with an adjustable pitch of the walls of the worm thread;
- FIGURE 2 shows the same turn-layer in front elevation
- FIGURE 3 shows in side elevation a turn-layer with a laying tube directed towards the trailing wall of the worm thread or parallel thereto, and a laying tube adjustable as regards its inclination to the worm thread;
- FIGURE 4 shows the same turn-layer in front elevation
- FIGURE 5 shows in side elevation a turn-layer with conveying means guiding the series or string of turns of wire on its outer periphery;
- FIGURE 5a shows the device of FIGURE 5 in crosssection
- FIGURE 6 shows in side elevation a turn-layer with Worm conveyors guiding the series of turns of wire
- FIGURE 6a shows the device of FIGURE 6 in crosssection
- FIGURE 7 shows in side elevation a turn-layer with conveying means guiding the series of turns of wire on its inner pheriphery
- FIGURE 7a shows the device of FIGURE 7 in crosssection
- FIGURE 8 shows a turn-layer with means tilting the turns of wire out of the vertical plane into a horizontal plane, and conveying means guiding the turns.
- FIGURES 1 and 2 the wire is guided, by means of a laying tube 63, towards the leading wall of the worm thread, whereas in FIGURES 3 and 4 the wire issuing from the laying tube is guided either parallel to or towards the trailing wall of the worm thread.
- the laying tube 63, bearing upon a rotating frame 64, and a worm thread 65 secured upon the frame 64, are designated as turn-layers.
- the entry end of the laying tube 63 is insertible in a hollow shaft 61, driven by a drive not illustrated, whilst its outlet end traverses the frame 64 and the wall of the worm drive 65.
- the laying tube 63, and its outlet end 63a are secured to the frame 64 with clips shackles 62, 62a.
- the outlet end 63a of the laying tube 63 is directed to the leading wall of the worm thread 65.
- a portion of the wall of the last worm thread 65 is displaceably constructed, with the result that its pitch can be altered. This is effected by virtue of the fact that the wall of the worm thread 65 in this section is movably connected with the periphery of the frame 64.
- elongated holes 67 are provided in the frame in the direction of conveyance of the wire turns W, and in these holes, parallel to the longitudinal axis of the hollow shaft 61, the wall of the worm thread 65 can be displaced by means of screw connections 68.
- a casing 66 shuts off the worm thread from the exterior, and thus limits the diameter of the turns.
- the rolled wire D running into the laying tube from a train of rolls not illustrated, is shaped, by means of the laying tube and the Worm thread, jointly rotating, into turns of wire W, within the casing 66, and, in consequence of the pitch of the worm thread, is advanced on to a conveying device.
- the axial outlet speed of the turns of wire W in formation, and therefore also the spacing of the turns of wire W are dependent only upon the pitch of the worm thread 65.
- This construction of the turn-layer is particularly advantageous when the friction and the bending work in the laying tube, and also the backlash of the wire towards the last roll stand, are to be kept small.
- the diameter of the turns of wire normally corresponds to about the mean diameter of the worm thread.
- FIGURES 3 and 4 a further constructional example of the turn-layer is illustrated.
- a laying cone 74 connected with a hollow shaft 71 are secured the laying tube 73 and a worm thread 75.
- the hollow shaft 71 is rotated by a drive not illustrated.
- the outlet end 7312 of the laying tube 73 is parallel to the trailing wall or is directed towards the trailing wall of the worm thread 75.
- the turns of wire W run along the front of the wall on the periphery of the laying cone 74, are therefore formed in the free space between the walls of the worm thread, and run over without further guidance on to the adjoining conveying device.
- the diameter of the turns of wire corresponds normally to about the mean diameter of the worm thread 75.
- the outlet end 73a of the laying tube 73 is adjustable with respect to its inclination in relation to the trailing wall of the worm thread 75.
- the screw connections 77 of the clip or shackle 78 are displaceable in elongated holes.
- the laying tube 73 is secured to the laying cone 74 by means of a clip or shackle 72.
- Such an arrangement of the outlet end 730 of the laying tube 73 renders it possible to modify the spacing of the turns of wire W in formation, particularly in the case of rolled wire of relatively large cross-section, and to influence the axial speed of issue of the wire turns W from the turnlayer.
- Such an inclination of the outlet end 73a of the laying tube 73 has the further advantage that when the end of the rolled wire D is running out of the last roll stand of the rolling train, the trailing wall of the worm thread 75 still pushes out from the turn-layer the turns of wire W that are still being formed. It has also been found that when the turns of wire W are guided close against the wall of the worm thread 75, these turns of wire W receive a different diameter, within certain limits, so that upon the wire turns W being tilted over on to a horizontally arranged endless conveyor, the consolidation of material on the outer long sides of the overlapping turns of wire W is relaxed, which elfects a uniform cooling.
- the periphery of the worm thread 75 is enclosed externally by a casing 76, whereby the diameter of the turns of wire is limited.
- the worm thread according to FIGURES 1 to 4 may likewise by of multi-start construction, with its pitch diminishing towards the end, to adapt it to the desired spacing of turns, or to impart to the turns of wire (with diminishing pitch) a lower velocity.
- the laying tube, and also the worm thread may be secured either upon a frame revolving with the hollow. shaft or upon a laying cone revolving with the hollow shaft.
- the frame has the advantage, over the laying cone, of a small moment of inertia.
- the worm thread is surrounded at its pheriphery by a casing constructed as a hollow cylinder, the internal diameter of which is slightly greater than the external diameter of the worm thread. The size of the turns of wire that are being formed is thereby limited in its diameter, but for the most part adjust itself to a diameter corresponding to the mean diameter of the worm thread.
- the turn-layer may be followed by conveying devices of various kinds for the removal of the series of wire turns.
- FIGURES 5 to 7a illustrate in principle different constructional examples.
- the rolled wire D issuing from a mill train not illustrated, is shaped by means of a laying cone 83, which is rotated by means of a drive *81, and upon which, jointly with a worm thread 84, a laying tube 82 is secured, into wire turns W, forming a string of wire turns.
- the individual turns of wire W are continuously moved forward, and pass, standing upright, between traveling endless conveyor belts 85 bearing on the periphery of the series of turns of wire.
- tripping edge 89 At the end of the conveyor track the movement of the lower section of each successive turns is checked by a so-called tripping edge 89, so that the wire turns W tip into a collecting device such as the vessel 86.
- a chute, a cam chain or a cam disc may be employed for retarding the lower part of the wire turns.
- FIGURES 6 and 6a a further constructional example for the removal of the series of turns of wire is illustrated in principle.
- the rolled wire W runs through a laying tube 92 secured upon the laying cone 93 into a worm thread 94, which is likewise mounted upon the laying cone 93.
- the wire is continuously shaped, in the worm thread 94, into a series of turns of wire formed of the wire turns W.
- the periphery of the worm thread 94 is concentrically enclosed by conveyor worms 95, which receive between them the turns of wire W, and, at their end, by retarding the lower portions of the turns at a tripping edge 99, tilt them over into a horizontal plane, and collect them as rings in a collecting device 96.
- the devices according to the embodiment of FIG- URES 5 and 6 may also be installed in a vertical axial plane, insofar as the length of the conveyor path does not require too great an over-all height for the plant.
- FIGURES 7 and 7a a further constructional example of means for the removal of the series of turns of wire is illustrated in principle.
- the rolled wire D issuing from a train of rolls not illustrated, is shaped, by means of a laying cone 103-, which is rotated by a drive 101, and upon which a laying tube 102 is secured jointly with a worm thread 104, into a series of turns of wire W.
- the individual wire turns W are continuously advanced, and assume a position suspended from an endless conveying means 107, upon which there bears from above a further endless conveying means 105, so that the series of turns of wire is continuously advanced to an endless chain conveyor 108', which follows the endless conveying device 107.
- the chain of the chain conveyor 108 is toothed, in order to ensure a reliable transportation of the turns of wire W to the collecting device 106.
- the turns of wire W are retarded at the lower portion of the turns owing to their sliding upon a guide 109, and are thus carried over into a horizontal position, from which they are deposited in the collecting vessel 106.
- FIGURE 8 is illustrated in principle another constructional example of a conveying device that follows the turn-layer for the series of wire turns.
- the rolled wire D issuing from a train of rolls not illustrated, is shaped by means of a laying cone 113, which is rotated by a drive 111, and upon which, jointly with a worm thread 114, a laying tube 112 is secured, into a series of turns of wire W. Owing to the pitch of the worm thread 114, the individual turns of wire W are continuously moved forward.
- the turns of wire W are retarded at a tripping edge or some similar delaying device 119, the wire turns W are laid upon an endless conveying means 115, turning into the horizontal position overlapping one another, and are fed to a collecting device.
- a simple chute without any tripping edge or a cam wheel or cam chain, is likewise suitable for retarding the lower section of the turns. It is also possible to let the turns fall directly onto a smooth conveyor band and tilt them over, with the band moving at a suitable speed, insofar as the conveying speed of the conveyor band is small in relation to the axial speed of issue of the turns of wire W.
- a laying cone need not necessarily hold the laying tube and the worm thread, but the two parts may likewise be secured upon a revolving frame.
- Turn forming means for continuously forming wire into a series of turns comprising a rotary laying tube means for bending said wire to form said turns, said laying tube means having an inlet opening located adjacent the axis of rotation of said laying tube means and an outlet opening rotatable in a circular path; rotary worm thread guide means coaxial with and immediately following said laying tube means, said worm thread guide means having a diameter corresponding to the diameter of said circular path; and drive means for rotating said laying tube means and for rotating said worm thread guide means at the same speed as said laying tube means, whereby said laying tube means lays said turns in said worm thread guide means and said worm thread guide means predetermines the axial spacing between said turns of said series.
- said worm thread guide means comprises a generally helical wall having a leading face and a trailing face, and said outlet opening is inclined towards said leading face.
- said worm thread guide means comprises a generally helical wall having a leading face and a trailing face, and said outlet opening is inclined towards said trailing face.
- said worm thread guide means comprises a generally helical wall having a leading face and a trailing face, and the axis of said outlet opening is parallel to said trailing face.
- said laying tube means comprises a rotary laying cone and tube means fixed to said cone, said worm thread guide means comprising a generally helical wall secured to said laying cone.
- said worm thread guide means comprises a generally helical wall at least part of which is adjustable for altering the pitch of at least part of said worm thread guide means.
- Turn forming means for continuously forming wire into a series of turns comprising a rotary laying tube means for bending said wire to form said turns, said laying tube means having an inlet opening located adjacent the axis of rotation of said laying tube means and an outlet opening rotatable in a circular path; rotary worm thread guide means coaxial with and immediately following said laying tube means, said worm thread guide means having a diameter corresponding to the diameter of said circular path; drive means for rotating said laying tube means and for rotating said worm thread guide means at the same speed as said laying tube means, whereby said laying tube means lays said turns in said worm thread guide means and said worm thread guide means predetermines the axial spacing between said turns of said series; and conveying means following said worm thread guide means for carrying away said turns, said conveying means consisting of a plurality of endless bands bearing, in the direction of conveyance, upon the peripheries of the individual turns of said series.
- Turn forming means for continuously forming wire into a series of turns comprising a rotary laying tube means for bending said wire to form said turns, said laying tube means having an inlet opening located adjacent the axis of rotation of said laying tube means and an outlet opening rotatable in a circular path; rotary worm thread guide means coaxial with and immediately following said laying tube means, said worm thread guide means having a diameter corresponding to the diameter of said circular path; drive means for rotating said laying tube means and for rotating said worm thread guide means at the same speed as said laying tube means, whereby said laying tube means lays said turns in said worm thread guide means and said worm thread guide means predetermines the axial spacing between said turns of said series; and conveying means following said worm thread guide means for carrying away said turns, said conveying means consisting of a plurality of endless chains bearing, in the direction of conveyance, upon the peripheries of the individual turns of said series.
- Turn forming means for continuously forming wire into a series of turns comprising a rotary laying tube means for bending said wire to form said turns, said laying tube means having an inlet opening located adjacent the axis of rotation of said laying tube means and an outlet opening rotatable in a circular path; rotary worm thread guide means coaxial with and immediately following said laying tube means, said worm thread guide means having a diameter corresponding to the diameter of said circular path; drive means for rotating said laying tube means and for rotating said worm thread guide means at the same speed as said laying tube means, whereby said laying tube means lays said turns in said worm thread guide means and said worm thread guide means predetermines the axial spacing between said turns of said series; and conveying means following said worm thread guide means for carrying away said turns, said conveying means consisting of worm conveyors hori zontally enclosing said series of turns, said worm conveyors being of the same pitch as said worm thread guide means.
- Turn forming means for continously forming wire into a series of turns comprising a rotary laying tube means for bending said wire to form said turns, said laying tube means having an inlet opening located adjacent the axis of rotation of said laying tube means and an outlet opening rotatable in a circular path; rotary worm thread guide means coaxial with and immediately following said laying tube means, said worm thread guide means having a diameter corresponding to the diameter of said circular path; drive means for rotating said laying tube means and for rotating said worm thread guide means at the same speed as said laying tube means, whereby said laying tube means lays said turns in said worm thread guide means and said worm thread guide means predetermines the axial spacing between said turns of said series; and conveying means following said worm thread guide means for carrying away said turns, said conveying means consisting of a plurality of endless bands bearing, in the direction of conveyance, against the internal peripheries of the individual turns of said series.
- Turn forming means for continuously forming wire into a series of turns comprising a rotary laying tube means for bending said wire to form said turns, said laying tube means having an inlet opening located adjacent the axis of rotation of said laying tube means and an outlet opening rotatable in a circular path; rotary worm thread guide means coaxial with and immediately said laying tube means, said worm thread guide means having a diameter corresponding to the diameter of said circular path; drive means for rotating said laying tube means and for rotating said worm thread guide means at the same speed as said laying tube means,
- said laying tube means lays said turns in said worm thread guide means and said worm thread guide means predetermines the axial spacing between said turns of said series; and conveying means following said Worm thread guide means for carrying away said turns, said conveying means consisting of a plurality of endless chains bearing, in the direction of conveyance, against the internal peripheries of the individual turns of said series.
- Turn forming means for continuously forming wire into a series of turns comprising a rotary laying tube means for bending said wire to form said turns, said laying tube means having an inlet opening located adjacent the axis of rotating of said laying tube means and an outlet opening rotatable in a circular path; rotary worm thread guide means coaxial with and immediately following said laying tube means, said worm thread guide means having a diameter corresponding to the diameter of said circular path; drive means for rotating said laying tube means and for rotating said worm thread guide means at the same speed as said laying tube means, whereby said laying tube means lays said turns in said worm thread guide means and said worm thread guide means predete-rmines the axial spacing between said turns of said series; and conveying means following said worm thread guide means for carrying away said turns, said conveying means consisting of a horizontally extending endless conveyor, and said turn forming means further comprising tripping means, located at a point adjacent to said circular path of said outlet opening, and adapted to check the
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Winding, Rewinding, Material Storage Devices (AREA)
- Coiling Of Filamentary Materials In General (AREA)
- Screw Conveyors (AREA)
- Forwarding And Storing Of Filamentary Material (AREA)
- Tyre Moulding (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DESC038500 | 1966-02-17 | ||
DESCH39810A DE1294321B (de) | 1966-02-17 | 1966-11-12 | Haspelanlage fuer Warmwalzdraht |
DESC040125 | 1967-01-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3469429A true US3469429A (en) | 1969-09-30 |
Family
ID=27212344
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US615707A Expired - Lifetime US3469429A (en) | 1966-02-17 | 1967-02-13 | Turn-layers with an edenborn rotating laying tube |
US615607A Expired - Lifetime US3405885A (en) | 1966-02-17 | 1967-02-13 | Reeler for rod or wire |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US615607A Expired - Lifetime US3405885A (en) | 1966-02-17 | 1967-02-13 | Reeler for rod or wire |
Country Status (6)
Country | Link |
---|---|
US (2) | US3469429A (enrdf_load_stackoverflow) |
DE (3) | DE1285435C2 (enrdf_load_stackoverflow) |
FR (1) | FR1512652A (enrdf_load_stackoverflow) |
GB (2) | GB1175402A (enrdf_load_stackoverflow) |
NL (2) | NL146409B (enrdf_load_stackoverflow) |
SE (3) | SE338552B (enrdf_load_stackoverflow) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3906772A (en) * | 1972-12-21 | 1975-09-23 | Giulio Properzi | Guide device for wire rod |
US4074553A (en) * | 1977-01-03 | 1978-02-21 | Morgan Construction Company | Laying pipe |
US4090383A (en) * | 1976-03-01 | 1978-05-23 | Giulio Properzi | Device for extracting wire rod or the like at the outlet end of a rolling mill |
US4242892A (en) * | 1979-04-26 | 1981-01-06 | Morgan Construction Company | Laying head with segmented laying pipe |
US4510989A (en) * | 1981-03-23 | 1985-04-16 | Mayer Frederic C | Production of metal rods |
US4644998A (en) * | 1983-10-21 | 1987-02-24 | Mayer Frederic C | Production of metal rods |
US4644773A (en) * | 1984-09-19 | 1987-02-24 | Danieli & C. Officine Meccaniche Spa | Convertible head to form coils |
AU667646B2 (en) * | 1992-02-05 | 1996-03-28 | Siemens Industry, Inc. | Rod laying head with front and tail end ring control |
EP0920930A3 (de) * | 1997-12-05 | 2001-04-25 | SMS Demag AG | Vorrichtung zum Kippen von Drahtwindungen hinter einem Windungsleger in einer Drahtstrasse |
US6565031B2 (en) * | 2000-09-01 | 2003-05-20 | Sms Demag Aktiengesellschaft | Coil-laying device |
US20050247364A1 (en) * | 2002-07-01 | 2005-11-10 | Andrea De Lucca | Laying pipe |
US20070256752A1 (en) * | 2003-06-30 | 2007-11-08 | Andrea De Luca | Laying pipe |
US20090001208A1 (en) * | 2007-06-27 | 2009-01-01 | Peter Haak | Laying reel for coiling rolled wire |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1602354A1 (de) * | 1967-02-04 | 1970-08-27 | Schloemann Ag | Verfahren zum kontinuierlichen Ablegen eines Drahtwindungsstranges auf ein endloses,mit seiner Foerderebene sich in horizontaler Ebene erstreckendes Foerdermittel |
DE1602355A1 (de) * | 1967-02-04 | 1970-08-27 | Schloemann Ag | Verfahren zum Ablegen von einem kontinuierlichen Drahtwindungsstrang auf ein mit horizontal angeordneter Foerderebene ausgebildetes Foerdermittel |
DE2556220C2 (de) * | 1975-12-13 | 1977-11-24 | Carl Froh KG, Röhrenwerk, 5762 Hachen | Verfahren zum Ausfächern eines Rohrringbundes und Vorrichtung zum Ausüben des Verfahrens |
DE2709252A1 (de) * | 1977-03-03 | 1978-09-07 | Neumuenster Masch App | Vorrichtung zum ablegen von faserkabeln |
DD132796A1 (de) * | 1977-10-21 | 1978-11-01 | Walter Worgt | Vorrichtung zum kuehlen von walzdraht |
DE2747706C3 (de) * | 1977-10-25 | 1986-06-19 | Officine Savio S.p.A., Pordenone | Vorrichtung zum Ablegen eines aus einer Vielzahl von Fäden bestehenden Kabels, insbesondere eines Kabels aus Chemiefasern o.dgl. in eine Kanne |
JPS5941491B2 (ja) * | 1979-03-29 | 1984-10-08 | 株式会社神戸製鋼所 | 鋼線材の直接熱処理方法および装置 |
FR2532921A1 (fr) * | 1982-09-10 | 1984-03-16 | Normandie Ste Metallurg | Enrouleur statique de fil metallique |
DE3514214A1 (de) * | 1985-04-19 | 1986-10-23 | SMS Schloemann-Siemag AG, 4000 Düsseldorf | Einlauf in eine drahtbundbildekammer |
US4914935A (en) * | 1988-12-28 | 1990-04-10 | Fryer Corporation | Method and apparatus for laying coiled rod stock |
IT1266713B1 (it) * | 1994-03-23 | 1997-01-14 | Danieli Off Mecc | Dispositivo di estrazione e deposito delle spire |
US5826812A (en) * | 1997-01-08 | 1998-10-27 | Belmont Textile Machinery Co., Inc. | Coiler apparatus and method |
US6402074B1 (en) * | 1999-12-23 | 2002-06-11 | Morgan Construction Company | Apparatus for transferring rings from an inclined laying head onto a cooling conveyor |
DE102004014264B3 (de) * | 2004-03-24 | 2005-10-27 | Sms Meer Gmbh | Windungsleger für aus einer Drahtwalzstraße kommenden schnell bewegten Walzdraht |
WO2012091597A1 (ru) * | 2010-12-29 | 2012-07-05 | Nekipelov Vladimir Stanislavovich | Способ формирования витков и виткообразователь катанки |
US8870110B2 (en) | 2011-09-26 | 2014-10-28 | Siemens Industry, Inc. | Modular tripper for rolling mill laying head |
CN104624674A (zh) * | 2013-11-11 | 2015-05-20 | 安阳合力创科冶金新技术研发股份有限公司 | 冷轧吐丝倾倒绊料装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1945898A (en) * | 1932-10-17 | 1934-02-06 | American Steel & Wire Co | Rod handling |
GB889907A (en) * | 1959-10-21 | 1962-02-21 | Barron And Crowther Ltd | Improvements in or relating to coiling wire or like filamentary material |
US3053306A (en) * | 1960-05-19 | 1962-09-11 | Standard Products Co | Apparatus for making strip structures |
US3103237A (en) * | 1960-08-10 | 1963-09-10 | Crum Eben Jefferson | Wire handling apparatus |
US3167108A (en) * | 1962-04-13 | 1965-01-26 | Nagele Karl Friedrich | Device for winding helical springs |
US3266694A (en) * | 1963-05-02 | 1966-08-16 | Barron And Crowther Ltd | Wire handling machine |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE44692C (de) * | F. H. DANIELS in Worcester, Massachusetts, V. St. A., Grove Street Works, Grove Street | Schutz- und Stellvorrichtung an Haspeln für Walzwerke | ||
DE52178C (de) * | F. G. TALL-MAN in Beaver Falls, County of Beaver, State of Pennsylvania, und W. GARRETT in Joliet, County of Will, State of Illinois, V. St. A | Verfahren und Vorrichtung zum Zusammenwickeln von Walzdraht | ||
US420747A (en) * | 1890-02-04 | Method of coiling wire rods | ||
US1232014A (en) * | 1915-11-10 | 1917-07-03 | Morgan Construction Co | Method of treating metal rods. |
US1295139A (en) * | 1915-12-04 | 1919-02-25 | Morgan Construction Co | Apparatus for coiling and cooling wire rods. |
US1901514A (en) * | 1930-09-11 | 1933-03-14 | Herman William | Method of producing wire rods |
US1984744A (en) * | 1932-10-17 | 1934-12-18 | American Steel & Wire Co | Rod handling machine |
US2743066A (en) * | 1952-06-05 | 1956-04-24 | Crum Eben Jefferson | Continuous coil winding machine |
US2703686A (en) * | 1953-06-18 | 1955-03-08 | Northwestern Steel & Wire Co | Hydraulically operated letdown and release for wire layers |
DE1047155B (de) * | 1956-02-04 | 1958-12-24 | Huettenwerk Rheinhausen Ag | Treibeinrichtung |
DE1071792B (enrdf_load_stackoverflow) * | 1956-06-13 | 1959-12-24 | Beteiligungs- und Patenrtverwal· tunigsgeisellschaft mit beschränkter Haftung, Essen | |
US2954180A (en) * | 1957-10-03 | 1960-09-27 | Wirecrafters Inc | Coiling strand material |
US3032073A (en) * | 1957-10-17 | 1962-05-01 | Harry W Moore | Coil winding machine |
GB943474A (en) * | 1959-11-06 | 1963-12-04 | Loewy Eng Co Ltd | Apparatus for coiling hot wire |
US3171876A (en) * | 1961-05-19 | 1965-03-02 | Vaughn Machinery Co | Apparatus for continuously heat treating wire and the like |
SE328602B (enrdf_load_stackoverflow) * | 1962-08-24 | 1970-09-21 | Morgan Construction Co | |
GB952943A (en) * | 1963-02-08 | 1964-03-18 | Morgan Construction Co | Apparatus for handling hot metal rods |
DE1891423U (de) * | 1964-02-19 | 1964-04-23 | Schloemann Ag | Edenbornhaspel. |
-
1966
- 1966-02-17 DE DE19661285435 patent/DE1285435C2/de not_active Expired
- 1966-11-12 DE DESCH39810A patent/DE1294321B/de active Pending
-
1967
- 1967-01-21 DE DE19671291716 patent/DE1291716C2/de not_active Expired
- 1967-02-09 GB GB6261/67A patent/GB1175402A/en not_active Expired
- 1967-02-09 NL NL676702012A patent/NL146409B/xx unknown
- 1967-02-09 NL NL6702013A patent/NL6702013A/xx unknown
- 1967-02-13 US US615707A patent/US3469429A/en not_active Expired - Lifetime
- 1967-02-13 US US615607A patent/US3405885A/en not_active Expired - Lifetime
- 1967-02-16 SE SE02156/67A patent/SE338552B/xx unknown
- 1967-02-16 SE SE02157/67A patent/SE338553B/xx unknown
- 1967-02-17 GB GB7754/67A patent/GB1157241A/en not_active Expired
- 1967-02-17 FR FR95376A patent/FR1512652A/fr not_active Expired
-
1970
- 1970-02-27 SE SE7002564A patent/SE372440B/xx unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1945898A (en) * | 1932-10-17 | 1934-02-06 | American Steel & Wire Co | Rod handling |
GB889907A (en) * | 1959-10-21 | 1962-02-21 | Barron And Crowther Ltd | Improvements in or relating to coiling wire or like filamentary material |
US3053306A (en) * | 1960-05-19 | 1962-09-11 | Standard Products Co | Apparatus for making strip structures |
US3103237A (en) * | 1960-08-10 | 1963-09-10 | Crum Eben Jefferson | Wire handling apparatus |
US3167108A (en) * | 1962-04-13 | 1965-01-26 | Nagele Karl Friedrich | Device for winding helical springs |
US3266694A (en) * | 1963-05-02 | 1966-08-16 | Barron And Crowther Ltd | Wire handling machine |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3906772A (en) * | 1972-12-21 | 1975-09-23 | Giulio Properzi | Guide device for wire rod |
US4090383A (en) * | 1976-03-01 | 1978-05-23 | Giulio Properzi | Device for extracting wire rod or the like at the outlet end of a rolling mill |
US4074553A (en) * | 1977-01-03 | 1978-02-21 | Morgan Construction Company | Laying pipe |
US4242892A (en) * | 1979-04-26 | 1981-01-06 | Morgan Construction Company | Laying head with segmented laying pipe |
US4510989A (en) * | 1981-03-23 | 1985-04-16 | Mayer Frederic C | Production of metal rods |
US4644998A (en) * | 1983-10-21 | 1987-02-24 | Mayer Frederic C | Production of metal rods |
US4644773A (en) * | 1984-09-19 | 1987-02-24 | Danieli & C. Officine Meccaniche Spa | Convertible head to form coils |
AU667646B2 (en) * | 1992-02-05 | 1996-03-28 | Siemens Industry, Inc. | Rod laying head with front and tail end ring control |
EP0920930A3 (de) * | 1997-12-05 | 2001-04-25 | SMS Demag AG | Vorrichtung zum Kippen von Drahtwindungen hinter einem Windungsleger in einer Drahtstrasse |
US6565031B2 (en) * | 2000-09-01 | 2003-05-20 | Sms Demag Aktiengesellschaft | Coil-laying device |
US20050247364A1 (en) * | 2002-07-01 | 2005-11-10 | Andrea De Lucca | Laying pipe |
US20070256752A1 (en) * | 2003-06-30 | 2007-11-08 | Andrea De Luca | Laying pipe |
US20090001208A1 (en) * | 2007-06-27 | 2009-01-01 | Peter Haak | Laying reel for coiling rolled wire |
US8191813B2 (en) | 2007-06-27 | 2012-06-05 | Sms Meer Gmbh | Laying reel for coiling rolled wire |
Also Published As
Publication number | Publication date |
---|---|
DE1291716C2 (de) | 1973-01-04 |
US3405885A (en) | 1968-10-15 |
SE338552B (enrdf_load_stackoverflow) | 1971-09-13 |
DE1285435B (de) | 1973-10-04 |
GB1157241A (en) | 1969-07-02 |
GB1175402A (en) | 1969-12-23 |
NL6702013A (enrdf_load_stackoverflow) | 1967-08-18 |
DE1294321B (de) | 1969-05-08 |
NL146409B (nl) | 1975-07-15 |
FR1512652A (fr) | 1968-02-09 |
DE1291716B (enrdf_load_stackoverflow) | 1973-01-04 |
SE372440B (enrdf_load_stackoverflow) | 1974-12-23 |
DE1285435C2 (de) | 1973-10-04 |
SE338553B (enrdf_load_stackoverflow) | 1971-09-13 |
NL6702012A (enrdf_load_stackoverflow) | 1967-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3469429A (en) | Turn-layers with an edenborn rotating laying tube | |
US5312065A (en) | Rod laying head with front and tail end ring control | |
US4172375A (en) | Coiling system for metallic strands | |
US3490500A (en) | Plant for the treatment of rolled wire from the roll heat | |
US4038861A (en) | Workpiece feed channel | |
EP3790677B1 (en) | A coil forming laying head system | |
US4231382A (en) | Cooling strand for cooling small-section steel | |
EP1146972B1 (en) | Coil-forming head | |
US3469798A (en) | Continuous deposition of a string of turns of wire upon an endless conveyor | |
US3627184A (en) | Apparatus for transporting looped rod through a cooling stage | |
US3460777A (en) | Deposition of a continuous string of turns of wire upon a conveyor | |
US3865153A (en) | Metal treatment apparatus for steel rod having an oscillating platform below the laying head | |
CN104289556A (zh) | 一种适用于生产所有规格线材的吐丝机 | |
US4944469A (en) | High speed coiling apparatus | |
US3143021A (en) | Rotary saw | |
US6056225A (en) | Apparatus for handling wire rod from a laying head or laying cone | |
US20020047064A1 (en) | Coil-laying device | |
US3599891A (en) | Coiler | |
US2551704A (en) | Apparatus, including successive sets of bending rolls for forming plates into tubes | |
US3207289A (en) | Apparatus for delivering pipe lengths sidewise as discharged from rotary straightener or the like | |
US5897071A (en) | Wire-coiling system | |
US4557428A (en) | Wire laying arm | |
SU707633A1 (ru) | Устройство дл транспортировки круглого проката | |
US3443605A (en) | Wire or rod handling method and apparatus | |
US3367036A (en) | Apparatus and method for treating metal wires |