US3434823A - Method for degassing metallic melts by sonic vibrations - Google Patents
Method for degassing metallic melts by sonic vibrations Download PDFInfo
- Publication number
- US3434823A US3434823A US417667A US3434823DA US3434823A US 3434823 A US3434823 A US 3434823A US 417667 A US417667 A US 417667A US 3434823D A US3434823D A US 3434823DA US 3434823 A US3434823 A US 3434823A
- Authority
- US
- United States
- Prior art keywords
- melt
- melts
- degassing
- current
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000155 melt Substances 0.000 title description 88
- 238000007872 degassing Methods 0.000 title description 37
- 238000000034 method Methods 0.000 title description 29
- 230000000694 effects Effects 0.000 description 30
- 230000005291 magnetic effect Effects 0.000 description 26
- 230000001965 increasing effect Effects 0.000 description 14
- 230000006698 induction Effects 0.000 description 13
- 238000002844 melting Methods 0.000 description 10
- 230000008018 melting Effects 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 9
- 238000004804 winding Methods 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 230000006872 improvement Effects 0.000 description 7
- 239000000460 chlorine Substances 0.000 description 6
- 230000000737 periodic effect Effects 0.000 description 6
- 239000004020 conductor Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000002893 slag Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000005520 electrodynamics Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000012768 molten material Substances 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000005672 electromagnetic field Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 101150114886 NECTIN1 gene Proteins 0.000 description 1
- 102100023064 Nectin-1 Human genes 0.000 description 1
- 230000009102 absorption Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B4/00—Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/04—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
- B06B1/045—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism using vibrating magnet, armature or coil system
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/02—Refining by liquating, filtering, centrifuging, distilling, or supersonic wave action including acoustic waves
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/02—Refining by liquating, filtering, centrifuging, distilling, or supersonic wave action including acoustic waves
- C22B9/026—Refining by liquating, filtering, centrifuging, distilling, or supersonic wave action including acoustic waves by acoustic waves, e.g. supersonic waves
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/04—Refining by applying a vacuum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- This invention relates to the degassing of metallic melts and, more particularlly, to an improved and simplified method therefor utilizing alternating current at low frequencies, preferably with distortion of the WEVC form of the alternating current to increase the harmonic content thereof.
- solenoids or magnetic shields are used, which are arranged outside the housing in which the metal to be melted is located. It has also been attempted to cause the separation of metal and slags (impurities) by means of two electromagnetic fields which are arranged at certain directions relative to each other.
- the desired objective can be achieved if the high frequency heating current in high frequency furances is kept within moderate limits, so that a certain favorable metal temperature is established, and if, at the same time, a possibly intensive stationary magnetic field is superposed on the high frequency field.
- the ponderomotive force produced by this additional field in the melt is proportional to the product of the current density of the high frequency current and the intensity of the static magnetic field; its temporal means value is zero. We can thus obtain intensive mechanical vibrations in the bath without at the same time increasing the force of the stirring movements.
- the foregoing disadvantages are eliminated by providing for the use of low frequency AC sources, including commercial frequencies, such as 50 cycle AC mains.
- commercial frequencies such as 50 cycle AC mains.
- the necessity of a separate generator is eliminated, thus providing a very substantial advantage.
- any desired output can be attained without an undue increase in cost for a separate source.
- the use of frequencies less than 50 cycles is, in any event, rarely desirable. In only a few cases will it be necessary to use frequencies over 50 cycles as supply frequencies, and even then these can be obtained from commercial frequencies by static frequency multiplication without having to use a separate generator.
- an object of the present invention is to provide a method for degassing metallic melts by sonic vibrations produced in the melt by ponderomotive effects caused by alternating currents flowing through the melt.
- the invention is characterized by the fact that, in order to use a low frequency AC source, preferabl a commercial frequency source, to produce the sound vibrations, the alternating currents are subjected to a distortion of their periodic course in order to increase their harmonics, thus enhancing the degasification.
- another object of the invention is to provide a method for degassing a metallic melt by vibrations which are produce din the melt by ponderomotive effects caused by alternating currents in the melt and which are subjected to a distortion of their periodic course to increase their harmonic contents.
- the presence of the deliberately produced harmonics increases the maximum velocity amplitude appearing the sonic vibrations, and thus increases the degassing effect as compared to the effect obtained using only the fundamental frequency, and while requiring only the same current input. It is this factor which permits the use of low input frequencies in the commercial frequency range.
- a further object of the invention is to provide a method for degassing a metallic melt by sonic vibrations produced in the melts by ponderomotive effects caused by alternating currents flowing in the melts, and using, as the alternating current, the alternating current normally used to heat the melt, with the alternating current being temporarily or constantly distorted as mentioned above for degassing the melt.
- the distortion of the alternating current in the sense of the invention can be effected by abrupt limitation of its amplitude before it reaches a periodic maximum amplitude in at least one direction of flow, so that a pulse type current fiow is produced.
- the thus limited or clipped alternating current half waves are induced in a known manner into the melt, for example, by at least one similarly limited or clipped alternating magnetic field.
- An increase of the ponderomotive effect can be obtained if the stationary magnetic field is superposed, in a known manner, on the melt. In cooperation with the alternating current flowing in the melt, this increases the ponderomotive effect.
- yet another object of the invention is to provide a method for degassing metallic melts by sonic vibrations produced in the melts by ponderomotive effects caused by alternating currents in the melts and to increase the ponderomotive effects by superposing a stationary magnetic field on the alternating currents flowing in the melts.
- apparatus for performing the method of the invention comprises a supply transformer which can be loaded beyond the saturation range of the magnetic induction.
- the iron core of the transformer is magnetically preloaded, preferably by providing at least one DC winding thereon.
- the primary current in at least one direction of flow effects a saturation of the magnetic induction in the iron core even before the specific values are obtained.
- the resulting stationary magnetic field is superposed in a known manner on the AC field, so that the ponderomotive effect in the melt is also increased by the inductive action of the two fields on the melt.
- Transformers of this type are suitable for use as transformers for induction furnaces, where the secondary circuit is formed b the molten material flowing in a closed melting channel of the furnace.
- such a transformer can be used in a suitably dimensioned reheating furnace.
- the distortion of the alternating current wave forms can be effected in another manner.
- at least one rectifier, or a controllable electronic valve can be connected in the supply circuit so as to transform the alternating current to the AC portion thereof.
- the elec- can be done by applying an initial DC 'bias to the rectifier or to the controllable electronic valves to control the ratio of the DC portion of the supply current to the DC porion thereof.
- the electric currents can be introduced in the melt by means of electrodes such as used in so-called resistance heated furnaces.
- the frequency of the alternating current derived from a commercial frequency source can be increased up to seven times by using so-called static frequency converters.
- FIG. 1 is a transverse sectional view of a furnace transformer embodying the invention illustrating the iron core thereof in its initial state, with the ceramic body containing the furnace loop and the primary winding being sectioned along the center of the transformer core;
- FIG. 2 is a top plan view of the transformer shown in FIG. 1, with a portion of the crucible shown in section;
- FIG. 3 is a central vertical sectional view through a low pressure founding furnace embodying the invention, with a transformer, such as shown in FIGS. 1 and 2, illustrated in side elevation;
- FIG. 4 is a front elevation view, partly in section, partly in section, of another embodiment of a melting furnace in accordance with the invention.
- FIG. 5 is a partial top plan view of the melting furnace shown in FIG. 4;
- FIG. 6 is a schematic wiring diagram, with a schematically illustrated furnace crucible, illustrating another arrangement embodying the invention
- FIG. 7 is a schematic wiring diagram illustrating the principle of an electronic circuit for distorting the alternating current wave forms.
- FIG. 8 is a transverse sectional view of a conventional arc-type resistance furnace to which the principles of the invention may be applied.
- the transformer has a closed iron core 10 comprising three stacks of laminations mounted in juxtaposition.
- the center stack is displaced laterally with respect to the two outer stacks, so that its right leg 10a protrudes from the right hand side of the transformer core, whereas the left legs 10a of the two outer stacks protrude from the left hand side of the transformer core.
- the left leg of the center stack forms, with the right legs of the two outer stacks, the central leg 10!) of the transformer core which is embraced by the primary winding 11.
- Transformer core 10 embraces a ceramic body 12 in which there is formed a heating channel 13 extending around center leg 10b. A part of channel 13, extending parallel to the plane of core 10, is closed by means of plugs 14 which can be removed for cleaning of the channel, as best seen in FIG. 2.
- channel 13 opens into a funnel-shaped mouth 15 formed in the storage crucible 16 of the low pressure founding furnace. Month 15 opens into the bottom surface 17 of storage crucible 16.
- a filling tube 18 is positioned inside storage crucible 16 and extends along a wall thereof from the top of the crucible.
- the lower end of tube 18 projects into the mouth 15 of heating channel 13.
- the open top of crucible 16 is closed by a swivel cover 19 having a pressure gas pipe 20 extending therethrough.
- Filling tube 18, which is disposed laterally of the cover 19, is closed by means of a stopper 21 of the valve type, and communicates with a trough 22.
- the furnace transformer is suspended on supporting elements 23 and 24.
- the melt is to be degassed during operation of the founding furnace, at least one of the legs 10a of transformer core 10 is removed.
- the normal magnetic field in the iron core 10 is 12,000 gauss
- the field is increased to about 18,000 gauss so that the transformer is working in the saturation range.
- the wave form of the current in the melt forming the secondary conductor and in the heating channel 13 is distorted without any increase in current input.
- there is a certain degassing effect since the energy density in the cross section of the heating conductor form-ed by the melting channel 13 is rather high.
- valve stopper 21 When molten material is to be removed from the furnace, valve stopper 21 is lifted, after which the melt will rise in filling tube 18 under the effect of pressure gas fed to pipe 20 and will flow off through trough 22. As filling tube 18 projects into the mouth 15 of channel 13, in which latter the degassing occurs and is brought about relatively rapidly, it is possible to remove continuously quantities of degassed molten material without first having to degas the entire contents of storage crucible 16. It is thus possible to operate with relatively low energy inputs, such as those merely sufiicient to keep the melt warm or molten and to degas the material that, at any given moment, is in channel 13. With a frequency of 50 cycles, the depth of penetration of the induction in iron is about 7.5 cm., and in aluminum about 3.5 cm. It will be appreciated that other embodiments of reheating and founding furnaces come within the scope of the invention as previously mentioned.
- FIGS. 4 and 5 show a melting furnace in which, in accordance with the invention, the magnetic core of the transformer is provided with an initial DC bias or precharging.
- a pair of DC windings 25 are mounted on the core 10 as illustrated in FIGS. 4 and 5.
- Coils preferably are polarized in such a manner that the unidirectional magnetic fluxes resulting therefrom extend in opposite directions through the two halves of the magnetic core 10 of the transformer, especially through their outer legs 100, this core including central legs 10d through which the -DC magnetic fluxes extend in the same direction.
- the strength of the steady magnetic fields produced by windings 25 are determined in such a manner, through the selection of the value of the DC current flowing in windings 25, that the. AC current in primary winding 11 causes, in one direction of flow, a saturation of the magnetic induction of the core 10 before the AC current attains its peak values. Thereby, the ponderometric effect in the melt is increased.
- FIG. 6 is a schematic wiring diagram of another arrangement for superposing a stationary magnetic field on the transformer core.
- DC current from a DC source 26 flows through a choke 27 to the induction coil 28 surrounding a melting crucible 29.
- This induction coil is also supplied with alternating current from an AC source 30 through a condenser 31.
- the degassing effect which the distorted alternating field has on the melt is substantially increased by the superposed DC mag netic field.
- the steady magnetic field may be disconnected at will, and could also be produced in a winding separate from the AC induction winding 28.
- FIG. 7 illustrates the principle of current limitation using controllable electronic valves, and which current limitation can be used with advantage, in accordance with the invention, to increase the degassing efiect.
- the control electrode of an electronic valve 33 has a sinusoidal AC voltage applied thereto through a series resistance 34. Since the voltage applied to the control electrode through a working resistance 35, and through a resistance 36 connected in parallel with the anode and the control electrode, has a tendency to maintain a zero potential, a narrow strip is cutoff of the AC wave near the zero line.
- the amplified output voltage corresponding to this strip, and which can be tapped from the working resistance 35 through the coupling condenser 37, has a substantially rectangular wave form and is very rich in harmonics, which enhance the degassing effect.
- FIG. 8 is a schematic representation of a conventional resistance-type arc furnace. Its electrodes 52 have a current applied thereto, whose wave form is distorted to enhence the degassification.
- the melt 49 which is covered by a slag layer 48, is maintained in the lining or crucible t) which is closed by means of the cover 51.
- Carbon electrodes 52 protrude through apertures in cover 51 and into the interior of the furnace up to about the slag layer 48, so that the arcs are formed between the lower ends of the electrodes 52 and the surface of the melt 49.
- the electrodes 52 which are suspended in holders 53, can be raised or lowered by means of these holders as required to maintain the arcs.
- a method for degassing metallic melts by vibrations produced in the melts by ponderomotive effects produced by alternating currents traversing the melts comprising traversing the melt with low frequency alternating currents from a source thereof at substantially commercial frequencies; sharply clipping at least alternate half waves of the alternating current to reduce the peak amplitudes of said alternate half waves to increase the harmonic contents thereof to enhance the degassification of the melt; utilizing a low frequency alternating magnetic field to induce the alternating currents to traverse the melt; and clipping at least alternate half waves of the alternating magnetic field to reduce the peak amplitudes of such alternate half waves of the magnetic field.
- theimprovement comprising traversing the melt with low frequency alternating current from a source thereof at substantially commercial frequencies; distorting the wave form of the alternating currents to increase the harmonic contents to enhance the degassification of the melts; and augmenting the ponderomotive effect by superposing a substantially constant magnetic field in the melt.
- the improvement as claimed in claim 7 further comprising combining a variable value constant direct current potential with the pulsating direct current; and regulating the variable value direct current potential to control the ratio between the variable value direct current potential and the pulsating direct current.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Acoustics & Sound (AREA)
- Geology (AREA)
- Geochemistry & Mineralogy (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electromagnetism (AREA)
- Manufacture And Refinement Of Metals (AREA)
- General Induction Heating (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT1006963A AT268352B (de) | 1963-12-16 | 1963-12-16 | Verfahren zur Entgasung von Metallschmelzen durch Schallschwingungen und Vorrichtungen hiezu |
Publications (1)
Publication Number | Publication Date |
---|---|
US3434823A true US3434823A (en) | 1969-03-25 |
Family
ID=3619631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US417667A Expired - Lifetime US3434823A (en) | 1963-12-16 | 1964-12-11 | Method for degassing metallic melts by sonic vibrations |
Country Status (8)
Country | Link |
---|---|
US (1) | US3434823A (enrdf_load_stackoverflow) |
AT (1) | AT268352B (enrdf_load_stackoverflow) |
BE (1) | BE657071A (enrdf_load_stackoverflow) |
CH (1) | CH428235A (enrdf_load_stackoverflow) |
DE (1) | DE1241996B (enrdf_load_stackoverflow) |
FR (1) | FR1404948A (enrdf_load_stackoverflow) |
GB (1) | GB1069387A (enrdf_load_stackoverflow) |
SE (1) | SE336416B (enrdf_load_stackoverflow) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020177530A1 (en) * | 2001-04-26 | 2002-11-28 | Kazuhiko Iwai | Method for propagating vibratory motion into a conductive fluid and using the method to solidify a melted metal |
US20090224443A1 (en) * | 2008-03-05 | 2009-09-10 | Rundquist Victor F | Niobium as a protective barrier in molten metals |
US8574336B2 (en) | 2010-04-09 | 2013-11-05 | Southwire Company | Ultrasonic degassing of molten metals |
US8652397B2 (en) | 2010-04-09 | 2014-02-18 | Southwire Company | Ultrasonic device with integrated gas delivery system |
US9145597B2 (en) | 2013-02-22 | 2015-09-29 | Almex Usa Inc. | Simultaneous multi-mode gas activation degassing device for casting ultraclean high-purity metals and alloys |
US9528167B2 (en) | 2013-11-18 | 2016-12-27 | Southwire Company, Llc | Ultrasonic probes with gas outlets for degassing of molten metals |
US10233515B1 (en) | 2015-08-14 | 2019-03-19 | Southwire Company, Llc | Metal treatment station for use with ultrasonic degassing system |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1986006749A1 (fr) * | 1985-05-13 | 1986-11-20 | Maytain, Christian | Procede de degazage d'une matiere en fusion et dispositif de mise en oeuvre du procede |
JP3057233B1 (ja) * | 1999-10-05 | 2000-06-26 | 名古屋大学長 | 導電性液体内疎密波発生装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2013653A (en) * | 1933-11-07 | 1935-09-10 | Westcott Electric Casting Corp | Treatment of metals by electromagnetic forces |
US2381523A (en) * | 1943-12-31 | 1945-08-07 | Ajax Engineering Corp | Submerged resistor type induction furnace |
US2415974A (en) * | 1945-04-21 | 1947-02-18 | Ajax Engineering Corp | Submerged resistor type induction furnace and method of operating |
-
1963
- 1963-12-16 AT AT1006963A patent/AT268352B/de active
-
1964
- 1964-07-24 DE DES92261A patent/DE1241996B/de active Granted
- 1964-08-04 GB GB31221/64A patent/GB1069387A/en not_active Expired
- 1964-08-17 FR FR985378A patent/FR1404948A/fr not_active Expired
- 1964-12-11 US US417667A patent/US3434823A/en not_active Expired - Lifetime
- 1964-12-12 CH CH1613664A patent/CH428235A/de unknown
- 1964-12-14 BE BE657071D patent/BE657071A/fr unknown
- 1964-12-16 SE SE15233/64A patent/SE336416B/xx unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2013653A (en) * | 1933-11-07 | 1935-09-10 | Westcott Electric Casting Corp | Treatment of metals by electromagnetic forces |
US2381523A (en) * | 1943-12-31 | 1945-08-07 | Ajax Engineering Corp | Submerged resistor type induction furnace |
US2415974A (en) * | 1945-04-21 | 1947-02-18 | Ajax Engineering Corp | Submerged resistor type induction furnace and method of operating |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020177530A1 (en) * | 2001-04-26 | 2002-11-28 | Kazuhiko Iwai | Method for propagating vibratory motion into a conductive fluid and using the method to solidify a melted metal |
EP1264651A3 (en) * | 2001-04-26 | 2003-06-18 | Nagoya University | Method for propagating vibration into a conductive fluid and method for solidifying a melted metal using the same propagating method of vibration |
US6852178B2 (en) | 2001-04-26 | 2005-02-08 | Nagoya University | Method for propagating vibratory motion into a conductive fluid and using the method to solidify a melted metal |
US8844897B2 (en) | 2008-03-05 | 2014-09-30 | Southwire Company, Llc | Niobium as a protective barrier in molten metals |
US20090224443A1 (en) * | 2008-03-05 | 2009-09-10 | Rundquist Victor F | Niobium as a protective barrier in molten metals |
US9327347B2 (en) | 2008-03-05 | 2016-05-03 | Southwire Company, Llc | Niobium as a protective barrier in molten metals |
US8574336B2 (en) | 2010-04-09 | 2013-11-05 | Southwire Company | Ultrasonic degassing of molten metals |
US8652397B2 (en) | 2010-04-09 | 2014-02-18 | Southwire Company | Ultrasonic device with integrated gas delivery system |
US9382598B2 (en) | 2010-04-09 | 2016-07-05 | Southwire Company, Llc | Ultrasonic device with integrated gas delivery system |
US9617617B2 (en) | 2010-04-09 | 2017-04-11 | Southwire Company, Llc | Ultrasonic degassing of molten metals |
US10640846B2 (en) | 2010-04-09 | 2020-05-05 | Southwire Company, Llc | Ultrasonic degassing of molten metals |
US9145597B2 (en) | 2013-02-22 | 2015-09-29 | Almex Usa Inc. | Simultaneous multi-mode gas activation degassing device for casting ultraclean high-purity metals and alloys |
US9528167B2 (en) | 2013-11-18 | 2016-12-27 | Southwire Company, Llc | Ultrasonic probes with gas outlets for degassing of molten metals |
US10316387B2 (en) | 2013-11-18 | 2019-06-11 | Southwire Company, Llc | Ultrasonic probes with gas outlets for degassing of molten metals |
US10233515B1 (en) | 2015-08-14 | 2019-03-19 | Southwire Company, Llc | Metal treatment station for use with ultrasonic degassing system |
Also Published As
Publication number | Publication date |
---|---|
FR1404948A (fr) | 1965-07-02 |
DE1241996C2 (enrdf_load_stackoverflow) | 1967-12-14 |
SE336416B (enrdf_load_stackoverflow) | 1971-07-05 |
BE657071A (enrdf_load_stackoverflow) | 1965-04-01 |
CH428235A (de) | 1967-01-15 |
GB1069387A (en) | 1967-05-17 |
DE1241996B (de) | 1967-06-08 |
AT268352B (de) | 1969-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3434823A (en) | Method for degassing metallic melts by sonic vibrations | |
US3314670A (en) | Molten metal stirring apparatus | |
US3604880A (en) | Flux concentrator | |
US2664496A (en) | Apparatus for the magnetic levitation and heating of conductive materials | |
US2083022A (en) | Method of casting metals by electromagnetic forces and apparatus therefor | |
GB554229A (en) | Improved method of, and means for, stirring or circulating molten materials or mediums | |
US3651299A (en) | Method for sealing containers using heat activated magnetic sealing compound | |
US2013653A (en) | Treatment of metals by electromagnetic forces | |
US2820263A (en) | Device for ultrasonic treatment of molten metal | |
US3748422A (en) | Induction coil for induction heating of moving articles | |
GB738622A (en) | Fluid stirring apparatus | |
WO2014088423A1 (en) | Apparatus and method for induction heating of magnetic materials | |
US3396229A (en) | Device for inductive heating and/or stirring | |
US1937065A (en) | Induction furnace and method of operating the same | |
US3621103A (en) | Methods of and apparatus for stirring immiscible conductive fluids | |
US1971195A (en) | Vacuum induction apparatus | |
US3544691A (en) | Apparatus for degassing metallic melts by sonic vibrations | |
US4522790A (en) | Flux concentrator | |
US1795926A (en) | Induction furnace | |
TA et al. | Effect of electromagnetic forces on aluminium cast structure | |
JPS5739077A (en) | Arc welding method | |
GB910963A (en) | Method and apparatus for induction heating to welding temperature | |
NO154655B (no) | Anordning ved mixer-settlere. | |
US1837031A (en) | High frequency induction furnace or heating apparatus | |
US4319625A (en) | Electromagnetic casting process utilizing an active transformer-driven copper shield |