US3416533A - Conductive catheter - Google Patents
Conductive catheter Download PDFInfo
- Publication number
- US3416533A US3416533A US551686A US55168666A US3416533A US 3416533 A US3416533 A US 3416533A US 551686 A US551686 A US 551686A US 55168666 A US55168666 A US 55168666A US 3416533 A US3416533 A US 3416533A
- Authority
- US
- United States
- Prior art keywords
- helix
- wire
- catheter
- prong
- connector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920002379 silicone rubber Polymers 0.000 description 19
- 239000004945 silicone rubber Substances 0.000 description 19
- 239000004020 conductor Substances 0.000 description 14
- 239000012212 insulator Substances 0.000 description 13
- 239000002184 metal Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 210000000056 organ Anatomy 0.000 description 9
- 239000000853 adhesive Substances 0.000 description 8
- 230000001070 adhesive effect Effects 0.000 description 8
- 238000002788 crimping Methods 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 230000013011 mating Effects 0.000 description 3
- 210000004165 myocardium Anatomy 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000013464 silicone adhesive Substances 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910000639 Spring steel Inorganic materials 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 210000004731 jugular vein Anatomy 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229920002529 medical grade silicone Polymers 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 210000005241 right ventricle Anatomy 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/0105—Steering means as part of the catheter or advancing means; Markers for positioning
- A61M25/0133—Tip steering devices
- A61M25/0152—Tip steering devices with pre-shaped mechanisms, e.g. pre-shaped stylets or pre-shaped outer tubes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/056—Transvascular endocardial electrode systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0009—Making of catheters or other medical or surgical tubes
- A61M25/0012—Making of catheters or other medical or surgical tubes with embedded structures, e.g. coils, braids, meshes, strands or radiopaque coils
Definitions
- the opposite proximal end of the helices are stiffened and serve as pins in a connector that may join a mating connector on an electric heart stimulator.
- a removable stylet may be inserted in the small helix through its hollow connector pin for stiffening the conductor as it is being directed to its destination.
- This invention pertains to a conductive catheter or electrode assembly for connecting an electric stimulator to an internal organ of a body.
- a typical use of the catheter is to connect an implanted electronic cardiac stimulator to the heart of a patient.
- One version of the new catheter is adapted for being advanced transvenously, such as through the jugular vein, until its distal end, which comprises electrodes, reaches the interior of the right ventricle of the patients heart.
- the proximal end of the catheter that extends outside the vein terminates in an electric connector which may be joined with a stimulator power supply.
- the latter is often implanted subcutaneously in the axillary region and, of course, concealed by tissue as is the catheter itself.
- objects of the present invention are to provide a conductive catheter: that is reliable and durable; that has coaxial conductors and insulation for reducing the size; that has continuous current paths from end to end without junctions that may open or tips that may separate; that is unusually flexible over its length including the unitary tip that constitutes its distal electrodes or terminals; and, that is adapted to be stiffened with a removable stylet for facilitating passing it along a devious route to its destination in the heart.
- Another object of the invention is to provide a new type of conductive catheter, the basic features of which can be used for electrodes that are adapted to connect to the exterior of an organ.
- the new conductive catheter comprises a small diameter, but relatively long, helical wire spring that is in an insulating tube and surrounded by an outer helical wire spring which is also insulated with a flexible outside tube, although the latter may be omitted in some cases.
- the center helix continues directly through an insulating part of an electrical connector to form one prong of a two prong connector plug.
- An extension of the larger outside helical spring is Wound on a mandrel of such size that its outside diameter is essentially that of the inside coil. This extension portion ice is off-set and projects through the insulator as the other prong of the connector. Both prongs are suitably stiffened.
- the inside helical spring extends from its tubular insulating cover to form a soft and flexible electrode tip.
- the outside helcal spring has near the distal end, a short uninsulated portion exposed to act as the other electrode.
- the two electrodes are spaced axially to form a gap across which electric current may be conducted by blood or contacting tissue to stimulate the heart.
- the inside helix is stiffened with a small internal tube over the region forming the prong at the connector end. The tube permits passing a stylet wire into the catheter through the prong end to stiffen it and thereby facilitate.
- the distal end comprises two insulated wires that may be provided with surgical needles for suturing them directly into the exterior surface of the myocardium or other tissue.
- the conductive paths through the helices each constitute one continuous wire conductor from the point of contact with the organ at the distal end to the tips of the connector prongs at the proximal end.
- FIGURE 1 is a plan view of the new conductive catheter assembly with some parts in crosssection
- FIGURE 2 is a view taken from the left end of the catheter connector shown in FIGURE 1;
- FIGURE 3 is an enlarged cross-section of the proximal or connector end of the catheter.
- FIGURE 4 shows in cross-section the distal end of a conductor as modified for making a relatively permanent attachment to the exterior of an organ.
- the proximal end is designated by the reference numeral 10 and the distal end is generally designated by the reference numeral 11.
- the catheter comprises an inside helical coil spring 13 which may be wound on a small mandrel and covered with a pliable insulating tube 14 which is preferably body-compatible silicone rubber.
- a pliable insulating tube 14 which is preferably body-compatible silicone rubber.
- An outside helical spring 17 is wound independently and covered with a silicone rubber tube 18 and then the smaller helix is slid axially through the larger to form the coaxial catheter assembly.
- the uninsulated or bare regions of the helical wire springs 13 and 17 as seen in FIGURE 1 are about three-eighths of an inch long and constitute the electrodes or terminals through which current is conducted to the organ.
- silicone rubber, or other body-compatible, insulating coatings may be applied to the helices in place of silicone rubber tubes 14 and 18 to serve as an insulating layer.
- FIGURE 3 Termination of the helical springs at the proximal end 10 of the catheter may be seen best in FIGURE 3 to which attention is invited.
- This figure shows the outside insulating tube 18 ending near the end of outside helix 17.
- the outside helix 17 may be wound of two wires in parallel as can be seen by the continuation of helix 17 that extends radially and is identified by the reference numeral 19. These parallel Wires are wound on a smaller mandrel and are offset as shown to form the helical connector prong 20. Winding of the outer helical spring 17 with two or more wires results in parallel paths of lower resistivity and provides some redundancy and, therefore, insurance against open-circuiting if one of the wires breaks in the region of continuation 19.
- the inside helix may also be wound with two or more wires to secure the same advantages of parallel circuits.
- the inside helical spring 13 is not off-set but continues straight along the axis of the outside spring to form the I 3 other prong of the connector plug.
- Spring 13 and the extension of spring 17, constituting the connector prongs, have equal outside diameters.
- the prong 20 extending from spring 17 and the prong formed by helical spring 13 each pass through metal tubes 21 and 22, respectively, which are molded in an insulator 23.
- Metal shell 24 has pairs of diametrically opposite holes 27 for admitting the jaws of the staking tool as can be seen in FIGURE 1.
- Insulator 23 has an integral extension 46 which is fiat on one side and curved on the other, as may be seen in FIG, 2. This extension registers with a cavity in the mating part of the connector, not shown, to assure that the polarity of the catheter conductors is always the same.
- a headed pin or nail 28 Prior to crimping tube 21 on prong 20, the latter has inserted from its end a headed pin or nail 28.
- This pin 28 becomes a permanent part of prong 20 for stiffening it.
- the pin 28 should be substantially equal to the length of the prong 20.
- a small ring of gold not shown, may be slid over the shank of the pin to abut the head.
- the prong may then be heated in a suitable furnace to flow the gold and efiect a braze between the helical wire and the pin to smooth the prong, coat it with gold for corrosion resistance, and preclude unwinding of the helical wire.
- a flanged tube 29 is inserted endwise of helix 13.
- the flanged tube may also have a gold ring applied and treated in the manner just described and for the same purposes.
- an oversized wire not shown, is passed into flanged tube 29 so as to maintain its internal diameter when tube 25 is crimped on helix 13.
- the wire is withdrawn. This leaves an internal diameter large enough for a stylet wire 30 to pass through freely.
- the stylet wire 30 is made of stilf spring steel and is long enough to extend through the catheter to approximately the point 16 at the distal end, see FIGURE 1.
- the stylet wire 30 is provided with a knob 31 to facilitate admission and withdrawal after the catheter distal end 11 is guided to its destination.
- the catheter When the stylet is in, the catheter may be bent slightly near its distal end and the bend will stay because the stylet takes a permanent set.
- turning the stylet when passing the catheter in results in the distal end swinging around so that it may be steered through sharp bends in the blood vessel.
- the insulated coaxial springs are re-inforced and stiffened somewhat by a conical sleeve 32 which may be polyethylene or some other material that is more stiff than silicone rubber.
- This cone extends into metal connector shell 24 and butts against connector insulator 23, as can be seen clearly in FIGURE 3.
- the cavity inside of cone 32 is filled with silicone rubber adhesive 33 to impart desired electrical and mechanical properties.
- a silicone rubber re-inforcing sleeve 34 is slipped over the assembly after which its tapered end 35 is spread away from outside insulating tube 18 to admit the tip of a hypodermic needle for introducing some self-curing silicone rubber 36, see FIGURE 1.
- the silicone rubber adhesive 36 flows into all the cavities as may be seen by inspection of FIGURE 3.
- Adhesive is applied over most of the interface between the inside of sleeve 34 and the outside of metal connector shell 24, except that in a region from the left end of metal shell 24 as seen in FIGURE 3 to a point approximately at 37, there is no adhesive, so that cone 34 may expand radially to form a seal when the connector is introduced into its mating part, not shown. Further radial sealing pressure is developed by an external silicone rubber reinforcing tube 38 which preferably has medical grade silicone adhesive between it and cone 34 which it surrounds.
- Either or both helical wire springs 13 and 17 may be wound with a single wire, or preferably, a number of wires to provide parallel paths for lower electrical resistance and an alternative conductive path in the event that one of the wires should break after extended service.
- the wire used in a commercial embodiment is a composite of wires known as drawn, brazed strand. This wire comprises a central pure silver filament surrounded by six stainless filaments which are silver coated and brazed to the central filament. The composite is then drawn to the desired size which is preferably five to nine thousandths of an inch inside wire diameter. In one practical case, the outside diameter of inside helical spring 13 is about 0.040 inch and the outside diameter of outside helical spring 17 is about 0.070 inch.
- the silicone rubber tubes 14 and 18 have a wall thickness of 0.010 inch. Thus, the outside diameter of the conductive catheter may be under onetenth of an inch or even smaller if the outside insulating tube 18 is omitted.
- FIGURE 4 An alternative form of distal end for attaching the conductor assembly to the exterior of an organ is shown in FIGURE 4.
- the inside helix 13' is wound on a mandrel and covered with an insulating tube 14'.
- the end of the tube 14' has a reduced diameter portion 40 which surrounds the end of the wire from the helix 13' which is brought straight out as shown.
- the wire may be sealed into reduced diameter portion 40 with self-curing silicone adhesive.
- a surgical needle, not shown, may be attached to the end of the wire beyond the point marked 41 for facilitating suturing the conductor to the organ.
- the other conductor 42 is an extension of outside helical spring 17 which is wound in the manner described in connection with the FIGURE 1 embodiment, and insulated with a concentric silicone rubber tube 18.
- a flexible reinforcing cone 43 is provided and self-curing silicone rubber adhesive 44 may be admitted to its interior to seal off the end of the assembly, provide electrical insulation, and secure the insulating extensions 40 and 45 which surround the conductors 41 and 42.
- the conductor 42 may also be provided with a surgical needle, not shown.
- the proximal end of the conductive leads whose distal end is shown in FIGURE 4 may be the same as proximal end 10 in FIGURE 1.
- the helices may be wound out of a cable instead of a single one of the silver coated, drawn and brazed wires described earlier.
- several small wires of this kind may be twisted into strands and the strands twisted into a cable which is wound as a helix.
- the individual wires are preferably 0.005 inch in diameter or smaller when they are to be formed into cable.
- the electrode wires 41 and 42 will be more flexible when they are cables and they will be less likely to break or impose any restraint on the heart when they are sutured into the myocardium.
- the helices may be wound from cable in the FIG- URE 1 embodiment too.
- the ends of the cable has to be brazed or soldered to prevent fraying.
- the conductor out of which the helices are wound has been called wire, but that term is to be interpreted broadly to cover wire in its usual sense and cable as well.
- a coaxial conductor catheter that has a tip at its distal end made of a spring section that is very flexible, easy to pass through bends and unlikely to perforate the wall of an organ from the interior.
- the distal tip is joined by a continuous helically wound wire to the connector prong at the proximal end of the catheter.
- the other electrode near the distal end is similarly without discontinuities all the way to the end of the other prong at the proximal end. Desired stiffness may be imparted to the catheter by the stylet which is admitted through one of the prongs and passes down the center of the internal helical spring.
- the assembly is internally sealed so that it will not pass fluid from end to end.
- the overall outside diameter is minimal because of the coaxial arrangement of the conductor.
- a conductive catheter comprising:
- a body organ electrode assembly comprising:
- a conductive catheter comprising:
- references Cited UNITED STATES PATENTS form individual organ attaching means, 2 zg gg 3 (egoiltlislrlatwn on a section of each wire distal end 3 1 45 7/1967 Fisher et 128 416 X (f) a seal between the insulation on the sections and $348,548 10/1967 Chardack 128*418 J g layers WILLIAM E. KAMM, Primary Examiner.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Pulmonology (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Electrotherapy Devices (AREA)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US551686A US3416533A (en) | 1966-05-20 | 1966-05-20 | Conductive catheter |
| BE695893D BE695893A (OSRAM) | 1966-05-20 | 1967-03-21 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US551686A US3416533A (en) | 1966-05-20 | 1966-05-20 | Conductive catheter |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3416533A true US3416533A (en) | 1968-12-17 |
Family
ID=24202277
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US551686A Expired - Lifetime US3416533A (en) | 1966-05-20 | 1966-05-20 | Conductive catheter |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US3416533A (OSRAM) |
| BE (1) | BE695893A (OSRAM) |
Cited By (44)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3568660A (en) * | 1967-11-20 | 1971-03-09 | Battelle Development Corp | Pacemaker catheter |
| US3664347A (en) * | 1968-07-27 | 1972-05-23 | Dietrich Harmjanz | Electric heart stimulation method and electrode |
| US3757789A (en) * | 1971-10-26 | 1973-09-11 | I Shanker | Electromedical stimulator lead connector |
| FR2180907A1 (OSRAM) * | 1972-04-17 | 1973-11-30 | Medtronic Inc | |
| US3788329A (en) * | 1972-04-17 | 1974-01-29 | Medtronic Inc | Body implantable lead |
| FR2190403A1 (OSRAM) * | 1972-06-28 | 1974-02-01 | Univ Johns Hopkins | |
| US3817241A (en) * | 1972-02-16 | 1974-06-18 | Henry And Carol Grausz | Disposable central venous catheter and method of use |
| DE2334049A1 (de) * | 1973-07-04 | 1975-01-16 | Hans Dr Med Lagergren | Endocardelektrode |
| US3871382A (en) * | 1973-02-15 | 1975-03-18 | Pacesetter Syst | Heart stimulator system for rapid implantation and removal with improved integrity |
| US3893461A (en) * | 1972-11-28 | 1975-07-08 | Thomas A Preston | Pacing apparatus and method utilizing improved catheter |
| US3987380A (en) * | 1974-09-12 | 1976-10-19 | Amp Incorporated | Plating encapsulation to inhibit dendritic growth |
| US3994302A (en) * | 1975-08-14 | 1976-11-30 | Medtronic, Inc. | Stimulation electrode of ion-exchange material |
| US4000745A (en) * | 1968-08-05 | 1977-01-04 | Goldberg Edward M | Electrical leads for cardiac stimulators and related methods and means |
| FR2319384A1 (fr) * | 1975-07-29 | 1977-02-25 | Medtronic Inc | Electrode de stimulateur cardiaque pour implantation intraveineuse |
| FR2349339A1 (fr) * | 1976-04-30 | 1977-11-25 | Medtronic Inc | Sonde implantable dans un corps vivant munie d'un stylet raidisseur |
| US4161952A (en) * | 1977-11-01 | 1979-07-24 | Mieczyslaw Mirowski | Wound wire catheter cardioverting electrode |
| EP0013605A1 (en) * | 1979-01-05 | 1980-07-23 | Medtronic, Inc. | Stylet insertion assembly for body implantable lead |
| WO1980002801A1 (en) * | 1979-06-14 | 1980-12-24 | B Reenstierna | Endocardial,implantable lead for pacemaker |
| US4253462A (en) * | 1979-08-09 | 1981-03-03 | Medtronic, Inc. | Stylet |
| US4257429A (en) * | 1979-02-07 | 1981-03-24 | Medtronic, Inc. | Stylet retainer and extension |
| US4355646A (en) * | 1980-11-26 | 1982-10-26 | Medtronic, Inc. | Transvenous defibrillating lead |
| US4362166A (en) * | 1980-11-04 | 1982-12-07 | Mallinckrodt, Inc. | Disposable medical probe and connector |
| US4387727A (en) * | 1981-03-30 | 1983-06-14 | Medtronic, Inc. | Coaxial service kit |
| EP0109178A3 (en) * | 1982-10-14 | 1984-12-27 | American Hospital Supply Corporation | Flexible tip cardiac pacing catheter |
| US4572605A (en) * | 1984-08-09 | 1986-02-25 | Medtronic, Inc. | Injection molded in-line connector assembly for bipolar leads |
| US4602645A (en) * | 1982-12-16 | 1986-07-29 | C. R. Bard, Inc. | Atrio-ventricular pacing catheter |
| US4759378A (en) * | 1982-10-14 | 1988-07-26 | American Hospital Supply Corporation | Flexible tip cardiac pacing catheter |
| US4809712A (en) * | 1986-09-26 | 1989-03-07 | Cochlear Pty. Ltd. | Electrode assembly for cochlear implant |
| US5314463A (en) * | 1991-11-18 | 1994-05-24 | Medtronic, Inc. | Bipolar nerve electrode |
| US5324321A (en) * | 1992-12-22 | 1994-06-28 | Medtronic, Inc. | Medical electrical lead having sigmoidal conductors and non-circular lumens |
| US5487758A (en) * | 1992-09-28 | 1996-01-30 | Siemens-Elema Ab | Electrode system for pacemakers |
| US5562722A (en) * | 1994-03-14 | 1996-10-08 | Medical Evaluation Devices & Instruments Corp. | Multiple electrode catheter |
| US5628773A (en) * | 1992-07-14 | 1997-05-13 | Schwarz Pharma Ag | Microsleeves and electric supply leads |
| US5810887A (en) * | 1996-08-23 | 1998-09-22 | Rhythm Technologies, Inc. | Temporary catheter |
| US5871528A (en) * | 1996-06-28 | 1999-02-16 | Medtronic, Inc. | Temporary bipolar heart wire |
| US5957967A (en) * | 1998-02-19 | 1999-09-28 | Medtronic, Inc. | Implantable medical lead using stamped conductor and distal loop |
| US6096069A (en) * | 1995-12-28 | 2000-08-01 | Medtronic, Inc. | Medical electrical lead with conductors coiled around an inner tube |
| US6253111B1 (en) | 1998-03-30 | 2001-06-26 | Pacesetter, Inc. | Multi-conductor lead |
| US6397108B1 (en) | 2000-04-03 | 2002-05-28 | Medtronic Inc. | Safety adaptor for temporary medical leads |
| US20090198312A1 (en) * | 2008-01-31 | 2009-08-06 | John Michael Barker | Lead with lead stiffener for implantable electrical stimulation systems and methods of making and using |
| US20110207352A1 (en) * | 2010-02-23 | 2011-08-25 | Medtronic, Inc. | Temporary Touch-Proof Connector for Heartwires |
| US9456760B2 (en) | 2013-03-14 | 2016-10-04 | C. R. Bard, Inc. | Closed catheter tip including electrically conductive pathway |
| US9700224B2 (en) | 2013-03-14 | 2017-07-11 | C. R. Bard, Inc. | Electrically conductive pathway in a closed-ended catheter |
| US20220143411A1 (en) * | 2020-11-06 | 2022-05-12 | Advanced Neuromodulation Systems, Inc. | Systems and methods to reduce rf-induced heating of an implanted lead |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US301417A (en) * | 1884-07-01 | Alexandeb wilkinson | ||
| US2949910A (en) * | 1957-03-29 | 1960-08-23 | James R Brown | Phonocardiac catheter |
| US3333045A (en) * | 1965-07-20 | 1967-07-25 | Gen Electric | Body implantable electrical conductor |
| US3348548A (en) * | 1965-04-26 | 1967-10-24 | William M Chardack | Implantable electrode with stiffening stylet |
-
1966
- 1966-05-20 US US551686A patent/US3416533A/en not_active Expired - Lifetime
-
1967
- 1967-03-21 BE BE695893D patent/BE695893A/xx unknown
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US301417A (en) * | 1884-07-01 | Alexandeb wilkinson | ||
| US2949910A (en) * | 1957-03-29 | 1960-08-23 | James R Brown | Phonocardiac catheter |
| US3348548A (en) * | 1965-04-26 | 1967-10-24 | William M Chardack | Implantable electrode with stiffening stylet |
| US3333045A (en) * | 1965-07-20 | 1967-07-25 | Gen Electric | Body implantable electrical conductor |
Cited By (53)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3568660A (en) * | 1967-11-20 | 1971-03-09 | Battelle Development Corp | Pacemaker catheter |
| US3664347A (en) * | 1968-07-27 | 1972-05-23 | Dietrich Harmjanz | Electric heart stimulation method and electrode |
| US4000745A (en) * | 1968-08-05 | 1977-01-04 | Goldberg Edward M | Electrical leads for cardiac stimulators and related methods and means |
| US3757789A (en) * | 1971-10-26 | 1973-09-11 | I Shanker | Electromedical stimulator lead connector |
| US3817241A (en) * | 1972-02-16 | 1974-06-18 | Henry And Carol Grausz | Disposable central venous catheter and method of use |
| US3804098A (en) * | 1972-04-17 | 1974-04-16 | Medronic Inc | Body implantable lead |
| US3788329A (en) * | 1972-04-17 | 1974-01-29 | Medtronic Inc | Body implantable lead |
| FR2180907A1 (OSRAM) * | 1972-04-17 | 1973-11-30 | Medtronic Inc | |
| FR2190403A1 (OSRAM) * | 1972-06-28 | 1974-02-01 | Univ Johns Hopkins | |
| US3893461A (en) * | 1972-11-28 | 1975-07-08 | Thomas A Preston | Pacing apparatus and method utilizing improved catheter |
| US3871382A (en) * | 1973-02-15 | 1975-03-18 | Pacesetter Syst | Heart stimulator system for rapid implantation and removal with improved integrity |
| DE2334049C3 (de) * | 1973-07-04 | 1988-12-22 | Lagergren, Hans, Dr.Med., Stockholm | Endocard-elektrodenanordnung |
| DE2334049A1 (de) * | 1973-07-04 | 1975-01-16 | Hans Dr Med Lagergren | Endocardelektrode |
| US3987380A (en) * | 1974-09-12 | 1976-10-19 | Amp Incorporated | Plating encapsulation to inhibit dendritic growth |
| FR2319384A1 (fr) * | 1975-07-29 | 1977-02-25 | Medtronic Inc | Electrode de stimulateur cardiaque pour implantation intraveineuse |
| US3994302A (en) * | 1975-08-14 | 1976-11-30 | Medtronic, Inc. | Stimulation electrode of ion-exchange material |
| FR2349339A1 (fr) * | 1976-04-30 | 1977-11-25 | Medtronic Inc | Sonde implantable dans un corps vivant munie d'un stylet raidisseur |
| US4161952A (en) * | 1977-11-01 | 1979-07-24 | Mieczyslaw Mirowski | Wound wire catheter cardioverting electrode |
| EP0013605A1 (en) * | 1979-01-05 | 1980-07-23 | Medtronic, Inc. | Stylet insertion assembly for body implantable lead |
| US4257429A (en) * | 1979-02-07 | 1981-03-24 | Medtronic, Inc. | Stylet retainer and extension |
| WO1980002801A1 (en) * | 1979-06-14 | 1980-12-24 | B Reenstierna | Endocardial,implantable lead for pacemaker |
| US4253462A (en) * | 1979-08-09 | 1981-03-03 | Medtronic, Inc. | Stylet |
| US4362166A (en) * | 1980-11-04 | 1982-12-07 | Mallinckrodt, Inc. | Disposable medical probe and connector |
| US4355646A (en) * | 1980-11-26 | 1982-10-26 | Medtronic, Inc. | Transvenous defibrillating lead |
| US4387727A (en) * | 1981-03-30 | 1983-06-14 | Medtronic, Inc. | Coaxial service kit |
| EP0109178A3 (en) * | 1982-10-14 | 1984-12-27 | American Hospital Supply Corporation | Flexible tip cardiac pacing catheter |
| US4759378A (en) * | 1982-10-14 | 1988-07-26 | American Hospital Supply Corporation | Flexible tip cardiac pacing catheter |
| US4602645A (en) * | 1982-12-16 | 1986-07-29 | C. R. Bard, Inc. | Atrio-ventricular pacing catheter |
| US4572605A (en) * | 1984-08-09 | 1986-02-25 | Medtronic, Inc. | Injection molded in-line connector assembly for bipolar leads |
| US4809712A (en) * | 1986-09-26 | 1989-03-07 | Cochlear Pty. Ltd. | Electrode assembly for cochlear implant |
| US5314463A (en) * | 1991-11-18 | 1994-05-24 | Medtronic, Inc. | Bipolar nerve electrode |
| US5628773A (en) * | 1992-07-14 | 1997-05-13 | Schwarz Pharma Ag | Microsleeves and electric supply leads |
| US5487758A (en) * | 1992-09-28 | 1996-01-30 | Siemens-Elema Ab | Electrode system for pacemakers |
| US5324321A (en) * | 1992-12-22 | 1994-06-28 | Medtronic, Inc. | Medical electrical lead having sigmoidal conductors and non-circular lumens |
| US5562722A (en) * | 1994-03-14 | 1996-10-08 | Medical Evaluation Devices & Instruments Corp. | Multiple electrode catheter |
| US6096069A (en) * | 1995-12-28 | 2000-08-01 | Medtronic, Inc. | Medical electrical lead with conductors coiled around an inner tube |
| US5871528A (en) * | 1996-06-28 | 1999-02-16 | Medtronic, Inc. | Temporary bipolar heart wire |
| US5810887A (en) * | 1996-08-23 | 1998-09-22 | Rhythm Technologies, Inc. | Temporary catheter |
| US5957967A (en) * | 1998-02-19 | 1999-09-28 | Medtronic, Inc. | Implantable medical lead using stamped conductor and distal loop |
| US6253111B1 (en) | 1998-03-30 | 2001-06-26 | Pacesetter, Inc. | Multi-conductor lead |
| US6397108B1 (en) | 2000-04-03 | 2002-05-28 | Medtronic Inc. | Safety adaptor for temporary medical leads |
| US20090198312A1 (en) * | 2008-01-31 | 2009-08-06 | John Michael Barker | Lead with lead stiffener for implantable electrical stimulation systems and methods of making and using |
| WO2009099883A1 (en) * | 2008-01-31 | 2009-08-13 | Boston Scientific Neuromodulation Corporation | Lead with lead stiffener for implantable electrical stimulations systems and methods of making and using |
| US8391982B2 (en) | 2008-01-31 | 2013-03-05 | Boston Scientific Neuromodulation Corporation | Lead with lead stiffener for implantable electrical stimulation systems and methods of making and using |
| US20130172950A1 (en) * | 2008-01-31 | 2013-07-04 | Boston Scientific Neuromodulation Corporation | Lead with lead stiffener for implantable electrical stimulation systems and methods of making and using |
| US8712528B2 (en) * | 2008-01-31 | 2014-04-29 | Boston Scientific Neuromodulation Corporation | Lead with lead stiffener for implantable electrical stimulation systems and methods of making and using |
| US20110207352A1 (en) * | 2010-02-23 | 2011-08-25 | Medtronic, Inc. | Temporary Touch-Proof Connector for Heartwires |
| DE102011013170A1 (de) | 2010-02-23 | 2012-01-05 | Medtronic, Inc. | Temporärer berührungssicherer Verbinder für Herzdrähte |
| US8996130B2 (en) | 2010-02-23 | 2015-03-31 | Medtronic, Inc. | Temporary touch-proof connector for heartwires |
| DE102011013170B4 (de) | 2010-02-23 | 2022-09-15 | Medtronic, Inc. | Temporärer berührungssicherer Verbinder für Herzdrähte |
| US9456760B2 (en) | 2013-03-14 | 2016-10-04 | C. R. Bard, Inc. | Closed catheter tip including electrically conductive pathway |
| US9700224B2 (en) | 2013-03-14 | 2017-07-11 | C. R. Bard, Inc. | Electrically conductive pathway in a closed-ended catheter |
| US20220143411A1 (en) * | 2020-11-06 | 2022-05-12 | Advanced Neuromodulation Systems, Inc. | Systems and methods to reduce rf-induced heating of an implanted lead |
Also Published As
| Publication number | Publication date |
|---|---|
| BE695893A (OSRAM) | 1967-09-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3416533A (en) | Conductive catheter | |
| US4592372A (en) | Pacing/sensing electrode sleeve and method of forming same | |
| US3472234A (en) | Body organ electrode | |
| US3474791A (en) | Multiple conductor electrode | |
| US4409994A (en) | Lap joint molding member for a pacemaker electrode lead | |
| US4301815A (en) | Trailing tine electrode lead | |
| US6456888B1 (en) | Geometry for coupling and electrode to a conductor | |
| EP0037223B1 (en) | A body implantable lead having a ring electrode, and a process for making same | |
| US3804098A (en) | Body implantable lead | |
| US4590950A (en) | Electrical connection | |
| US3333045A (en) | Body implantable electrical conductor | |
| US4458695A (en) | Multipolar electrode assembly for pacing lead | |
| US5522872A (en) | Electrode-conductor sleeve joint for cardiac lead | |
| US5545201A (en) | Bipolar active fixation lead for sensing and pacing the heart | |
| US5016646A (en) | Thin electrode lead and connections | |
| US6952616B2 (en) | Medical lead and method for electrode attachment | |
| US5897585A (en) | Stretchable pacing lead | |
| US5483022A (en) | Implantable conductor coil formed from cabled composite wire | |
| US4711027A (en) | Implantable lead construction | |
| US4835853A (en) | Method for electrically connecting conductors & electrodes in an implantable electrode lead | |
| JP2001511406A (ja) | 心臓ペースメーカーのケーブルリード | |
| US5569883A (en) | Joint for providing a secure connection between a wound element and a mating part in a body implantable lead assembly and method for making such joint | |
| US6580949B1 (en) | Implantable electrode lead | |
| JP2001511405A (ja) | 外部誘導管をもつ小径心内膜リード | |
| JP2003515358A (ja) | 拡張可能/収縮可能に固定された心臓ペースメーカーリード |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PA | Patent available for licence or sale |