US3401923A - Dryer - Google Patents

Dryer Download PDF

Info

Publication number
US3401923A
US3401923A US528261A US52826166A US3401923A US 3401923 A US3401923 A US 3401923A US 528261 A US528261 A US 528261A US 52826166 A US52826166 A US 52826166A US 3401923 A US3401923 A US 3401923A
Authority
US
United States
Prior art keywords
particles
granular material
housing
dryer
feed end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US528261A
Other languages
English (en)
Inventor
Wendell E Bearce
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wilmot Engineering Co
Original Assignee
Wilmot Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wilmot Engineering Co filed Critical Wilmot Engineering Co
Priority to US528261A priority Critical patent/US3401923A/en
Priority to BE694258D priority patent/BE694258A/xx
Priority to ES336949A priority patent/ES336949A1/es
Priority to DE19671729503D priority patent/DE1729503B1/de
Priority to FR95477A priority patent/FR1512657A/fr
Priority to GB7813/67A priority patent/GB1163180A/en
Application granted granted Critical
Publication of US3401923A publication Critical patent/US3401923A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B11/00Machines or apparatus for drying solid materials or objects with movement which is non-progressive
    • F26B11/02Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles
    • F26B11/04Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles rotating about a horizontal or slightly-inclined axis
    • F26B11/0463Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles rotating about a horizontal or slightly-inclined axis having internal elements, e.g. which are being moved or rotated by means other than the rotating drum wall
    • F26B11/0468Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles rotating about a horizontal or slightly-inclined axis having internal elements, e.g. which are being moved or rotated by means other than the rotating drum wall for disintegrating, crushing, or for being mixed with the materials to be dried
    • F26B11/0472Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles rotating about a horizontal or slightly-inclined axis having internal elements, e.g. which are being moved or rotated by means other than the rotating drum wall for disintegrating, crushing, or for being mixed with the materials to be dried the elements being loose bodies or materials, e.g. balls, which may have a sorbent effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B11/00Machines or apparatus for drying solid materials or objects with movement which is non-progressive
    • F26B11/02Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles
    • F26B11/04Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles rotating about a horizontal or slightly-inclined axis
    • F26B11/0404Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles rotating about a horizontal or slightly-inclined axis with internal subdivision of the drum, e.g. for subdividing or recycling the material to be dried
    • F26B11/0413Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles rotating about a horizontal or slightly-inclined axis with internal subdivision of the drum, e.g. for subdividing or recycling the material to be dried the subdivision consisting of concentric walls, e.g. multi-pass or recirculation systems; the subdivision consisting of spiral-shaped walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B11/00Machines or apparatus for drying solid materials or objects with movement which is non-progressive
    • F26B11/02Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles
    • F26B11/04Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles rotating about a horizontal or slightly-inclined axis
    • F26B11/0445Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles rotating about a horizontal or slightly-inclined axis having conductive heating arrangements, e.g. heated drum wall
    • F26B11/045Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles rotating about a horizontal or slightly-inclined axis having conductive heating arrangements, e.g. heated drum wall using heated internal elements, e.g. which move through or convey the materials to be dried
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/18Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact
    • F26B3/20Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact the heat source being a heated surface, e.g. a moving belt or conveyor
    • F26B3/205Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact the heat source being a heated surface, e.g. a moving belt or conveyor the materials to be dried covering or being mixed with heated inert particles which may be recycled

Definitions

  • the drum slopes downwardly and is rotated so as to move the mixture of particles and material in concurrent flow through the drum to a discharge end where the dry material is discharged and the particles are recovered and deposited in a heating chamber or housing where the particles are moved in a direction countercurrent to the flow of the mixed particles and are reheated and reintroduced to the wet granular material at the feed end of the container.
  • a perforated screw conveyor advances the particles through the reheating housing and a fan pulls the heating gases from a heating source located at the feed end of the drum through the advancing particles.
  • This invention relates to a dryer and more particularly concerns a dryer for drying wet granular material such as Wet coal and the like.
  • Any dryer which utilizes a hot air stream to carry and dry fine particles cannot pick up or support such slabs or globs and cannot separate the particles so that the hot gas can contact the particles individually.
  • Dryers which use rotating drums, or vibrating screens or plates, merely roll such slabs into balls.
  • the outside of these balls becomes excessively dry upon being contacted by hot gases and this produces dust, which is undesirable, and yet the inside stays wet.
  • Dryers which utilize hot air to dry material having a mixture of coarse and fine particles do not dry the particles evenly. By the time the coarse material is dry, the fines are so dry as to create a danger of explosion.
  • a number of prior art devices depend on hot air from a furnace to pick up and dry a wet coal feed. But the hot air cannot pick up chunks or lumps of coal and so they merely fall to the bottom of the machine and are not dried. Also, the hot air cannot pick up smaller material of 100 mesh size, for example, which agglomerates and sticks together.
  • the material which the hot air does pick up is heated and carried to a dry collector which takes out the coarse particles.
  • the fine particles are drawn out of the dry collector by a fan and transported to a wet scrubber where the fines are mixed with water and are disposed of in a stream, or deposited on the countryside behind a dam, where it is hoped that the fines will eventually settle out.
  • FIG. 1 is a view in perspective of a dryer constructed in accordance with this invention
  • FIG. 2 is an elevational view, partly in section and partly schematic, of the dryer shown in FIG. 1;
  • FIG. 3 is a view in section taken as indicated by the lines and arrows 3-3 which appear in FIG. 2;
  • FIG. 4 is a view in section taken as indicated by the lines and arrows 4-4 which appear in FIG. 2;
  • FIG. 5 is an elevational view, partly in section and partly schematic, of another embodiment of the invention.
  • FIGS. 1-4 a dryer 11 for drying wet granular material 12.
  • the dryer includes a rotatable container or cylinder 13 having a feed end 14 and a discharge end 15.
  • a feed hopper 16 and vibrating feed chutes 17 are provided for feeding the wet granular material 12 to feed end 14.
  • a housing 18, having a feed end 21 and a discharge end 22, is adapted to introduce heated particles 23 into Wet granular material 12 to transfer heat to and dry the granulated material while in cylinder 13.
  • Housing 18 feeds particles 23 to feed end 14 of cylinder 13.
  • the particles 23 may be of any shape, for example, they may be balls of steel or of other heat conducting material.
  • the particles 23 are heated in housing 18.
  • the heating means includes a firing chamber 24 lined with refractory brick 25, and a burner 26 which generates hot gases 27 and directs them through housing 18 to heat the particles therein.
  • Particles 23 are recycled through cylinder 13.
  • the recycling means includes a lifting chamber 28 at the exit end of cylinder 13 for receiving the particles 23 which have transferred their heat to the granular material and are now cool, and lifters 31 mounted in chamber 28 for elevating the particles to feed end 21 of housing 18.
  • Air locks 32 limit the amount of air that is sucked into housing 18 from lifting chamber 28, and comprise a num 'ber of panels which revolve around an axis in the manner of a revolving door. 1
  • housing 18 is positioned concentrically within cylinder 13 and rotates therewith.
  • a screw conveyor 34 is mounted within housing 18 for advancing particles 23 from feed end 21 to discharge end 22, and the flights of screw conveyor 34 are perforated near their outer periphery so that the hot gases 27 pass through the particles as they advance along the bottom of housing 18.
  • a fan protection screen 35 is located at the bottom end of housing 18 and acts as a guard to prevent particles 23 from passing into fan 33.
  • the discharge end 22 of housing 18 has discharge slots 36 formed therein through which the heated particles are fed into cylinder 13.
  • a cover 37 is positioned around the top and sides of discharge end 22 and covers all but the downwardly-facing slots 36 during rotation of the housing so as to prevent wet granular material 12 from entering housing 18 through the slots.
  • water vapor is liberated at feed end 14 from the wet granular material 12 by contact with the heated particles 23, and this vapor is disposed of by passing it through a water vapor hood 44 and a discharge duct 45 which may connect with a stack, or may connect directly to atmosphere.
  • a fan may be positioned in duct 45 to assist in pulling the vapor from cylinder 13.
  • the hot gases 27 lose heat during their passage through housing 18 and are discharged through a discharge duct 46 located at feed end 21.
  • a temperature sensor 47 is positioned in duct 46 and measures the temperature of the cooled gases. Sensor 47 is connected to and actuates a fuel control valve 48 which controls the amount of fuel being fed to the burner 26, thereby controlling the temperature of particles 23.
  • the dried granular material is discharged at end 15 into a chute 51.
  • a moisture sensor 52 is positioned in chute 51 to measure the moisture content of the dried material, and is connected to a lifting mechanism control 53 that adjusts the height of lifting mechanism 54 which supports one end of the dryer. Sensor 52 thereby controls the slope of cylinder 13 and the moisture content of the dried material. If the moisture content of the dried granular material 41 is too high, moisture sensor 52 signals control 53 to raise lifting mechanism 54. Accordingly, the slope is decreased and the granular material remains in the cylinder longer and more water is evaporated from the material.
  • moisture sensor 52 signals control 53 to lower lifting mechanism 54. Accordingly, the slope is increased and the material runs through faster so that less moisture is evaporated.
  • moisture sensor 52 may be connected to a motor speed control 55 that adjusts the speed of a motor 56 which rotates cylinder 13 through a variable speed reducer 57 and gears 58.
  • moisture sensor 52 determines that the moisture content of granular material 41 is too high, it signals motor speed control 55 to decrease the rotational speed of motor 56 and cylinder 13 to slow the travel of the material through the cylinder and thereby increase the retention time of the material in cylinder 13 so that more water is evaporated. If moisture sensor 52 ascertains that the moisture content is too low, it signals motor speed control 55 to increase the rotational speed of motor 56 and cylinder 13 to quicken the travel of the mixture through the cylinder and thereby decrease retention time so that less water is evaporated.
  • a main frame 61 supports the elements of the dryer, including firing chamber 24, water vapor hood 44, exhaust fan 33, motor 56, gears 58, and cylinder roller assemblies 62.
  • Main frame 61 is supported at the feed end of the dryer by a pivot assembly 63 and at the discharge end by lifting mechanism 54.
  • wet granular material 12 is introduced 4 into feed hopper 16 and is deflected by vibrating feed chutes 17 into the feed end 14 of cylinder 13 which is being rotated by drive motor 56 through variable speed reducer 57 and cylinder drive gears 58, the cylinder being supported for rotation on cylinder roller assemblies 62.
  • Cover 37 is supported on main frame 61 by legs 64 that hold the cover stationary and prevent any particles of the wet granulated material 12 from entering housing 18 through discharge slots 36.
  • Hot gases 27 produced in firing chamber 24 by burner 26 are drawn through screw conveyor housing 1-8 by fan 33, and pass over, around and through the particles 23 to heat them to the desired high temperature.
  • the gases 27 are cooled by this passage through housing 18 and transfer of heat to particles 23, and are discharged to the atmosphere by exhaust fan 33 through a discharge duct 46.
  • the hot particles 23 are discharged by gravity from discharge end 22 of housing 18 into feed end 14 of cylinder 13 through slots 36.
  • the hot particles 23 mix with wet granular material 12 and transfer heat thereto as the mixture moves down the slope of rotating cylinder 13.
  • the heat converts the water in the wet granular material into water vapor which is discharged through discharge duct 45.
  • the dried mixture falls into the enlarged diameter discharge end 15 and is separated into its components of particles 23 and the now dried granular material 41.
  • the dried granular material 41 passes through the openings in the screen section 38 into discharge chute 51, and the particles 23 flow over darn 42 into lifting chamber 28.
  • Lifters 31 elevate the particles so that they fall through air locks 32 and feed opening 43 into housing 18.
  • Screw conveyor 34 moves the particles up the slope of housing 18 as they are being heated by the hot gases 27 and then feeds them through discharge slots 36 into feed end 14 of rotating cylinder 13.
  • the water vapor which is liberated from the wet granular material 12 when it is contacted by and mixed with hot particles 23 is withdrawn from rotating cylinder 13 through water vapor hood 44 and discharge duct 45.
  • FIG. 5 illustrates another embodiment of the invention wherein the housing for heating the particles is placed outside the rotatable cylinder.
  • this form of dryer includes a main frame 71 supported by pivot assembly 72 and lifting mechanism 73.
  • a rotatable cylinder 74 is supported on main frame 71 by roller assemblies 75 and is rotated by motor 76 through variable speed reducer 77 and drive gears 78.
  • Wet granular material 12 is introduced into rotatable cylinder 74 through a feed hopper 81, and hot particles 23 are introduced into cylinder 74 through a hopper 82.
  • Water vapor created by the mixing of the particles 23 and wet granular material 12 is discharged from the dryer through water vapor hood 83 and discharge duct 84.
  • the mixture of granular material and particles 23 passes through cylinder 74 from feed end 85 to screened discharge end 86 where the now dried granular material 41 passes downwardly through the screen slots into a discharge chute 87, while the particles 23 ride over dam 88 into lifting chamber 91 where they are elevated by lifters 31 and discharged through air locks 32 into a receiving hopper 92.
  • the now cooled particles 23 are transferred from hopper 92 by any suitable mechanism, such as by conveyor 93, to a feed hopper 94 of a housing 95 which includes a screw conveyor 96 that transports the particles from feed end 97 of housing 95 to discharge end 98.
  • housing 95 Since housing 95 is external to drum or cylinder 74, it is rotated by a separate drive mechanism 104.
  • the dryer of the present invention is 'able to handle sticky, caked or gummy material and provide intimate contact between disparate elements of such material and the particles 23.
  • the dryer is able to dry materials which are subject to combustion. It can do so because it utilizes a parallel flow principle whereby the material 12 being treated, and the particles 23 fiow together in parallel paths so that the hottest particles come into contact with the wettest material. As the material 12 becomes progressively dryer, the particles 23 in contact therewith become progressively cooler. Accordingly, the dryest material is never contacted by the hottest particles, so that the danger of combustion is avoided.
  • One of the safety features of the dryer is that the hot gases 27 do not come in contact with the combustible material being treated at any time.
  • the dryer of this invention eliminates the problems of separating out dust, which problems are inherent in dryers utilizing a hot gas for drying. It does so by providing that the hot gases are never in contact with the treated material and do not have to be separated from that material in expensive, space consuming, high head room, dust recovery apparatus.
  • the drying gas picks up dust from the material being dried, and must be discharged through wet scrubbers in order to remove the dust.
  • the wet dust must be dried, or disposed of as waste.
  • One way of disposing of the wet dust is to deposit it in a pond.
  • the water vapor escaping from the dryer of this invention has a high velocity only at the feed end 14 of cylinder 113 'where the granular material 12 is at its wettest and the greatest amount of water vapor is generated. However, the water vapor does not pick up any dust from the granular material because it is so wet and heavy.
  • the dried material 41 is separated from the source of heat 26 by the length of rotating cylinder .13.
  • Clyinder 13 may be insulated externally, and all the hot gases are confined to a relatively small housing 18. Any heat radiating from exterior of housing 18 raises temperature in cylinder 13 and assists drying of wet material. Moreover, the helical path through internal screw conveyor 34 is extremely long so that hot gases 27 become cool during their passage through housing 18 and are discharged at a low temperature through screen 35 into fan 33 and discharge duct 46.
  • the dryer of the present invention provides a better control of the final moisture content of the granular material since there is no tendency for segregation of particle sizes in the dryer as with dryers employing air to dry the material. Also, there is no tendency to over-dry smaller particles prior to completely drying larger particles. This is very important since the object is to try to reduce the moisture content of the material as much as possible without creating dust.
  • cylinders ;13 and 74 have been shown as being rotatable, they could be fixed in position with rotatable parts therein, such as a paddle mixer, for moving the material along. Also, housings 18 and 95 could be fixed and inside members could move the particles 23, such as rotable screw conveyors.
  • a dryer for drying wet granular material comprising a container having a feed end and a discharge end, means for feeding wet granular material into said feed end, means for introducing heated particles into said wet granular material to transfer heat to and dry said wet granular material while in said container, and means for recycling said heated particles through said wet granular material in said container, said recycling means includ ing a housing having a feed end and a discharge end, means for separating said particles from said dry granular material and delivering the particles to said housing, and means for heating said particles in the housing, said discharge end of the housing having discharge slots formed therein through which the particles are fed into said container, and a cover positioned around the top and the sides of the housing to cover the slots and prevent said wet granular material from entering the housing through said slots.
  • a dryer for drying wet granular material comprising a container having a feed end and a discharge end, means for feeding wet granular material into said feed end, means for introducing heated particles into said wet granular material to transfer heat to and dry said wet granular material while in said chamber, and means for recycling said heated particles through said wet granular material in said container, said recycling means including a housing having a feed end and a discharge end, means for separating said particles from said dry granular material and delivering the particles to said housing, and means for heating said particles in the housing, and said discharge end of the container includes: a discharge screen section through which the dried granular material is discharged, a lifting chamber for receiving and lifting said particles, and a dam defining one end of the lifting chamber, said particles being adapted to flow over the dam into the lifting chamber free of the granular material.
  • a dryer for drying wet granular material comprising a container having a feed end and a discharge end, means for feeding wet granular material into said feed end, means for introducing heated particles into said wet granular material to transfer heat to and dry said wet granular material while in said container, and means for recycling said heated particles through said wet granular material in said container, said recycling means including a housing having a feed end and a discharge end, means for separating said particles from said dry granular material and delivering the particles to said housing, and means for heating said particles in the housing, the discharge end of the container including a lifting chamber having lifters for elevating said particles to the feed end of the housing and having air lock means at the end of the lifters for limiting passage of air from the lifting chamber to the housing.
  • a dryer for drying wet granular material comprising a container having a feed end and a discharge end, means for feeding wet granular material into said feed end, means for introducing heated particles into said wet granular material to transfer heat to and dry said wet granular material while in said container, and means for recycling said heated particles through said wet granular material in said container, said recycling means including a housing having a feed end and a discharge end, means for separating said particles from said dry granular material and delivering the particles to said housing, and means for heating said particles in the housing, a discharge chute located at the discharge end of the container for receiving the dried granular material, moisture sensing means located in said granular material discharge chute for measuring the moisture of the dried material, a lifting mechanism coupled to the container and adapted to raise and lower one end of the container to change its slope to speed or retard the passage of granular material therethrough, and lifting mechanism control means connected to and actuated by the moisture control means to control the slope of the container to increase its slope so that the gran
  • a dryer for drying wet granular material comprising a container having a feed end and a discharge end, means for feeding wet granular material into said feed end, means for introducing heated particles into said feed end to mix with said material to transfer heat to and dry said material, means for moving said particles and material in concurrent flow through the container, means for separating said particles from said material, means for returning said particles to the feed end by moving said particles in a direction countercurrent to the flow of said mixed particles and material, means for reheating said particles during the course of travel from the discharge end to the feed end, whereby the reheated particles are recycled through the container to dry the wet granular material, a discharge chute located at the discharge end of the container for receiving the dried granular material, moisture sensing means located in the discharge chute for measuring the moisture of the dried material, and speed control means coupled to the container for controlling the speed of rotation of the container, said speed control means being actuated by the moisture sensing means.
  • a dryer for drying wet granular material comprising a container having a feed end and a discharge end, means for feeding wet granular material into said feed end, means for introducing heated particles into said feed end to mix with said material to transfer heat to and dry said material, means for moving said particles and material in concurrent flow through the container, a housing having a feed end and a discharge end, said housing being positioned concentrically within the container, means for separating said particles from said materials and delivering the particles to said housing, means for returning said particles to the feed end by moving said particles in a direction countercurrent to the flow of said mixed particles and material, and means for reheating said particles during the course of travel from the discharge end to the feed end, whereby the reheated particles are recycled through the container to dry the wet granular material.
  • the means for heating the particles includes a burner located at the discharge end of the housing which directs heat at the advancing particles so as to gradually increase their temperature, and an exhaust fan located at the feed end of the housing for pulling hot gases from the burner through the housing and preventing the hot gases from flowing outside the housing into the container.
  • a dryer for drying wet granular material comprising a container having a feed end and a discharge end, means for feeding wet granular material into said feed end, means for introducing heated particles into said feed end to mix with said material to transfer heat to and dry said material, means for moving said particles and material in concurrent flow through the container, a housing having a feed end and a discharge end, means for separating said particles from said materials and delivering the particles to said housing, means for returning said particles to the feed end by moving said particles in a direction countercurrent to the flow of said mixed particles and material, means for reheating said particles during the course of travel from the discharge end to the feed end, whereby the reheated particles are recycled through the container to dry the wet granular material, a cooled gases discharge duct extending from the feed end of the housing, temperature sensing means located in the discharge duct for measuring the temperature of the cooled gases, and fuel control means actuated by the temperature sensing means to control the means for heating the particles.
  • said means for returning said particles to the feed end comprises a screw conveyor for advancing said particles through the housing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Drying Of Solid Materials (AREA)
  • Treatment Of Sludge (AREA)
US528261A 1966-02-17 1966-02-17 Dryer Expired - Lifetime US3401923A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US528261A US3401923A (en) 1966-02-17 1966-02-17 Dryer
BE694258D BE694258A (US08063081-20111122-C00242.png) 1966-02-17 1967-02-17
ES336949A ES336949A1 (es) 1966-02-17 1967-02-17 Un dispositivo secador para secar un material granular hu- medo.
DE19671729503D DE1729503B1 (de) 1966-02-17 1967-02-17 Vorrichtung zum Trocknen von feuchtem,koernigem Trocknungsgut
FR95477A FR1512657A (fr) 1966-02-17 1967-02-17 Perfectionnements apportés aux séchoirs
GB7813/67A GB1163180A (en) 1966-02-17 1967-02-17 Dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US528261A US3401923A (en) 1966-02-17 1966-02-17 Dryer

Publications (1)

Publication Number Publication Date
US3401923A true US3401923A (en) 1968-09-17

Family

ID=24104925

Family Applications (1)

Application Number Title Priority Date Filing Date
US528261A Expired - Lifetime US3401923A (en) 1966-02-17 1966-02-17 Dryer

Country Status (6)

Country Link
US (1) US3401923A (US08063081-20111122-C00242.png)
BE (1) BE694258A (US08063081-20111122-C00242.png)
DE (1) DE1729503B1 (US08063081-20111122-C00242.png)
ES (1) ES336949A1 (US08063081-20111122-C00242.png)
FR (1) FR1512657A (US08063081-20111122-C00242.png)
GB (1) GB1163180A (US08063081-20111122-C00242.png)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3520522A (en) * 1967-09-21 1970-07-14 Metallgesellschaft Ag Screw conveyor for heat treating bulk feed
US3521866A (en) * 1964-07-03 1970-07-28 Still Fa Carl Coking apparatus tube construction
US3775041A (en) * 1972-05-10 1973-11-27 H Buttner Recirculating ball heat transfer system for drying and heating materials
US4014106A (en) * 1975-06-20 1977-03-29 Bearce Wendell E Dryer
US4038021A (en) * 1976-04-05 1977-07-26 Benson John O Continuous grain drier and method
US4191530A (en) * 1978-09-21 1980-03-04 Bearce Wendell E Dryer
US4193758A (en) * 1976-06-14 1980-03-18 Food Processes, Inc. Granular bed heating method
US4258779A (en) * 1977-11-14 1981-03-31 General Kinematics Corporation Method and apparatus for conveying very fine solid material
US4474553A (en) * 1981-09-24 1984-10-02 Asahi Glass Company, Ltd. Process and apparatus for drying or heating a particulate material
EP0178920A2 (en) * 1984-10-16 1986-04-23 Pacific Proteins Limited A method of drying damp organic material
US4730400A (en) * 1984-11-15 1988-03-15 Gunter Johannsen Drum reactor for manufacturing fertilizers and other raw materials by aerobic fermentation
US4770772A (en) * 1986-10-31 1988-09-13 Nihon Schumacher Kabushiki Kaisha Apparatus for separating and drying fine particles
US4862601A (en) * 1988-01-20 1989-09-05 Atlantic Richfield Company Particulate solids dryer with recycled hot-pebble heat exchange medium
US4881947A (en) * 1988-06-28 1989-11-21 Parker Thomas H High efficiency gasifier with recycle system
US5160259A (en) * 1991-05-01 1992-11-03 Hauck Manufacturing Company Draft control method and apparatus for material processing plants
US5303904A (en) * 1990-01-18 1994-04-19 Fike Corporation Method and apparatus for controlling heat transfer between a container and workpieces
US5316594A (en) * 1990-01-18 1994-05-31 Fike Corporation Process for surface hardening of refractory metal workpieces
US5320426A (en) * 1993-01-06 1994-06-14 Astec Industries, Inc. Asphalt drum mixer having temperature sensor enclosure
US5324009A (en) * 1990-01-18 1994-06-28 Willard E. Kemp Apparatus for surface hardening of refractory metal workpieces
US5407498A (en) * 1990-01-18 1995-04-18 Kemp Development Corporation Mechanically fluidized retort and method for treating particles therein
US5465503A (en) * 1992-06-12 1995-11-14 The Lerio Corporation Dryer densifier
EP0807461A2 (de) * 1996-05-18 1997-11-19 Max Aicher Umwelttechnik GmbH Liegender Rohrreaktor zur Behandlung von pastösem Gut oder Schüttgut
WO2003064562A2 (fr) * 2002-01-29 2003-08-07 N.V. Claves Consult Procede et installation pour gazeifier des matieres combustibles
US20060038516A1 (en) * 2001-02-20 2006-02-23 Burse Ronald O Segmented switched reluctance electric machine with interdigitated disk-type rotor and stator construction
US20080022547A1 (en) * 2006-07-28 2008-01-31 Shivvers Group, Inc. Counter flow cooling drier with integrated heat recovery
EP1912063A1 (en) * 2006-10-10 2008-04-16 Tibi S.p.A. Analysis and conditioning system of granular plastic material
US20080178488A1 (en) * 2007-01-26 2008-07-31 Shivvers Steve D Portable counter flow drying and highly efficient grain drier with integrated heat recovery
US20080184589A1 (en) * 2007-02-02 2008-08-07 The Shivvers Group, Inc., An Iowa Corporation High efficiency drier with heating and drying zones
US20080209755A1 (en) * 2007-01-26 2008-09-04 Shivvers Steve D Counter flow cooling drier with integrated heat recovery with fluid recirculation system
US20080209759A1 (en) * 2007-01-26 2008-09-04 Shivvers Steve D Counter flow air cooling drier with fluid heating and integrated heat recovery
US20090260252A1 (en) * 2007-10-25 2009-10-22 Piovan Spa Infrared dehumidifier
ES2333689A1 (es) * 2008-03-06 2010-02-25 Hrs Spiratube, S.L Intercambiador de calor indirecto.
US20100107439A1 (en) * 2008-10-31 2010-05-06 Tri-Phase Drying Technologies, Llc, An Iowa Limited Liability Company High efficiency drier
US20100282590A1 (en) * 2007-12-27 2010-11-11 Bin Niu Industrial continuous cracking device of plastics
CN101957132A (zh) * 2010-06-08 2011-01-26 广州迪森热能技术股份有限公司 一种生物质物料的烘干控制方法
CN101957128A (zh) * 2010-06-08 2011-01-26 广州迪森热能技术股份有限公司 生物质物料烘干系统
CN102225627A (zh) * 2011-04-14 2011-10-26 武汉天颖环境工程有限公司 一种旋转离心式制棒系统
US20170369384A1 (en) * 2016-06-27 2017-12-28 Big Dutchman International Gmbh Drying apparatus for drying a substance, poultry management system as well as method of drying a substance
CN109442964A (zh) * 2018-09-27 2019-03-08 苏州极汇科技有限公司 一种微生物有机肥的制备工艺装置及其方法
CN112268425A (zh) * 2020-09-28 2021-01-26 马鞍山健鼎化工有限公司 一种聚合氯化铝生产干燥用脱水机构
CN112393539A (zh) * 2020-11-12 2021-02-23 安徽淮仁堂药业股份有限公司 一种中药饮片炮制作业用高效干燥装置
CN112856971A (zh) * 2021-01-25 2021-05-28 太原科技大学 煤泥烘干机变频调速控制系统及控制方法
US11371777B1 (en) * 2018-07-16 2022-06-28 Industrial Process Systems, Inc. Method and device for drying fine particulate material such as fracking sand

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2344798A1 (fr) * 1976-03-17 1977-10-14 Jouin Claude Procede et dispositif de regulation automatique d'un sechoir a tambour tournant
FR2386794A1 (fr) * 1977-04-07 1978-11-03 Jouin Claude Procede et dispositif de regulation d'un sechoir a tambour tournant
GB9012463D0 (en) * 1990-06-05 1990-07-25 North Roger D Drying apparatus/method
NL1003950C2 (nl) * 1996-09-03 1998-03-06 Dhv Milieu En Infrastructuur B Werkwijze voor het continu-drogen van slib en inrichting daarvoor.
US6163980A (en) * 1996-09-03 2000-12-26 Dhv Milieu En Infrastructuur B.V. Method and apparatus for continuous dehydration of sludge
CN110361290B (zh) * 2019-08-14 2024-07-02 安徽大洋自动化科技有限公司 一种混合物料智能分类水分检测仪

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1338731A (en) * 1919-05-23 1920-05-04 Albert Blackburne Drier
US1459923A (en) * 1923-06-26 Method oe and apparatus eor treating material with gas
US1534499A (en) * 1923-06-14 1925-04-21 Gen Fire Extinguisher Co Drying apparatus
US1590339A (en) * 1925-05-23 1926-06-29 Rufus C Wood Device for separating metals from dry material
US1614387A (en) * 1923-05-30 1927-01-11 Pereda Celedonio Vicente Apparatus for the transmission of heat and cold
US1965881A (en) * 1933-08-28 1934-07-10 Roscoe B Clark Portable asphalt mixer
US2092657A (en) * 1934-12-12 1937-09-07 Gen Electric Rotary kiln control arrangement
US2484539A (en) * 1945-07-10 1949-10-11 Traylor Engineering & Mfg Comp Means for rotary kiln temperature control
US2592783A (en) * 1946-04-17 1952-04-15 Aspegren Olof Erik August Rotary heat exchanger
US2872386A (en) * 1952-04-14 1959-02-03 Oil Shale Corp Heat-treatment of piece-shaped material
DE1066474B (de) * 1959-10-01 Wulf rath Dipl.-Ing. Hans Rusche (RhId.) Vorrichtung zum Entwässern, Vorwärmen, Entsäuern oder Sintern von karbonatischen oder sulfatischen Gesteinen oder Zementrohstoffen
US2986457A (en) * 1957-11-26 1961-05-30 Arthur J Jones Iron ore reduction
US3013785A (en) * 1958-03-24 1961-12-19 Phillips Petroleum Co Dryer temperature controls
US3302937A (en) * 1964-05-19 1967-02-07 Pelm Res And Dev Corp Apparatus for colling metallic and nonmetallic particles

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1987242A (en) * 1928-04-30 1935-01-08 Madsen Martin Rotary drier
DE558546C (de) * 1930-03-27 1932-09-08 Buettner Werke Akt Ges Stufenweise betriebene Trockentrommel-Anlage zur Behandlung landwirtschaftlicher Erzeugnisse

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1066474B (de) * 1959-10-01 Wulf rath Dipl.-Ing. Hans Rusche (RhId.) Vorrichtung zum Entwässern, Vorwärmen, Entsäuern oder Sintern von karbonatischen oder sulfatischen Gesteinen oder Zementrohstoffen
US1459923A (en) * 1923-06-26 Method oe and apparatus eor treating material with gas
US1338731A (en) * 1919-05-23 1920-05-04 Albert Blackburne Drier
US1614387A (en) * 1923-05-30 1927-01-11 Pereda Celedonio Vicente Apparatus for the transmission of heat and cold
US1534499A (en) * 1923-06-14 1925-04-21 Gen Fire Extinguisher Co Drying apparatus
US1590339A (en) * 1925-05-23 1926-06-29 Rufus C Wood Device for separating metals from dry material
US1965881A (en) * 1933-08-28 1934-07-10 Roscoe B Clark Portable asphalt mixer
US2092657A (en) * 1934-12-12 1937-09-07 Gen Electric Rotary kiln control arrangement
US2484539A (en) * 1945-07-10 1949-10-11 Traylor Engineering & Mfg Comp Means for rotary kiln temperature control
US2592783A (en) * 1946-04-17 1952-04-15 Aspegren Olof Erik August Rotary heat exchanger
US2872386A (en) * 1952-04-14 1959-02-03 Oil Shale Corp Heat-treatment of piece-shaped material
US2986457A (en) * 1957-11-26 1961-05-30 Arthur J Jones Iron ore reduction
US3013785A (en) * 1958-03-24 1961-12-19 Phillips Petroleum Co Dryer temperature controls
US3302937A (en) * 1964-05-19 1967-02-07 Pelm Res And Dev Corp Apparatus for colling metallic and nonmetallic particles

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3521866A (en) * 1964-07-03 1970-07-28 Still Fa Carl Coking apparatus tube construction
US3520522A (en) * 1967-09-21 1970-07-14 Metallgesellschaft Ag Screw conveyor for heat treating bulk feed
US3775041A (en) * 1972-05-10 1973-11-27 H Buttner Recirculating ball heat transfer system for drying and heating materials
US4014106A (en) * 1975-06-20 1977-03-29 Bearce Wendell E Dryer
US4038021A (en) * 1976-04-05 1977-07-26 Benson John O Continuous grain drier and method
US4193758A (en) * 1976-06-14 1980-03-18 Food Processes, Inc. Granular bed heating method
US4258779A (en) * 1977-11-14 1981-03-31 General Kinematics Corporation Method and apparatus for conveying very fine solid material
US4191530A (en) * 1978-09-21 1980-03-04 Bearce Wendell E Dryer
US4474553A (en) * 1981-09-24 1984-10-02 Asahi Glass Company, Ltd. Process and apparatus for drying or heating a particulate material
EP0178920A2 (en) * 1984-10-16 1986-04-23 Pacific Proteins Limited A method of drying damp organic material
EP0178920A3 (en) * 1984-10-16 1987-10-21 Pacific Proteins Limited Improvements in or relating to drying means
US4730400A (en) * 1984-11-15 1988-03-15 Gunter Johannsen Drum reactor for manufacturing fertilizers and other raw materials by aerobic fermentation
US4770772A (en) * 1986-10-31 1988-09-13 Nihon Schumacher Kabushiki Kaisha Apparatus for separating and drying fine particles
US4862601A (en) * 1988-01-20 1989-09-05 Atlantic Richfield Company Particulate solids dryer with recycled hot-pebble heat exchange medium
US4881947A (en) * 1988-06-28 1989-11-21 Parker Thomas H High efficiency gasifier with recycle system
US5324009A (en) * 1990-01-18 1994-06-28 Willard E. Kemp Apparatus for surface hardening of refractory metal workpieces
US5303904A (en) * 1990-01-18 1994-04-19 Fike Corporation Method and apparatus for controlling heat transfer between a container and workpieces
US5316594A (en) * 1990-01-18 1994-05-31 Fike Corporation Process for surface hardening of refractory metal workpieces
US5399207A (en) * 1990-01-18 1995-03-21 Fike Corporation Process for surface hardening of refractory metal workpieces
US5407498A (en) * 1990-01-18 1995-04-18 Kemp Development Corporation Mechanically fluidized retort and method for treating particles therein
US5160259A (en) * 1991-05-01 1992-11-03 Hauck Manufacturing Company Draft control method and apparatus for material processing plants
US5465503A (en) * 1992-06-12 1995-11-14 The Lerio Corporation Dryer densifier
US5320426A (en) * 1993-01-06 1994-06-14 Astec Industries, Inc. Asphalt drum mixer having temperature sensor enclosure
EP0807461A2 (de) * 1996-05-18 1997-11-19 Max Aicher Umwelttechnik GmbH Liegender Rohrreaktor zur Behandlung von pastösem Gut oder Schüttgut
EP0807461A3 (de) * 1996-05-18 1998-05-13 Max Aicher Umwelttechnik GmbH Liegender Rohrreaktor zur Behandlung von pastösem Gut oder Schüttgut
US20060038516A1 (en) * 2001-02-20 2006-02-23 Burse Ronald O Segmented switched reluctance electric machine with interdigitated disk-type rotor and stator construction
WO2003064562A2 (fr) * 2002-01-29 2003-08-07 N.V. Claves Consult Procede et installation pour gazeifier des matieres combustibles
WO2003064562A3 (fr) * 2002-01-29 2003-12-24 Claves Consult Nv Procede et installation pour gazeifier des matieres combustibles
US20100154247A1 (en) * 2006-07-28 2010-06-24 Tri-Phase Drying Technologies, L.L.C, A Limited Liability Company Of The State Of Iowa Counter flow cooling drier with integrated heat recovery
US20080022547A1 (en) * 2006-07-28 2008-01-31 Shivvers Group, Inc. Counter flow cooling drier with integrated heat recovery
WO2008013947A2 (en) * 2006-07-28 2008-01-31 Shivvers Steve D Counter flow cooling drier with integrated heat recovery
WO2008013947A3 (en) * 2006-07-28 2008-11-20 Steve D Shivvers Counter flow cooling drier with integrated heat recovery
US7574816B2 (en) 2006-07-28 2009-08-18 Shivvers Steve D Counter flow cooling drier with integrated heat recovery
EP1912063A1 (en) * 2006-10-10 2008-04-16 Tibi S.p.A. Analysis and conditioning system of granular plastic material
US20080178488A1 (en) * 2007-01-26 2008-07-31 Shivvers Steve D Portable counter flow drying and highly efficient grain drier with integrated heat recovery
US20080209755A1 (en) * 2007-01-26 2008-09-04 Shivvers Steve D Counter flow cooling drier with integrated heat recovery with fluid recirculation system
US20080209759A1 (en) * 2007-01-26 2008-09-04 Shivvers Steve D Counter flow air cooling drier with fluid heating and integrated heat recovery
US20080184589A1 (en) * 2007-02-02 2008-08-07 The Shivvers Group, Inc., An Iowa Corporation High efficiency drier with heating and drying zones
US20090260252A1 (en) * 2007-10-25 2009-10-22 Piovan Spa Infrared dehumidifier
US20100282590A1 (en) * 2007-12-27 2010-11-11 Bin Niu Industrial continuous cracking device of plastics
US8728282B2 (en) * 2007-12-27 2014-05-20 Bin Niu Industrial continuous cracking device of plastics
ES2333689A1 (es) * 2008-03-06 2010-02-25 Hrs Spiratube, S.L Intercambiador de calor indirecto.
US20100107439A1 (en) * 2008-10-31 2010-05-06 Tri-Phase Drying Technologies, Llc, An Iowa Limited Liability Company High efficiency drier
CN101957132A (zh) * 2010-06-08 2011-01-26 广州迪森热能技术股份有限公司 一种生物质物料的烘干控制方法
CN101957128A (zh) * 2010-06-08 2011-01-26 广州迪森热能技术股份有限公司 生物质物料烘干系统
CN101957128B (zh) * 2010-06-08 2012-10-10 广州迪森热能技术股份有限公司 生物质燃料烘干系统
CN102225627B (zh) * 2011-04-14 2014-01-08 武汉天颖环境工程有限公司 一种旋转离心式制棒系统
CN102225627A (zh) * 2011-04-14 2011-10-26 武汉天颖环境工程有限公司 一种旋转离心式制棒系统
US20170369384A1 (en) * 2016-06-27 2017-12-28 Big Dutchman International Gmbh Drying apparatus for drying a substance, poultry management system as well as method of drying a substance
US11371777B1 (en) * 2018-07-16 2022-06-28 Industrial Process Systems, Inc. Method and device for drying fine particulate material such as fracking sand
US20220282916A1 (en) * 2018-07-16 2022-09-08 Industrial Process Systems, Inc. Method and Device for Drying Fine Particulate Material Such As Fracking Sand
CN109442964A (zh) * 2018-09-27 2019-03-08 苏州极汇科技有限公司 一种微生物有机肥的制备工艺装置及其方法
CN112268425A (zh) * 2020-09-28 2021-01-26 马鞍山健鼎化工有限公司 一种聚合氯化铝生产干燥用脱水机构
CN112393539A (zh) * 2020-11-12 2021-02-23 安徽淮仁堂药业股份有限公司 一种中药饮片炮制作业用高效干燥装置
CN112856971A (zh) * 2021-01-25 2021-05-28 太原科技大学 煤泥烘干机变频调速控制系统及控制方法

Also Published As

Publication number Publication date
BE694258A (US08063081-20111122-C00242.png) 1967-08-17
FR1512657A (fr) 1968-02-09
DE1729503B1 (de) 1972-03-23
ES336949A1 (es) 1968-01-16
GB1163180A (en) 1969-09-04

Similar Documents

Publication Publication Date Title
US3401923A (en) Dryer
US4600379A (en) Drum heating and mixing apparatus and method
US4191530A (en) Dryer
US4892411A (en) Asphalt mixer apparatus and method
US4176010A (en) Method of producing petroleum coke calcinate
US7044630B1 (en) Counter-flow asphalt plant method
AU2014337792A1 (en) A method and a system for producing a lightweight ceramic aggregate, particularly from coal ash
US3782891A (en) External material lifters for rotary kilns and the like
US7357562B2 (en) Counter-flow drum mixer asphalt plant with two stage mixing zone
US3497190A (en) System for hot de-oiling and hot briquetting
USRE31904E (en) Method and apparatus for recycling asphalt-aggregate compositions
US5294197A (en) Asphalt manufacturing assembly
US3206526A (en) Utilization of cement kiln dust
US4198273A (en) Apparatus for producing petroleum coke calcinate
US3982052A (en) Method of treating wet coal granules
US4850861A (en) Apparatus for conductive drying loose
US4177080A (en) Method and apparatus for recycling asphalt-aggregate compositions
USRE31905E (en) Method and apparatus for recycling asphalt-aggregate compositions
US4215941A (en) Method and apparatus for recycling asphalt-aggregate compositions
JPS6233364B2 (US08063081-20111122-C00242.png)
US3076270A (en) Sand or fines filtering device for dryers
EP0574778B1 (en) Rotary kiln off-gas vent system
US3331595A (en) Apparatus for effecting contact between solids and gases
JP2009281671A (ja) 粉粒体の乾燥方法及び乾燥装置
US3396952A (en) Apparatus and process for producing calcined phosphate flakes