US3394575A - Prestressed rolling mill - Google Patents

Prestressed rolling mill Download PDF

Info

Publication number
US3394575A
US3394575A US453000A US45300065A US3394575A US 3394575 A US3394575 A US 3394575A US 453000 A US453000 A US 453000A US 45300065 A US45300065 A US 45300065A US 3394575 A US3394575 A US 3394575A
Authority
US
United States
Prior art keywords
mill
rolls
roll
pressure
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US453000A
Inventor
Stone Morris Denor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Engineering and Foundry Co
Original Assignee
United Engineering and Foundry Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Engineering and Foundry Co filed Critical United Engineering and Foundry Co
Application granted granted Critical
Publication of US3394575A publication Critical patent/US3394575A/en
Anticipated expiration legal-status Critical
Assigned to PITTSBURGH NATIONAL BANK reassignment PITTSBURGH NATIONAL BANK SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WEAN UNITED, INC., A CORP.OF OH
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/02Rolling stand frames or housings; Roll mountings ; Roll chocks
    • B21B31/028Prestressing of rolls or roll mountings in stand frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/14Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories having counter-pressure devices acting on rolls to inhibit deflection of same under load; Back-up rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/02Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with axes of rolls arranged horizontally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B2013/006Multiple strand rolling mills; Mill stands with multiple caliber rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • B21B27/03Sleeved rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/16Adjusting or positioning rolls
    • B21B31/20Adjusting or positioning rolls by moving rolls perpendicularly to roll axis
    • B21B31/22Adjusting or positioning rolls by moving rolls perpendicularly to roll axis mechanically, e.g. by thrust blocks, inserts for removal
    • B21B31/24Adjusting or positioning rolls by moving rolls perpendicularly to roll axis mechanically, e.g. by thrust blocks, inserts for removal by screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/16Adjusting or positioning rolls
    • B21B31/20Adjusting or positioning rolls by moving rolls perpendicularly to roll axis
    • B21B31/32Adjusting or positioning rolls by moving rolls perpendicularly to roll axis by liquid pressure, e.g. hydromechanical adjusting

Definitions

  • the mill is provided with cooperative rigid screws-piston cylinder assemblies-the piston cylinder assemblies are employed initially and before rolling to apply the prestressed pressure and the screws are employed during rolling to apply the pressure once the piston cylinder assemblies are rendered inoperative.
  • the rolls are provided with pressure transmitting portions which allow the prestressed pressure to be taken directly through the rolls and constitute the mill a closed mill.
  • anti-roll deflection means is also provided, thereby providing an extremely rigid mill construction.
  • the present invention relates to a rolling mill, and, more particularly, to a rolling mill designed to roll extremely close tolerance products.
  • the total mill stretch equals .023 inch which has a corresponding mill spring constant of the order of 5,900,000 lbs. per inch. It can be seen, therefore, from this analysis that 17 percent of the mill stretch is traceable to the mill proper, while the remaining, that is 83 percent of the mill stretch, is traceable to the rolls themselves.
  • the present invention is addressed to a closed mill, that is to say, the rolls are in contact with each other so that the prestressing pressure is taken directly through the rolls and, in addition to prestressing pressure being applied at the ends of the rolls in one form, prestressing pressure is applied intermediate the ends thereof.
  • the present invention to provide in combination with the prestressing arrangement, means for reducing the mill stretch incident to the deflection of the roll or rolls.
  • the roll deflection under rolling pressure is partly or wholly alleviated by providing crowned rolls, in which respect the rolls are provided with a series of lands spaced across the length of the rolls which engage each other during the operation of the mill and transmit the prestressed pressure in the form of a closed pressure circuit.
  • the deflection of the roll under rolling pressure is eliminated or reduced by providing the roll with a central flat cylindrical portion, which portion outward from the rolling 'bite is engaged by a short-bodied backup roller, which is adjustable toward and away from the roll by a pressure exerting means, such as, a piston cylinder assembly.
  • a housing including a window, a pair of metal reducing rolls having a number of roll passes along their length and other portions that forcefully engage each other, including central land portions, bearings and chocks for the journals of the rolls received in the housing Window, roll adjusting means carried by said housing for positioning one of the rolls relative to the other, means for prestressing the housing, bearing and chocks of the rolls and the roll adjusting means, to an extent greater than the largest anticipated rolling force, said means for prestressing, including means for applying prestressing pressure against said lands to both assist in prestressing and in resisting the deflection of the rolls.
  • FIGURE 1 is an outside elevational view of a bar mill illustrating one embodiment of the present invention
  • FIGURE 2 is an elevational view, partly in section, of the mill illustrated in FIGURE 1;
  • FIGURE 3 is an enlarged view of the upper portion of the mill illustrated in FIGURES 1 and 2 showing two positions of certain components of the mill;
  • FIGURE 4 is a second modification of the prestressing cylinders illustrated in FIGURE 3, showing two positions of certain components of the mill.
  • FIGURE 5 is an elevational view, partly in section, of a third embodiment of the present invention.
  • FIGURES 1, 2 and 3 where there is shown a mill comprising two vertically arranged, spaced-apart interconnected housings 12 and 13 having windows 14 and 15 to which there is received a pair of cooperative rolls 16 and 17.
  • the rolls have a number of grooves 18, as shown in FIGURE 2, through which a bar passes and is reduced in cross section.
  • the journal portions of the rolls 16 and 17 are received in bearings 19, which in turn are contained in chocks 22 received in the windows 14 and 15 of the housings.
  • the chocks 22 of the lower roll 17 rest upon the bottom of the windows 14 and 15, whereby the rolling forces are transmitted directly to the lower portions of the housings 12 and 13.
  • FIGURE 2 which illustrates one side of the mill in section
  • the chocks 22 of the upper roll 16 are engaged by the lower end of individual screws 23, the screws being received in nuts 24 mounted in the upper part of the housings and rotated by motors 25 through a worm-wheel set only generally shown.
  • FIGURE 3 shows, the top of the chocks have recesses 26 into which the lower ends of the screws extend. Cylindrical blocks 27 are also received in the recesses. Between the screws and chocks in the usual manner, there are provided breaker blocks 28.
  • each of the blocks 27 is engaged by the lower end of a piston 29, it being noted that the nut 24 is provided with a cylindrical opening 31 which forms a single action cylinder into which the piston 29 is received. Also shown in FIGURE 3, the upper end of each cylinder has a port 32 which communicates with a passageway 33 formed in the housing, the passageway being connected to a fluid supply source not shown.
  • each of the rolls 16 and 17 is provided with a series of lands 34, 35 and 36, the lands 34 and 36 being arranged at the ends of the rolls whereas the lands 35 are arranged at the centers and are appreciably wider than the end lands. As indicated in FIG- URE 2 and as previously noted, the lands of each roll are in contact with each other which characterizes the mill a closed mill.
  • the upper narrow body roller 37 is urged upwardly by a balance mechanism comprising a cross bar 45, the ends of which are connected to rods 46.
  • the upper ends of the rods 46 are associated with piston cylinder assemblies or springs 47.
  • FIG- URES 1 and 2 One other characteristic of the mill illustrated in FIG- URES 1 and 2 should be noted.
  • a shelf 48 As shown in FIGURE 2, as to one side of the mill, extending between the base of the housings 12 and 13 and passing through the window 14 is a shelf 48. The lower portion of the shelf rests on the housings.
  • a block 49 In the vicinity of each lower chock 22, a block 49 is provided having at its upper end a' rocker plate 51, which contacts a similar rocker plate 52 secured to the chock 22 having its lower end formed with an inclined surface.
  • a wedge 53 In contact with the inclined surface of the block 49 is a wedge 53 being of suflicient height to give the necessary vertical displacement of the block 49 and chock 22. While not particularly shown in the drawings, the block and wedge are interconnected by an interfitting connection, such as a T slot construction.
  • the one end of the wedge 53 is provided with a threaded opening into which is received a screw 54.
  • the other end of the screw 54 is formed with two spaced collars and between which is received a bearing 55.
  • the outer end of the screw is formed with a nut, whereby the screw can be rotated by a hand wrench, not shown.
  • variable pressure piston cylinder assemblies 29 will be operated to subject the housings 12 and 13, bearings 19, chocks 22, and also the rolls 16 and 17 themselves to a prestressed pressure which at all times will be controlled to exceed the expected rolling pressure.
  • part of the pressure is supplied by the variable pressure piston cylinder assemblies 43 which urge the antideflection rollers 37 into engagement with the rolls 16 and 17 and which also serve to prevent any deflection of the rolls 16 and 17.
  • FIGURE 2 illustrate the application of the pressures.
  • the present invention provides an extremely rigid mill wherein the total rigidity of the mill is many times greater than that of conventional mills.
  • FIGURE 4 illustrates another embodiment of a piston cylinder assembly provided for prestressing the components of the mill, in which regard there is provided on either side of the screw 23 a pair of piston cylinder assemblies 56 having pistons 57 that engage projections 58 formed on the upper chock 22 of the upper roll 16.
  • FIGURE 5 relates to a third embodiment of the present invention.
  • the deflection of the rolls 59 and 61 is compensated for by forming the contour of the rolls with a machine crown.
  • the ends of the rolls 59 and 61 are provided with lands 62 and 63 and intermediate each groove 64 other lands 65 are formed.
  • the land, as shown, engages the complementary lands of the other roll and transmit the prestress pressure of the piston 29 in a closed circuit through the mill as previously described and as indicated by the arrowed lines shown in FIGURE 5.
  • a rolling mill comprising a housing having a window for receiving a pair of cooperative metal reducing rolls said rolls each having a central body portion and opposite neck portions,
  • each roll having a number of complementary cooperative pass openings formed along their lengths and having complementary cooperative pressure transmitting portions adjacent to some of said pass openings, the pressure transmitting portion of one roll being constructed to engage during rolling the complementary cooperative portion of said other roll and adapted by this construction to transmit pressure from one roll to the other,
  • bearing chock assemblies mounted on the opposite ends of the. rolls and received in said window of said housing
  • housing and bearing chock assemblies so that the prestressing pressure is being transmitted by one roll to the other roll by said pressure transmitting portions and said rolls, housing, bearing chock assemblies are all subject to said prestressing pressure.
  • said prestressing means includes means for applying said prestressing pressure to the ends and centers of the rolls.
  • the engaging means comprising for each reducing roll a narrow-bodied backup roll arranged to engage the lands,
  • said urging means comprises piston cylinder assemblies.
  • said rolling adjusting means comprises a rigid member, means for bringing said rigid member into engagement with the chocks of the adjustable roll when said prestressing force has been applied, to hold the chocks of the adjustable roll in their prestressed position after which the pressure generating means can be released.
  • said rigid members include a pair of screws arranged to engage the chocks of the uppermost roll of said rolls,
  • said means for generating the prestressing pressure arranged adjacent to said screws and comprising at least a single piston cylinder assembly for each screw engagea-ble with the chocks of the uppermost roll to exert a prestressing pressure thereon.
  • each screw there is provided at least two separate piston cylinder assemblies, the piston cylinder assembly of each pair being diametrically opposite each other and equal distant from the screw with which they are associated and engageable with the adjacent chock of the uppermost roll.
  • said means for positioning the roll relative to the pass line of the mill includes a beam extending between the chocks of the lowermost roll, a pair of Wedges between each chock and the beams,

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Description

July 30, 1968 Filed May '4, 1965 M. D. STONE PRESTRESSED ROLLING MILL 5 Sheets-Sheet l INVENTOR. MORRIS D. STONE TORNEY y 30, 8 M. 0. STONE 3,394,575
PRESTRESSED ROLLING MILLI Filed May 4, 1965 5 Sheets-Sheet 2 INVENTOR. MORRIS D. STONE BY 7%ML RNEY July 30, 1968 M. D. STONE 3,394,575
PRESTBESSED ROLLING MILL File d May 4, 1965 5 Sheets-Sheet s I (IO INVENTOR. MORRIS D. STONE HIS AT ORNEY M. D. STONE PRESTRESSED ROLLING MILL July 30, 1968 5 Sheets-Sheet 4 Filed May 4, 1965 a 5% A w QJw INVENTOR. MORRIS D. STONE HIS ATTORNEY y 30, 1968 M. D. STONE 3,394,575
' PRESTRESSED ROLLING MILL Filed May 4, 1965 v 5 Sheets-Sheet 5 FIG. 5
INVENTOR. MORRIS D. STONE HIS ATTORNEY United States Patent 3,394,575 PRESTRESSED ROLLING MILL Morris Denor Stone, Pittsburgh, Pa., assignor to United Engineering and Foundry Company, Pittsburgh, Pa., a corporation of Pennsylvania Filed May 4, 1965, Ser. No. 453,000 Claims priority, application Great Britain, May 13, 1964, 20,009/64 13 Claims. (Cl. 72-221) ABSTRACT OF THE DISCLOSURE A rod or bar rolling mill of the prestressed type wherein the prestressed pressure is maintained greater than the expected rolling load and the mill is constructed to subject the housing, bearing chock assemblies and rolls to the prestressed pressure. In this construction the mill is provided with cooperative rigid screws-piston cylinder assemblies-the piston cylinder assemblies are employed initially and before rolling to apply the prestressed pressure and the screws are employed during rolling to apply the pressure once the piston cylinder assemblies are rendered inoperative. The rolls are provided with pressure transmitting portions which allow the prestressed pressure to be taken directly through the rolls and constitute the mill a closed mill. In combination with the prestressing feature anti-roll deflection means is also provided, thereby providing an extremely rigid mill construction.
The present invention relates to a rolling mill, and, more particularly, to a rolling mill designed to roll extremely close tolerance products.
For the purpose of discussing the present invention, its use in connection with a bar mill has been selected, although it will be appreciated that the invention may be employed in other types of mills, such as, rod mills, structural mills, etc.
Both with respect to the desire to increase the yield of the rolling mill and to meet the ever-increasing, stiffer tolerance requirements, there is present a great need for providing a rolling mill which will roll bars to one-half present standard bar tolerances or better. Such an objective could not be obtained by conventional mills where the rolls are arranged to extend between the spacedapart housings, in view of the fact that they inherently possessed considerable mill stretch or elastic deformation of parts and deflection of the rolls, which made it impossible to roll products within a predetermined narrow range of tolerances.
To illustrate this, reference will be made to one type of 2-high mill previously employed, which was designed to produce a 1 /2 diameter steel bar, wherein the final pass developed a rolling force of the order of 135,000 lbs. Under this force, the inherent stretch or elastic deformation of the composite mill structure, that is to say, the elongation of the housing posts, the bending of the top and bottom housing separators, the compression of the mill screws, filler plates and chocks amounted to approximately .004 inch. Assuming that the particular mill in question employed cast iron metal rolls of 12 inch diameter by 24 inches long, under the above rolling force, each of the rolls would bend or deflect about .0095 inch, the total deflection amounting to .019 inch for both rolls. Therefore, the total mill stretch equals .023 inch which has a corresponding mill spring constant of the order of 5,900,000 lbs. per inch. It can be seen, therefore, from this analysis that 17 percent of the mill stretch is traceable to the mill proper, while the remaining, that is 83 percent of the mill stretch, is traceable to the rolls themselves.
This analysis demonstrates that in the type of mill under discussion the solution to the problem of manufacturing a mill that will produce bars within close tolerances must lie in a construction that not only will considerably reduce the mill stretch of the housing, 'but more important in a construction that will in combination therewith reduce appreciably the deflections of the rolls. The ultimate, of course, would be a mill construction that would in addition eliminate or considerably reduce the elastic deformation of the other components of the mill, such as, the chocks and filler plates and the compression of the mill screws. In other words, the optimum mill design would be a design that would greatly increase the rigidity of the mill and its component parts, together with the elimination or substantial reduction of the deflections of the rolls thereof.
It is an object of the present invention to provide a rolling mill, wherein the rigidity of the mill housing and the other component parts of the mill, such as the chocks, screws and filler plates are subject to a predetermined prestressing pressure greater than the largest anticipated rolling force which will eliminate the elastic deformation of these parts from influencing the gauge of the bar.
The present invention is addressed to a closed mill, that is to say, the rolls are in contact with each other so that the prestressing pressure is taken directly through the rolls and, in addition to prestressing pressure being applied at the ends of the rolls in one form, prestressing pressure is applied intermediate the ends thereof.
It is also contemplated by the present invention to provide in combination with the prestressing arrangement, means for reducing the mill stretch incident to the deflection of the roll or rolls. In one form the roll deflection under rolling pressure is partly or wholly alleviated by providing crowned rolls, in which respect the rolls are provided with a series of lands spaced across the length of the rolls which engage each other during the operation of the mill and transmit the prestressed pressure in the form of a closed pressure circuit. In another form the deflection of the roll under rolling pressure is eliminated or reduced by providing the roll with a central flat cylindrical portion, which portion outward from the rolling 'bite is engaged by a short-bodied backup roller, which is adjustable toward and away from the roll by a pressure exerting means, such as, a piston cylinder assembly.
In one preferred form of the present invention there is provided a housing, including a window, a pair of metal reducing rolls having a number of roll passes along their length and other portions that forcefully engage each other, including central land portions, bearings and chocks for the journals of the rolls received in the housing Window, roll adjusting means carried by said housing for positioning one of the rolls relative to the other, means for prestressing the housing, bearing and chocks of the rolls and the roll adjusting means, to an extent greater than the largest anticipated rolling force, said means for prestressing, including means for applying prestressing pressure against said lands to both assist in prestressing and in resisting the deflection of the rolls.
These features and various other advantages of the present invention will become more apparent when the following description is read along with the accompanying drawings of which:
FIGURE 1 is an outside elevational view of a bar mill illustrating one embodiment of the present invention;
FIGURE 2 is an elevational view, partly in section, of the mill illustrated in FIGURE 1;
FIGURE 3 is an enlarged view of the upper portion of the mill illustrated in FIGURES 1 and 2 showing two positions of certain components of the mill;
FIGURE 4 is a second modification of the prestressing cylinders illustrated in FIGURE 3, showing two positions of certain components of the mill; and
FIGURE 5 is an elevational view, partly in section, of a third embodiment of the present invention.
With reference to the drawings, reference will first be made to FIGURES 1, 2 and 3 where there is shown a mill comprising two vertically arranged, spaced-apart interconnected housings 12 and 13 having windows 14 and 15 to which there is received a pair of cooperative rolls 16 and 17. The rolls have a number of grooves 18, as shown in FIGURE 2, through which a bar passes and is reduced in cross section. The journal portions of the rolls 16 and 17 are received in bearings 19, which in turn are contained in chocks 22 received in the windows 14 and 15 of the housings. The chocks 22 of the lower roll 17 rest upon the bottom of the windows 14 and 15, whereby the rolling forces are transmitted directly to the lower portions of the housings 12 and 13.
As shown in FIGURE 2, which illustrates one side of the mill in section, the chocks 22 of the upper roll 16 are engaged by the lower end of individual screws 23, the screws being received in nuts 24 mounted in the upper part of the housings and rotated by motors 25 through a worm-wheel set only generally shown. As FIGURE 3 shows, the top of the chocks have recesses 26 into which the lower ends of the screws extend. Cylindrical blocks 27 are also received in the recesses. Between the screws and chocks in the usual manner, there are provided breaker blocks 28.
As best shown in FIGURE 3, the upper surface of each of the blocks 27 is engaged by the lower end of a piston 29, it being noted that the nut 24 is provided with a cylindrical opening 31 which forms a single action cylinder into which the piston 29 is received. Also shown in FIGURE 3, the upper end of each cylinder has a port 32 which communicates with a passageway 33 formed in the housing, the passageway being connected to a fluid supply source not shown.
Returning to FIGURE 2, each of the rolls 16 and 17 is provided with a series of lands 34, 35 and 36, the lands 34 and 36 being arranged at the ends of the rolls whereas the lands 35 are arranged at the centers and are appreciably wider than the end lands. As indicated in FIG- URE 2 and as previously noted, the lands of each roll are in contact with each other which characterizes the mill a closed mill. In engagement with the lands 35 of the rolls are narrow-bodied, freely rotatable backup rollers 37 which, on occasion are referred to as anti-deflection rollers, the backup rollers being rotatably mounted on non-rotating shafts 38 by bearings 39, the ends of the shafts 33 being received in U-shaped yokes 41 which are guided in the housings 12 and 13 in a vertical direction. At the one end of each yoke there is provided a pressure block 42, the upper surface of which is engageable by the one end of a vertically arranged variable pressure piston cylinder assembly 43. The piston cylinder assemblies 43, in turn, are mounted in the separators 44 that connect the housings 12 and 13 at the top and bottom together.
The upper narrow body roller 37, as shown in FIG- URE 1, is urged upwardly by a balance mechanism comprising a cross bar 45, the ends of which are connected to rods 46. The upper ends of the rods 46 are associated with piston cylinder assemblies or springs 47.
One other characteristic of the mill illustrated in FIG- URES 1 and 2 should be noted. As shown in FIGURE 2, as to one side of the mill, extending between the base of the housings 12 and 13 and passing through the window 14 is a shelf 48. The lower portion of the shelf rests on the housings. In the vicinity of each lower chock 22, a block 49 is provided having at its upper end a' rocker plate 51, which contacts a similar rocker plate 52 secured to the chock 22 having its lower end formed with an inclined surface. In contact with the inclined surface of the block 49 is a wedge 53 being of suflicient height to give the necessary vertical displacement of the block 49 and chock 22. While not particularly shown in the drawings, the block and wedge are interconnected by an interfitting connection, such as a T slot construction.
The one end of the wedge 53 is provided with a threaded opening into which is received a screw 54. The other end of the screw 54 is formed with two spaced collars and between which is received a bearing 55. The outer end of the screw is formed with a nut, whereby the screw can be rotated by a hand wrench, not shown. By this mechanism the pass-line of the mill can be maintained at a predetermined location even though the rolls are turned down, and at the same time allowing the prestress pressure to pass through the blocks 49 and wedges 53 and into the housings.
The operation of the illustrated mill in FIGURES 1 and 2 will now be briefly explained. As previously noted the rolls are always in engagement with each other, that is to say, the lands 34, 35 and 36 contact each other. Prior to the rece tion of the bar, the variable pressure piston cylinder assemblies 29 will be operated to subject the housings 12 and 13, bearings 19, chocks 22, and also the rolls 16 and 17 themselves to a prestressed pressure which at all times will be controlled to exceed the expected rolling pressure. In addition to the prestressing pressure being supplied by the piston cylinder assemblies 43, part of the pressure is supplied by the variable pressure piston cylinder assemblies 43 which urge the antideflection rollers 37 into engagement with the rolls 16 and 17 and which also serve to prevent any deflection of the rolls 16 and 17. The arrows in FIGURE 2 illustrate the application of the pressures. After the rolling mill has been prestressed in the aforesaid manner, the screws 23 are prestressed by being brought into engagement with the prestressed chocks 22 of the roll 16. Once this has been performed, the pressure in the cylinders 29 will be relieved. By using the screws in this manner a very rigid construction is provided and the prestressing condition of the mill is not subject to any losses in the hydraulic system or with providing a system to make up for hydraulic losses.
Thus, the present invention provides an extremely rigid mill wherein the total rigidity of the mill is many times greater than that of conventional mills.
FIGURE 4 illustrates another embodiment of a piston cylinder assembly provided for prestressing the components of the mill, in which regard there is provided on either side of the screw 23 a pair of piston cylinder assemblies 56 having pistons 57 that engage projections 58 formed on the upper chock 22 of the upper roll 16.
FIGURE 5 relates to a third embodiment of the present invention. In this embodiment the deflection of the rolls 59 and 61 is compensated for by forming the contour of the rolls with a machine crown. In this case the ends of the rolls 59 and 61 are provided with lands 62 and 63 and intermediate each groove 64 other lands 65 are formed. The land, as shown, engages the complementary lands of the other roll and transmit the prestress pressure of the piston 29 in a closed circuit through the mill as previously described and as indicated by the arrowed lines shown in FIGURE 5.
In accordance with the provisions of the patent statutes, I have explained the principle and operation of my invention and have illustrated and described what I consider to represent the best embodiment thereof. However, I desire to have it understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically illustrated and described.
I claim:
1. In a rolling mill comprising a housing having a window for receiving a pair of cooperative metal reducing rolls said rolls each having a central body portion and opposite neck portions,
said central body portion of each roll having a number of complementary cooperative pass openings formed along their lengths and having complementary cooperative pressure transmitting portions adjacent to some of said pass openings, the pressure transmitting portion of one roll being constructed to engage during rolling the complementary cooperative portion of said other roll and adapted by this construction to transmit pressure from one roll to the other,
bearing chock assemblies mounted on the opposite ends of the. rolls and received in said window of said housing,
means carried by said housing for generating a prestressing pressure greater than the largest anticipated rolling force developed between said rolls,
said means being arranged with reference to said rolls,
housing and bearing chock assemblies so that the prestressing pressure is being transmitted by one roll to the other roll by said pressure transmitting portions and said rolls, housing, bearing chock assemblies are all subject to said prestressing pressure.
2. In a rolling mill according to claim 1, wherein said prestressing means includes means for applying said prestressing pressure to the ends and centers of the rolls.
3. In a rolling mill according to claim 1, including means for compensating for the deflection of the rolls under the rolling force, and
including means for adjusting one of the rolls relative to the other wherein said adjusting means falls within said closed pressure circuit and is also subject to the prestressing pressure.
4. In a rolling mill according to claim 3, wherein the deflection of the rolls is compensated for by crowning the rolls whereby in deflection their pressure transmitting portions will be substantially flat.
5. In a rolling mill according to claim 3, wherein said rolls include central contact portions, and means -for engaging the contact portions of the rolls to resist their deflection under the rolling forces.
6. A rolling mill according to claim 5, wherein said contact portions of said rolls comprise flat lands formed on said rolls,
the engaging means comprising for each reducing roll a narrow-bodied backup roll arranged to engage the lands,
means for supporting the narrow-bodied backup roll,
and means for urging the backup roll towards the reducing rolls.
7. In a rolling mill according to claim 6, wherein said urging means comprises piston cylinder assemblies.
8. In a rolling mill according to claim 3, wherein said rolling adjusting means comprises a rigid member, means for bringing said rigid member into engagement with the chocks of the adjustable roll when said prestressing force has been applied, to hold the chocks of the adjustable roll in their prestressed position after which the pressure generating means can be released.
9. In a rolling mill according to claim 8 wherein said rigid members include a pair of screws arranged to engage the chocks of the uppermost roll of said rolls,
said means for generating the prestressing pressure arranged adjacent to said screws and comprising at least a single piston cylinder assembly for each screw engagea-ble with the chocks of the uppermost roll to exert a prestressing pressure thereon.
10. In a rolling mill according to claim 9, wherein said prestressing piston cylinder assemblies are formed in the housing and concentric with the screws, and wherein the pistons thereof extend around the screws, the lower end of the screws passing through the cylinders of said piston cylinder assemblies.
11. In a rolling mill according to claim 9, wherein for each screw there is provided at least two separate piston cylinder assemblies, the piston cylinder assembly of each pair being diametrically opposite each other and equal distant from the screw with which they are associated and engageable with the adjacent chock of the uppermost roll.
12. In a rolling mill according to claim 1, including means for engaging the chocks of the roll not engaged by said roll adjusting means to position this roll relative to the pass line of the mill.
13. In a rolling mill according to claim 12, wherein said means for positioning the roll relative to the pass line of the mill includes a beam extending between the chocks of the lowermost roll, a pair of Wedges between each chock and the beams,
means for moving one of said wedges of each pair in a first direction to impart movement of the other wedge of each pair in a second direction thereby to move the lowermost roll towards and away from said pass line.
References Cited UNITED STATES PATENTS 774,03 5 11/ 1904 Bunton 72-221 1,935,091 11/1933 Iversen 72245 2,430,410 11/ 1947 Pauls 72245 2,985,042 5/ 1961 Talbot 72243 3,247,697 4/ 1966 Cozzo 72240 CHARLES W. LANHAM, Primary Examiner. A. RUDERMAN, Assistant Examiner.
US453000A 1964-05-13 1965-05-04 Prestressed rolling mill Expired - Lifetime US3394575A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB20009/64A GB1090411A (en) 1964-05-13 1964-05-13 Prestressed rolling mill

Publications (1)

Publication Number Publication Date
US3394575A true US3394575A (en) 1968-07-30

Family

ID=10138845

Family Applications (1)

Application Number Title Priority Date Filing Date
US453000A Expired - Lifetime US3394575A (en) 1964-05-13 1965-05-04 Prestressed rolling mill

Country Status (6)

Country Link
US (1) US3394575A (en)
BE (1) BE663758A (en)
DE (1) DE1452107A1 (en)
ES (1) ES312922A1 (en)
GB (1) GB1090411A (en)
NL (1) NL6505876A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3593556A (en) * 1968-04-12 1971-07-20 Siderurgie Fse Inst Rech Rolling mill with prestressed housing
US3765213A (en) * 1970-12-17 1973-10-16 British Iron Steel Research Rolling mills
US4044580A (en) * 1975-07-02 1977-08-30 Marotta Scientific Controls, Inc. Rolling mill gap sensor
DE3433300A1 (en) * 1984-09-11 1986-03-20 SMS Schloemann-Siemag AG, 4000 Düsseldorf Method and apparatus for rolling profiled rolling stock in the form of strands
DE3448281C2 (en) * 1984-09-11 1992-10-22 Sms Schloemann-Siemag Ag, 4000 Duesseldorf, De

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985002795A1 (en) * 1983-12-21 1985-07-04 Moskovsky Institut Stali I Splavov Rolling stand for pilgrim-step tube-rolling
CN109604339B (en) * 2018-08-13 2023-09-01 襄阳博亚精工机器有限公司 Roller box

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US774035A (en) * 1903-03-17 1904-11-01 William Bunton Guide for rolling-mills.
US1935091A (en) * 1932-07-22 1933-11-14 Mesta Machine Co Apparatus for balancing rolls
US2430410A (en) * 1943-03-27 1947-11-04 Carnegie Illinois Steel Corp Working pass control for rolling mills
US2985042A (en) * 1959-04-30 1961-05-23 United Eng Foundry Co Rolling mill
US3247697A (en) * 1962-12-06 1966-04-26 Blaw Knox Co Strip rolling mill

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US774035A (en) * 1903-03-17 1904-11-01 William Bunton Guide for rolling-mills.
US1935091A (en) * 1932-07-22 1933-11-14 Mesta Machine Co Apparatus for balancing rolls
US2430410A (en) * 1943-03-27 1947-11-04 Carnegie Illinois Steel Corp Working pass control for rolling mills
US2985042A (en) * 1959-04-30 1961-05-23 United Eng Foundry Co Rolling mill
US3247697A (en) * 1962-12-06 1966-04-26 Blaw Knox Co Strip rolling mill

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3593556A (en) * 1968-04-12 1971-07-20 Siderurgie Fse Inst Rech Rolling mill with prestressed housing
US3765213A (en) * 1970-12-17 1973-10-16 British Iron Steel Research Rolling mills
US4044580A (en) * 1975-07-02 1977-08-30 Marotta Scientific Controls, Inc. Rolling mill gap sensor
DE3433300A1 (en) * 1984-09-11 1986-03-20 SMS Schloemann-Siemag AG, 4000 Düsseldorf Method and apparatus for rolling profiled rolling stock in the form of strands
DE3448281C2 (en) * 1984-09-11 1992-10-22 Sms Schloemann-Siemag Ag, 4000 Duesseldorf, De

Also Published As

Publication number Publication date
BE663758A (en) 1965-11-12
ES312922A1 (en) 1965-12-16
NL6505876A (en) 1965-11-15
DE1452107A1 (en) 1968-11-28
GB1090411A (en) 1967-11-08

Similar Documents

Publication Publication Date Title
US4453393A (en) Four high mill of the paired-roll-crossing type
US4615202A (en) Six-high rolling stand
WO2008091176A1 (en) Four-die forging device
US3394575A (en) Prestressed rolling mill
US3373588A (en) Crown control for rolling mill
US3345848A (en) Rolling mill, in particular for rods and bars
US3422655A (en) Prestressed rolling mill
US3364715A (en) Crown control for rolling mill
US1614425A (en) Rolling mill
RU2314175C2 (en) Four-striker forging apparatus
US3491571A (en) Rolling mill method and apparatus
US3212314A (en) Beam and plate rolling mill
US3657913A (en) Crown control
US3286501A (en) Pre-stressed rolling mills
US5752404A (en) Roll shifting system for rolling mills
US3526118A (en) Apparatus for bending the rolls of a rolling mill and like device
US3459023A (en) Rolling mill
US3626739A (en) Apparatus for roll counter-deflection in rolling stands
EP1077779A1 (en) Roll stand with axially displaceable rolls
US3621695A (en) Rolling mill crown prevention and control means
US3651675A (en) Automatic gauge control of strip in rolling mill employing backup roll bending
US4162627A (en) Rolling mill
US3426567A (en) Roll bending device for a rolling mill
EP0072385B1 (en) Four high mill of paired-roll-crossing type
US3528273A (en) Rolling mill with roll-deflecting attachment

Legal Events

Date Code Title Description
AS Assignment

Owner name: PITTSBURGH NATIONAL BANK

Free format text: SECURITY INTEREST;ASSIGNOR:WEAN UNITED, INC., A CORP.OF OH;REEL/FRAME:004458/0765

Effective date: 19850610