US3373980A - Walking beam furnace for effecting different feed speeds of the charge - Google Patents

Walking beam furnace for effecting different feed speeds of the charge Download PDF

Info

Publication number
US3373980A
US3373980A US554736A US55473666A US3373980A US 3373980 A US3373980 A US 3373980A US 554736 A US554736 A US 554736A US 55473666 A US55473666 A US 55473666A US 3373980 A US3373980 A US 3373980A
Authority
US
United States
Prior art keywords
charge
furnace
walking beam
walking
beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US554736A
Inventor
Borgkvist Tage Anshelm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TABOUGNAR AB
Original Assignee
TABOUGNAR AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TABOUGNAR AB filed Critical TABOUGNAR AB
Application granted granted Critical
Publication of US3373980A publication Critical patent/US3373980A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/0025Charging or loading melting furnaces with material in the solid state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/20Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace
    • F27B9/201Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace walking beam furnace
    • F27B9/202Conveyor mechanisms therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/20Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace
    • F27B9/201Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace walking beam furnace
    • F27B9/202Conveyor mechanisms therefor
    • F27B9/207Conveyor mechanisms therefor consisting of two or more conveyors

Definitions

  • a walking beam furnace comprises a pre-heating zone and a final heating zone arranged to give charges different feed speeds through the zones over a stationary hearth.
  • the walking beams extend in an undivided manner through all zones of the furnace and are arranged to be reciprocated at different levels in relation to the stationary hearth so as to effect the feed of the charge.
  • This invention relates to a method and construction of a walking beam furnace adapted to effect by means of the same feed machinery different feed speeds of the charge through different furnace zones.
  • the material For heating special steels, for example high-speed steel, tool steel etc. the material must be given a special temperature-time curve which corresponds with the sensitivity of the material to temperature and cracks and with the risk of decarburization.
  • the steel is heated relatively carefully and slowly to a special temperature, say 800 C., whereafter it is finally heated to forging temperature, say 1150- 1200 C., in the shortest possible time.
  • the pre-heating to 800 C. is carried out in a special part of the furnace, the pre-heating zone which comprises a separate furnace chamber and an individually controlled burner equipment for maintaining a constant temperature, say 850 C.
  • the material must be advanced at a special speed, in order to provide the steel a uniform temperature both across the entire exposed surface and from the surface to the centre of the material.
  • the final heating zone In the final part of the furnace, the final heating zone, a higher temperature, say 12501300 C., is maintained by means of a similar separate furnace chamber with a burner and instrument equipment of its own. Due to the higher difference in temperature between the furnace atmosphere and the charge, the final temperature of the charge can be achieved in a shorter time than in the pre-heating zone. This is of importance for preventing the formation of too much scale and decarburization, and it implies a shorter final heating zone and/ or a more rapid feed.
  • the slower feed through the pe-heating zone, followed immediately by a feed at a very high speed through the final heating zone, is carried out in a walking beam furnace usually in such a manner, that the advanced beam or beams are divided in the longitudinal direction where the change of speed in the furnace is desired, whereafter every part is provided with its own lift and feed machinery, or the two parts are connected in such a manner, that they are lifted and lowered individually, but reciprocated together, for which purpose two individual lift machineries but only one feed machinery are required.
  • the divided walking beam involves the disadvantage that by the division additional slits, and thereby cooling portions are produced which deteriorate the thermal efficiency of the furnace.
  • the walking beam construction moreover, becomes substantially more complicated.
  • the present invention eliminates the said disadvantages in a simple and cheap manner.
  • the invention has as its object to effect the different feed speeds by means of an entire and undivided walking beam or by several undivided walking beams, by employing only one lifting and one feed machinery. This object is achieved by giving the sttaiffy hearth different levels in the different heating zones and the walking beam different lifting positions.
  • FIG. 1 shows a longitudinal section through the furnace along the line I-I in FIG. 2,
  • FIG. 2 shows part of a cross-section along the line IIII in FIG. 1 through the stationary hearth and walk. ing beams of the furnace,
  • FIGS. 3 and 4 show in a schematic manner different working steps
  • FIG. 5 shows a modification of the arrangement according to FIG. 1.
  • the furnace shown comprises a pre-heating zone 1 and a final heating zone 2, between which zones there is a free passage for the charge.
  • the stationary hearth comprises longitudinal beams 3 which in a usual manner extend through the two zones 1 and 2. Walking beams 4 arranged between the beams 3 are adapted to carry out reciprocating as well as lifting and lowering movements. Up to this point the furnace is in agreement with known types.
  • the novelty lies in the feature that the stationary hearth has different levels in the different heating zones.
  • the stationary beams 3 have a difference in level at the boundary 5 between the pre-heating zone 1 and the final heating zone 2.
  • the charge 6, thus, assumes different levels, according to the zone in which it is situated.
  • the feed into the furnace is carried out from the furnace end 7 and towards the opposite end 8.
  • the walking beams 4 reciprocate on the rolls 9.
  • the drive means are not shown, because the said beams can be operated in a conventional manner, for example by a hydraulic engine.
  • the rolls 9 are arranged to be lifted and lowered variably, in that arms 10 on which the rolls are mounted are swung upwards and downwards via the rotation of shafts 11 on which the arms 10 are secured.
  • the rotation of the shafts 11 can be effected, for example, by a hydraulic, pneumatic or electric motor.
  • the walking beams 4 can be brought into a bottom position B and a top position D as well as into optional positions therebetween. In the bottom position, the walking beam carries out its return movement.
  • FIG. 2 shows a cross-section through a portion of the stationary hearth and the walking beams 4-.
  • the stationary hearth thus, comprises beams 3 provided with cams 12 for supporting the charge 6.
  • the walking beams 4 are located between the beams 3, and in the position B there is no contact with the charge 6', whilst in position D the charge is lifted from the beam 3 and can be moved with the movement of the walking beam.
  • FIG. 3 shows in a schematic manner a working step of the arrangement.
  • the walking beams are in the top position D and lift the charge 6 from the stationary hearth 3 both in the pre-heating zone 1 and in the final heating zone 2.
  • the different levels of the stationary hearth in the zones are marked by dashed lines, the designation 31 being for the pre-heating zone and the designation 32 for the final heating zone.
  • the walking beams 4 lift the charge in both of the zones and are then pushed ahead on the rolls 9 whereby the charge is taken along.
  • the walking beams 4 are then lowered into bottom position B and the charge assumes a new position on the stationary hearth 3. In the bottom position, the walking beams return to the starting position.
  • FIG. 4 shows another working step.
  • the walking beams are brought onto a level C located between the levels 31 and 32 of the hearth. On this level the charge is lifted only in the final heating zone 2 and advanced with the movement of the walking beams to the right.
  • this can be effected by a drive machinery of variable speed, so that the feed in connection with the lifting of the charge in one zone can be made more rapid than in another zone.
  • the present invention renders it possible to empty the final heating zone entirely of material without disturbing the charge in the pre-heating zone, and to return the material in the final heating zone back to the pre-heating zone, in the event of a breakdown in the rolling mill or forging press.
  • FIG. 5 A particularly interesting modification of the invention is shown schematically in FIG. 5, from which it is understood that the same effect in walking beam feed as described above can be obtained when the hearth 3 is plane without steps, and instead the walking beams are formed with levels of different height at 5', the higher level 41 corresponding to the lowered portion 32 of the hearth according to FIG. 1, and the lower level 42 of the walking beam corresponding in the same manner to the higher portion 31.
  • the constructions according to FIG. 5 and FIG. 1 are identical.
  • the invention is not restricted to only one step 5, but a walking beam furnace can be provided with any number of control zones and also with any number of level differences. Nor is the level difference restricted to a certain value, but it may vary according to the billet and material dimensions.
  • a walking beam furnace comprising pre-heating and final heating Zones and adapted to give charges different feed speeds through the zones over a stationary hearth.
  • the feed movement of the charge being effected by the walking beams, said walking beam or beams extending undivided through all zones of the furnace and being arranged to be reciprocated on different levels, which levels the walking beams are caused to assume by means of a lifting and lowering arrangement, the said stationary hearth and the walking beams being formed in the different zones for the charge with separate levels in relation to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Tunnel Furnaces (AREA)

Description

March 19, 1968 A. BORGKVIST 3,373,980 WALKING BEAM FURNACE FOR EFFECTING DIFFERENT FEED SPEEDS OF THE CHARGE Filed June 2, 1966 3 Sheets-Sheet 1 FIG.1
JNVENTOR. Tq e AHShQLITI Borg/(Vibe BY 12am,
March 19, 1968 o v s'r 3,373,980
WALKING BEAM FURNACE FOR EFFEGTING DIFFERENT FEED SPEEDS OF THE CHARGE Filed June 2, 1966 5 Sheets-Sheet 2 w R.! mu N mw B e h S n "A E 0a R BY W JWEWPMJQ Afto rhegs T A. BORGKVIST 3,373,980 FURNACE FOR EFFECTING DIFFERENT SPEEDS OF THE CHARGE March 19, 1968 WALKING BE 3 Sheets-Sheet 5 Filed June 2, 1966 w a .N @E
INVENTOR.
United States Patent Office 3,373,980 Patented Mar. 19, 1968 3,373,980 WALKING BEAM FURNACE FOR EFFECTING DIFFERENT FEED SPEEDS OF THE CHARGE Tage Anshelm Borgkvist, Stockholm, Sweden, assignor to Aktiebolaget Tabougnar, Stockholm, Sweden, a Swedish joint-stock company Filed June 2, 1966, Ser. No. 554,736 Claims priority, application Sweden, Feb. 28, 1966, 2,57 3/ 66 6 Claims. (Cl. 263-6) ABSTRACT OF THE DISCLOSURE A walking beam furnace comprises a pre-heating zone and a final heating zone arranged to give charges different feed speeds through the zones over a stationary hearth. The walking beams extend in an undivided manner through all zones of the furnace and are arranged to be reciprocated at different levels in relation to the stationary hearth so as to effect the feed of the charge.
This invention relates to a method and construction of a walking beam furnace adapted to effect by means of the same feed machinery different feed speeds of the charge through different furnace zones.
For heating special steels, for example high-speed steel, tool steel etc. the material must be given a special temperature-time curve which corresponds with the sensitivity of the material to temperature and cracks and with the risk of decarburization.
This means, that the steel is heated relatively carefully and slowly to a special temperature, say 800 C., whereafter it is finally heated to forging temperature, say 1150- 1200 C., in the shortest possible time. The pre-heating to 800 C. is carried out in a special part of the furnace, the pre-heating zone which comprises a separate furnace chamber and an individually controlled burner equipment for maintaining a constant temperature, say 850 C. Through this part of the furnace the material must be advanced at a special speed, in order to provide the steel a uniform temperature both across the entire exposed surface and from the surface to the centre of the material.
In the final part of the furnace, the final heating zone, a higher temperature, say 12501300 C., is maintained by means of a similar separate furnace chamber with a burner and instrument equipment of its own. Due to the higher difference in temperature between the furnace atmosphere and the charge, the final temperature of the charge can be achieved in a shorter time than in the pre-heating zone. This is of importance for preventing the formation of too much scale and decarburization, and it implies a shorter final heating zone and/ or a more rapid feed.
The slower feed through the pe-heating zone, followed immediately by a feed at a very high speed through the final heating zone, is carried out in a walking beam furnace usually in such a manner, that the advanced beam or beams are divided in the longitudinal direction where the change of speed in the furnace is desired, whereafter every part is provided with its own lift and feed machinery, or the two parts are connected in such a manner, that they are lifted and lowered individually, but reciprocated together, for which purpose two individual lift machineries but only one feed machinery are required.
The divided walking beam involves the disadvantage that by the division additional slits, and thereby cooling portions are produced which deteriorate the thermal efficiency of the furnace. The walking beam construction, moreover, becomes substantially more complicated.
The present invention eliminates the said disadvantages in a simple and cheap manner.
The invention has as its object to effect the different feed speeds by means of an entire and undivided walking beam or by several undivided walking beams, by employing only one lifting and one feed machinery. This object is achieved by giving the sttaionary hearth different levels in the different heating zones and the walking beam different lifting positions.
An embodiment of the invention is described in the following, reference being had to the accompanying drawings whereon FIG. 1 shows a longitudinal section through the furnace along the line I-I in FIG. 2,
FIG. 2 shows part of a cross-section along the line IIII in FIG. 1 through the stationary hearth and walk. ing beams of the furnace,
FIGS. 3 and 4 show in a schematic manner different working steps,
FIG. 5 shows a modification of the arrangement according to FIG. 1.
The furnace shown comprises a pre-heating zone 1 and a final heating zone 2, between which zones there is a free passage for the charge. The stationary hearth comprises longitudinal beams 3 which in a usual manner extend through the two zones 1 and 2. Walking beams 4 arranged between the beams 3 are adapted to carry out reciprocating as well as lifting and lowering movements. Up to this point the furnace is in agreement with known types.
The novelty lies in the feature that the stationary hearth has different levels in the different heating zones. Thus, the stationary beams 3 have a difference in level at the boundary 5 between the pre-heating zone 1 and the final heating zone 2. The charge 6, thus, assumes different levels, according to the zone in which it is situated. The feed into the furnace is carried out from the furnace end 7 and towards the opposite end 8. The walking beams 4 reciprocate on the rolls 9. The drive means are not shown, because the said beams can be operated in a conventional manner, for example by a hydraulic engine.
The rolls 9 are arranged to be lifted and lowered variably, in that arms 10 on which the rolls are mounted are swung upwards and downwards via the rotation of shafts 11 on which the arms 10 are secured. The rotation of the shafts 11 can be effected, for example, by a hydraulic, pneumatic or electric motor. By swinging the arms 10, thus, the walking beams 4 can be brought into a bottom position B and a top position D as well as into optional positions therebetween. In the bottom position, the walking beam carries out its return movement.
FIG. 2 shows a cross-section through a portion of the stationary hearth and the walking beams 4-. The stationary hearth, thus, comprises beams 3 provided with cams 12 for supporting the charge 6. The walking beams 4 are located between the beams 3, and in the position B there is no contact with the charge 6', whilst in position D the charge is lifted from the beam 3 and can be moved with the movement of the walking beam.
FIG. 3 shows in a schematic manner a working step of the arrangement. The walking beams are in the top position D and lift the charge 6 from the stationary hearth 3 both in the pre-heating zone 1 and in the final heating zone 2. The different levels of the stationary hearth in the zones are marked by dashed lines, the designation 31 being for the pre-heating zone and the designation 32 for the final heating zone. In FIG. 3, thus, the walking beams 4 lift the charge in both of the zones and are then pushed ahead on the rolls 9 whereby the charge is taken along. The walking beams 4 are then lowered into bottom position B and the charge assumes a new position on the stationary hearth 3. In the bottom position, the walking beams return to the starting position.
FIG. 4 shows another working step. The walking beams are brought onto a level C located between the levels 31 and 32 of the hearth. On this level the charge is lifted only in the final heating zone 2 and advanced with the movement of the walking beams to the right. As regards the reciprocating movement of the walking beams, this can be effected by a drive machinery of variable speed, so that the feed in connection with the lifting of the charge in one zone can be made more rapid than in another zone. The present invention renders it possible to empty the final heating zone entirely of material without disturbing the charge in the pre-heating zone, and to return the material in the final heating zone back to the pre-heating zone, in the event of a breakdown in the rolling mill or forging press.
A particularly interesting modification of the invention is shown schematically in FIG. 5, from which it is understood that the same effect in walking beam feed as described above can be obtained when the hearth 3 is plane without steps, and instead the walking beams are formed with levels of different height at 5', the higher level 41 corresponding to the lowered portion 32 of the hearth according to FIG. 1, and the lower level 42 of the walking beam corresponding in the same manner to the higher portion 31. In their remaining parts, the constructions according to FIG. 5 and FIG. 1 are identical.
The invention is not restricted to only one step 5, but a walking beam furnace can be provided with any number of control zones and also with any number of level differences. Nor is the level difference restricted to a certain value, but it may vary according to the billet and material dimensions.
What I claim is:
1. A walking beam furnace comprising pre-heating and final heating Zones and adapted to give charges different feed speeds through the zones over a stationary hearth. the feed movement of the charge being effected by the walking beams, said walking beam or beams extending undivided through all zones of the furnace and being arranged to be reciprocated on different levels, which levels the walking beams are caused to assume by means of a lifting and lowering arrangement, the said stationary hearth and the walking beams being formed in the different zones for the charge with separate levels in relation to each other.
2. The walking beam furnace according to claim 1, wherein the stationary hearth is stepped, the boundary between the different heating zones being located at the transition from one step to an adjacent step.
3. The walking beam furnace according to claim 1, wherein the lifting and lowering arrangement is variable.
4. The walking beam furnace according to claim 1, wherein the reciprocating speed of the walking beams is variable.
5. The walking beam furnace according to claim 1, wherein the walking beams are stepped.
6. A method for feeding in a walking beam furnace with separate heating zones as defined in claim 1, according to which method the charge in resting position is brought onto different levels in the separate zones, the walking beams lifting only charge in a desired zone or zones and being moved in this lifted position in the direction of feed and thereafter being lowered again.
References Cited UNITED STATES PATENTS 1,133,789 3/1915 Becht 198219 XR 2,188,309 1/1940 Pentecost 198-2l9 XR 2,722,406 11/1955 Kurek 198219 XR CHARLES J. MYHRE, Primary Examiner.
FREDERICK L. MATTESON, JR., Examiner.
A. D. HERRMANN, Assistant Examiner.
US554736A 1966-02-28 1966-06-02 Walking beam furnace for effecting different feed speeds of the charge Expired - Lifetime US3373980A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE6602573A SE372290B (en) 1966-02-28 1966-02-28

Publications (1)

Publication Number Publication Date
US3373980A true US3373980A (en) 1968-03-19

Family

ID=20260198

Family Applications (1)

Application Number Title Priority Date Filing Date
US554736A Expired - Lifetime US3373980A (en) 1966-02-28 1966-06-02 Walking beam furnace for effecting different feed speeds of the charge

Country Status (7)

Country Link
US (1) US3373980A (en)
DE (1) DE1533951B2 (en)
ES (1) ES335122A1 (en)
FI (1) FI46983C (en)
FR (1) FR1512804A (en)
NO (1) NO118792B (en)
SE (1) SE372290B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3554505A (en) * 1967-12-20 1971-01-12 Heurtey Sa Walking beam furnaces
US3792965A (en) * 1970-11-30 1974-02-19 Tabougnar Ab Walking beam furnace
DE2436334A1 (en) * 1973-08-08 1975-02-20 Italimpianti METHOD FOR HEATING STUBLES OD. DGL. IN LIFTING TRANSPORT FURNACES AND LIFTING TRANSPORT FURNACES TO PERFORM THE PROCEDURE
US4087238A (en) * 1976-09-13 1978-05-02 United States Steel Corporation Method for enhancing the heating efficiency of continuous slab reheating furnaces
WO1979001047A1 (en) * 1978-05-10 1979-11-29 Koppers Wistra Ofenbau Gmbh Process for putting into operation a furnace with movable supports
US4582482A (en) * 1983-09-21 1986-04-15 Didier Engineering Gmbh Top-fired, walking hearth-type furnace
US4585411A (en) * 1983-07-06 1986-04-29 Italimpianti Societa Italiana Impianti P.A. Method and walking beam furnace for the intermediate heating of pipes in hot rolling mills
US4586898A (en) * 1984-12-14 1986-05-06 Btu Engineering Corporation Multi-zone furnace system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1216700B (en) * 1988-04-01 1990-03-08 Pomini Farrel S P A Castellanz HEATING, MAINTENANCE AND STORAGE OVEN FOR STEEL PRODUCTS.
DE4140740A1 (en) * 1991-06-12 1992-12-17 Loi Ind Ofenanlagen Continuous furnace with more flexible operation for heating blocks, billets, etc. - has fixed beams with step(s) in feed direction and lifting and travelling mechanism with controlled, variable lifting height
FR2691791B1 (en) * 1992-05-27 1994-07-22 Boulonnais Terres Refractaires REFRACTORY TRIM OF LONGERS FOR OVENS, ESPECIALLY METALLURGICAL AND CERAMIC.
DE4411216B4 (en) * 1994-03-31 2005-03-24 Loi Thermprocess Gmbh Walking beam furnace

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1133789A (en) * 1913-01-13 1915-03-30 Herman W Becht Confectionery-coating machine.
US2188309A (en) * 1934-03-08 1940-01-30 Toast O Lator Co Inc Toaster
US2722406A (en) * 1954-04-07 1955-11-01 Frank L Kurek Magnetic conveyor and agitator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1133789A (en) * 1913-01-13 1915-03-30 Herman W Becht Confectionery-coating machine.
US2188309A (en) * 1934-03-08 1940-01-30 Toast O Lator Co Inc Toaster
US2722406A (en) * 1954-04-07 1955-11-01 Frank L Kurek Magnetic conveyor and agitator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3554505A (en) * 1967-12-20 1971-01-12 Heurtey Sa Walking beam furnaces
US3792965A (en) * 1970-11-30 1974-02-19 Tabougnar Ab Walking beam furnace
DE2436334A1 (en) * 1973-08-08 1975-02-20 Italimpianti METHOD FOR HEATING STUBLES OD. DGL. IN LIFTING TRANSPORT FURNACES AND LIFTING TRANSPORT FURNACES TO PERFORM THE PROCEDURE
US3951583A (en) * 1973-08-08 1976-04-20 Italimpianti Societa Italiana Impianti P.A. Rocking-beam type furnaces
US4087238A (en) * 1976-09-13 1978-05-02 United States Steel Corporation Method for enhancing the heating efficiency of continuous slab reheating furnaces
WO1979001047A1 (en) * 1978-05-10 1979-11-29 Koppers Wistra Ofenbau Gmbh Process for putting into operation a furnace with movable supports
US4585411A (en) * 1983-07-06 1986-04-29 Italimpianti Societa Italiana Impianti P.A. Method and walking beam furnace for the intermediate heating of pipes in hot rolling mills
US4582482A (en) * 1983-09-21 1986-04-15 Didier Engineering Gmbh Top-fired, walking hearth-type furnace
US4586898A (en) * 1984-12-14 1986-05-06 Btu Engineering Corporation Multi-zone furnace system

Also Published As

Publication number Publication date
FI46983C (en) 1973-08-10
FR1512804A (en) 1968-02-09
SE372290B (en) 1974-12-16
NO118792B (en) 1970-02-16
FI46983B (en) 1973-05-02
ES335122A1 (en) 1967-10-16
DE1533951B2 (en) 1972-01-13
DE1533951A1 (en) 1970-02-19

Similar Documents

Publication Publication Date Title
US3373980A (en) Walking beam furnace for effecting different feed speeds of the charge
KR102396213B1 (en) Method and system for laser hardening of a surface of a workpiece
US3792965A (en) Walking beam furnace
US3887064A (en) Walking beam conveyor in a furnace
US4648837A (en) Walking beam furnace
US1400367A (en) Furnace and method of conveying materials therethrough
US4170815A (en) Method of operating a reheating furnace in hot rolling line
US2591259A (en) Billet heating furnace
US3716222A (en) Heating furnace
US4088000A (en) Hot forging machine having die preheating unit
US4556385A (en) Furnace with refractory beams
US3304210A (en) Process in the heating of metal billets and an arrangement for carrying out the process
GB1214725A (en) Improvements relating to mechanical handling apparatus
US2666830A (en) Method and furnace for heating bars to be forged by means of eddy currents
US3398939A (en) Shuttle hearth furnaces
GB2060601A (en) Heat retaining shield
US1909906A (en) Conveyance of goods through furnaces and the like
US1675950A (en) Method of cooling work blanks
US1964297A (en) Walking beam conveyer for furnaces
US2658633A (en) Work conveyer for heat-treating furnaces
US2547755A (en) Billet heating
JP2022523555A (en) Furnace with movable beam type load handling system
US2088284A (en) Device for conveying articles in continuous furnaces
CN1138963C (en) Improvements to furnaces for reheating siderurgical products
GB1413171A (en) Walking beam furnaces