US3367854A - Nickel plating - Google Patents

Nickel plating Download PDF

Info

Publication number
US3367854A
US3367854A US420172A US42017264A US3367854A US 3367854 A US3367854 A US 3367854A US 420172 A US420172 A US 420172A US 42017264 A US42017264 A US 42017264A US 3367854 A US3367854 A US 3367854A
Authority
US
United States
Prior art keywords
nickel
coumarin
bright
semi
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US420172A
Inventor
Passal Frank
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M&T Chemicals Inc
Original Assignee
M&T Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DENDAT1302891D priority Critical patent/DE1302891B/de
Application filed by M&T Chemicals Inc filed Critical M&T Chemicals Inc
Priority to US420172A priority patent/US3367854A/en
Priority to GB28690/68A priority patent/GB1135188A/en
Priority to GB52174/65A priority patent/GB1135187A/en
Priority to DE1793558A priority patent/DE1793558C3/en
Priority to CH1761865A priority patent/CH495977A/en
Priority to ES0320950A priority patent/ES320950A1/en
Priority to SE16469/65A priority patent/SE328585B/xx
Priority to NL6516626A priority patent/NL6516626A/xx
Priority to FR43088A priority patent/FR1460490A/en
Application granted granted Critical
Publication of US3367854A publication Critical patent/US3367854A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/06Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2
    • C07D311/08Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/06Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2
    • C07D311/08Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring
    • C07D311/16Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring substituted in position 7
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • C25D3/14Electroplating: Baths therefor from solutions of nickel or cobalt from baths containing acetylenic or heterocyclic compounds
    • C25D3/18Heterocyclic compounds

Definitions

  • the novel process of this invention for electroplating a semi-bright sulfur-free, nickel plate onto a basis metal may comprise passing curernt from an anode to a basis metal cathode through an aqueous acidic nickel plating solution containing at least one nickel compound providing nickel ions for electroplating of nickel, and including as a semibright additive, a compound containing an oxyomegasulfohydrocarbon-di-yl coumarin anion wherein the hydrocarbon-di-yl moiety contains at least two carbon atoms and the oxyomegasulfohydrocarbon-di-yl group is substituted on the carbocyclic nucleus of the coumarin group.
  • This invention relates to the electroplating of nickel. More particularly, it relates to the electroplating of a semi-bright nickel characterized by its fine grain, uniformity, ductility, freedom from sulfur, and by its high leveling ability.
  • nickel may be electroplated onto various basis metals to obtain a bright nickel surface.
  • a nickel surface possessing maximum brightness and luster and/or when the surface of the basis metal may possess numerous scratches or other minor imperfections it is common to electroplate onto the surface a first layer of nickel particularly characterized by its leveling ability.
  • This deposit may be called a semi-bright nickel deposit because it does not possess the extremely high brilliance and luster commonly attained by a bright-nickel deposit.
  • the semibright nickel layer may be polished and buffed prior to deposition of the bright nickel layer.
  • the resulting duplexnickel system may be characterized by high degree of brilliance and by superior resistance to corrosion, even when the bright nickel deposit is relatively thin.
  • the first or semi-bright layer of nickel has heretofore commonly been deposited from various nickel-plating baths, including for example Watts baths, sulfamate baths, chloride-free baths, etc. which contain an additive.
  • Prior art semi-bright nickel plating baths have commonly used coumarin as an additive. Although it may be possible to produce a semi-bright nickel deposit by prior art methods, there are numerous defects which render these processess less than fully satisfactory. Semi-bright nickel deposits formed from plating baths of the prior art suffer from inadequate leveling, high tensile stress and non-uniform grain size.
  • the novel process of this invention for electroplating a semi-bright sulfur-free, nickel plate onto a basis metal may comprise passing current from an anode to a basis metal cathode through an aqueous acidic nickel plating solution con taining at least one nickel compound providing nickel ions for electroplating of nickel, and including as a semi-bright additive, a compound containing an oxyomegasulfohydrocarbon-di-yl coumarin anion wherein the hydrocarbon-di-yl moiety contains at least two carbon atoms and the oxyomegasulfohydrocarbon-di-yl group is substituted on the carbocyclic nucleus of the coumarin group.
  • the basis metal onto which the semi-bright deposits of this bath may be applied may include basis metals which are characterized by a low degree of luster or brightness or which possess a degree of surface roughness which would fail to permit attainment of a satisfactory quality of final finish and appearance if they were directly plated with a bright nickel plate.
  • the basis metals may include ferrous metal such as steel, copper, including its alloys such as brass, bronze, etc.; zinc, particularly in the form of die castings which may bear a plate of copper; etc.
  • novel baths of this invention may typically include Watts-type baths, sulfamate-type baths, fiuoboratetype baths, chloride-free sulfate baths, chloride-free sulfamate baths, etc.
  • a typical Watts bath which may be used in practice of this invention may include the following components in aqueous solution, all values being in grams per liter (g./l.) except for the pH:
  • a typical sufamate-type bath which may be used in practice of this invention may include the following components:
  • a typical chloride-free sulfate-type bath which may be used in practice of this invention may include the followmg components:
  • a typical chloride-free sulfamate-type bath which may be used in practice of this invention may include the following components:
  • baths may contain compounds in amounts falling outside the preferred minimum and maximum set forth, but most satisfactory and economical operation may normally be effected when the compounds are present in the baths in the amounts indicated.
  • a particular advantage of the chloride-free baths of Tables IV and V, supra, is that the deposits obtained may be substantially free of tensile stress.
  • the semi-bright additives which may be employed in practice of this invention according to certain of its aspects may include compounds containing the oxyomegasulfohydrocarbon-di-yl coumarin anion wherein the hydrocarbon moiety contains at least two carbon atoms.
  • the oxyomegasulfohydrocarbon-di-yl group is substituted on the carbocyclic ring of the coumarin nucleus and most preferably in the 7 position of the coumarin nucleus.
  • the hydrocarbon-di-yl moiety may bear inert substituents.
  • such compounds may include those wherein the cation M (see infra) may be a bath-compatible cation, i.e.
  • the cation M may include hydrogen and alkali metals including sodium, potassium, lithium, etc.; polyvalent metals such as nickel, cobalt, magnesium, etc.
  • the omega carbon atom of these novel compounds is the carbon atom linking the sulfo group to the remainder of the molecule. Most commonly the omega position is the carbon atom most distant from the coumarin nucleus. However, when the hydrocarbon-di-yi group in the chain linking the coumarin nucleus to the sulfo group contains carbon-containing substituents, the omega position as herein defined may not be the carbon atom most distant from the coumarin nucleus.
  • novel compounds containing the oxyomegasulfohydrocarbon-di-yl coumarin anion may typically have the following formula:
  • a, b, c and d are each integers less than two, i.e. 0 and 1, the sum of a, b, c, and d being greater than 0 and preferably 1 and wherein M is a cation as defined supra, R is a hydrocarbon-di-yl group wherein the hydrocarbon moiety contains at least two carbon atoms, and X is an inert substituent.
  • Typical inert substituents include hydrogen, halogen e.g. chloro, alkyl, alkaryl, aralkyl, aryl, alkoxy, aryloxy, etc. As shown, the inert substituent when present is preferably on the aromatic ring of the coumarin nucleus.
  • R may be a divalent hydrocarbon group having at least two carbon atoms.
  • R may be arylene such as o-phenylene; m-phenylene; p-phenylene; aralkylene such as O-benzyl; m-benzyl; or p-benzyl; alkarylene such as 1-methyl-2,3 phenylene; l-methyl-Z, 4-phenylene;l-rnethyl-2,5 phenylene; etc., alkylene such as ethane-1,2-di-yl; propane-l,2-diyl; propane-1,3-di-yl; butane-1,4-di-yl; butane-l,3-diyl; pentane-l,5-di-yl; etc.
  • R groups may bear inert substituents including hydrocarbon substituents.
  • the preferred R group may contain at least three carbon atoms, and more preferably 3-5 carbon atoms in a straight chain extending from the carbon atom closest to the coumarin nucleus to the omega carbon atom, the omega position being as hereinbefore defined.
  • Preferred R groups may contain a linked chain of methylene groups and the most preferred R may be propane-1,3-di-yl, CH CH CH CH In formulae containing a plurality of R groups, the R groups may preferably be the same.
  • M is polyvalent
  • the valences thereof may be satisfied by linkage to other oxyomegasulfohydrocarbon-di-yl groups which may be on the same or on another coumarin nucleus.
  • M is divalent, e.g. nickel
  • the compound may have one of the following illustrative formulae, inter alia:
  • the preferred compounds may include those having Formula IV wherein the oxyomegasulfohydrocarbon-di-yl group is substituted on the 7-position of the coumarin and M is an alkali metal; also preferred are those compounds wherein R is a hydrocarbon-di-yl group having 3-5 carbon atoms and most preferably one wherein R is a polymethylene chain preferably having 3 carbon atoms, viz.
  • n is preferably 3-5, and most preferably 3.
  • nickel 6,7-di(oxyomegasulfopropyl) coumarin cobalt 7,8-di(oxyomegasulfopropyl) coumarin nickel di(7,7-oxyomegasulfopropyl) coumarin potassium 8-oxyomegasulfopropyl coumarin potassium 6-oxyomegasulfopropyl coumarin sodium S-oxyomegasulfobutyl coumarin potassium 7-oxyomegasulfobutyl cournarin sodium 7-oxyomegasulfobenzyl coumarin (i.e. sodium 7-oxy-ortho sulfobenzyl coumarin),viz.
  • SOaONa The most preferred compounds may typically be the first four compounds in Table VI. It will be apparent that other cations as hereinbefore noted may replace those present in the specific compounds in Table VI.
  • novel oxyomegasulfohydrocarbon-di-yl coumarin compounds wherein the hydrocarbon-di-yl moiety contains at least 2 carbon atoms and the oxyomegasulfohydrocarbon-di-yl is substituted on the carbocyclic nucleus of the coumarin group of this invention may, in accor ance with certain of its aspects, be prepared by the process which comprises mixing in a solvent dispersion, a hydroxy coumarin wherein the hydroxy group is substituted on the carbocyclic nucleus of the coumarin group, a compound of the formula NOH wherein M is a cation including those hereinbefore noted, and a hydrocarbon sultone wherein the hydrocarbon moiety contains at least 2 carbon atoms thereby forming a reaction mixture, and heating said reaction mixture.
  • the solvents used in this preparation may preferably be those in which the reactants are dispersible, i.e. suspendable or soluble and most preferably one in which the compound MOH is soluble.
  • Such solvents may typically include organic solvents such as alcohols, etc.
  • the sultones which may be employed to prepare the novel compounds of this invention may include those containing a carbon-oxygen-sulfur-carbon linkage in a ring, the hexavalent sulfur atom being further bonded to two additional oxygen atoms.
  • the sultone which may preferably be used may contain 3-5 carbon atoms, these sultones being characterized by generation of a minimum of foaming.
  • the most preferred sultone may be 1,3-propane sultone,
  • carbocyclic nucleus of coumarin typically including monoand poly-hydroxy coumarins such as:
  • Preferred coumarins may include the 7-hydroxy coumarins such as 7-hydroxy coumarin se.
  • hydroxy coumarins may be readily available or may be prepared by the reaction of the corresponding resorcinol with malic acid in the presence of catalyst e.g. concentrated sulfuric acid; e.g. to prepare 6-chloro-7-hydroxy coumarin, malic acid may be reacted with 4-chloro resorcinol.
  • catalysts e.g. concentrated sulfuric acid; e.g. to prepare 6-chloro-7-hydroxy coumarin, malic acid may be reacted with 4-chloro resorcinol.
  • catalysts e.g. concentrated sulfuric acid
  • pyrophosphates of titanium and zirconium used singly or in combination.
  • the preferred compounds MOH which may be used in the process of this invention include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, and lithium hydroxide.
  • 2.3-3.3 parts say 2.8 parts of MOH, preferably potassium hydroxide, may be added to 3-4 moles, say 3.1 moles of solvent, preferably methanol.
  • 7.5-11 parts preferably 8.1 parts of 5-, 6-, 7- or 8-hydr0xy coumarin, preferably 7- hydroxy coumarin, may then be added together with 4.9- 3
  • reaction mixture may then preferably be heated typically to reflux temperature for l4 hours, say 2 hours. All parts referred to above are parts by weight.
  • the reaction vessel may be cooled and the desired product may precipitate.
  • the product may be separated, washed with a solvent in which the product is sparingly soluble, such as methanol and dried,
  • a solvent in which the product is sparingly soluble such as methanol and dried
  • the pure yield may be at least about 60% by weight based on the coumarin starting material, although crude yield may also be used as semibright additives to electro-plating baths without deleterious results.
  • the solvent such as methanol, may be removed by heating under reduced pressure and the residual product dissolved in water to a convenient concentration and used as the additive stock solution to essentially obtain a quantitative yield of the active ingredient.
  • the alkali metal salt of the oxyomegasulfohydrocarbon-di-yl coumarin compound may preferably be reacted with a cationic exchange resin such as a sulfonic acid cationic exchange resin on the hydrogen cycle.
  • a cationic exchange resin such as a sulfonic acid cationic exchange resin on the hydrogen cycle.
  • the free sulfonic acid in the eluate may then be reacted with the oxide, hydroxide, carbonate, etc. of the metal desired e.g. nickel or cobalt to neutrality to form the desired metal salt of the free sulfonic acid. Any excess of the oxide, hydroxide, carbonate, etc. may be removed by filtration.
  • novel compounds or additives of this invention may preferably be used in nickel plating baths, such as those of Tables I-V, in amounts of at least 0.2 g./l. of plating bath. Lower concentrations may give appreciable grain refinement but the deposits may be less glossy. When the concentration of additive exceeds 3 g./l. of plating bath the results obtained generally do not give additional advantages over the lower ranges.
  • the preferred concentration ranges from about 0.5-1 g./l. of additive in the plating bath.
  • the presence of the oxyomegasulfohydrocarbon-di-yl group in the additives for the plating baths which may be used in this invention imparts surface active anti-pitting properties and extends and augments the grain refining effect of the coumarin group.
  • the plating baths may also contain optional additional constituents such as anionic wetting agents to reduce pitting even further than would be effected by the novel additives of the invention.
  • anionic wetting agents such as sodium lauryl sulfate may be used in conjunction with mechanical agitation; and low foaming anionic Wetting agents such as sodium dialkyl sulfosuccinates may be used with air agitation. Although these wetting agents may commonly contain sulfur, unexpectedly, no increase in the sulfur content of the deposits may be observed when they are used with the additives of the invention.
  • medium or very high-speed electroplating of semi-bright nickel may be effected by the process comprising passing current from a substantially non-polarizing anode to a basis metal cathode through an aqueous nickel plating solution including at least one nickel compound capable of providing nickel ions for electroplating nickel and including as a semi-bright additive a compound containing oxyomegasulfohydrocarbondi-yl coumarin anion wherein the hydrocarbon moiety contains at least 2 carbon atoms and oxyomegasulfohydrocarbon-di-yl group is substituted on the carbocyclic nucleus of the coumarin group, maintaining the cathode current density during said plating at a level of at least 10 amperes per square decimeter (ASD) and maintaining a high relative velocity between said nickel plating solution and said basis metal cathode thereby obtaining a glossy, leveled, semi-bright high-speed nickel plate.
  • ASD amperes per square decimeter
  • the substantially non-polarizing anodes which may be used in the medium or very high-speed electropolating aspect of this invention may be insoluble anodes, such as lead which have very little tendency to polarize, even at very high current density, or certain soluble anodes, such as the commercially available SD type of nickel which has less tendency to polarize than other soluble nickel anodes and may be used at current densities as high as 40 ASD.
  • the SD type of nickel is an electrolytic nickel containing a controlled amount of sulfur.
  • a current density of over about 10 ASD, and preferably of 20-26 ASD may be used, although a current even as high as or higher than ASD may be applied during electroplating of nickel using baths containing the novel additives of the invention.
  • Plating carried out in this manner may permit deposition of predetermined thick nesses of semi-bright, leveled nickel in a time which is as little as 10% or less of the time required when ordinarily used plating conditions with soluble nickel anodes are used.
  • production of a semi-bright nickel plate 25 microns thick according to this aspect of the invention may require 3 minutes in contrast to 30 minutes for usual plating conditions.
  • a high relative velocity may be maintained between the bath and the cathodeto attain a substantially homogeneous catholyte. This serves to replenish the cathode film with nickel ions as they are plated out therefrom.
  • the high relative velocity between the bath and the cathode is maintained at a level equivalent to 60-320, say cm./second.
  • the agitation may be produced by vibration (including ultrasonic), rotation of the cathode relative to the solution, by pumping the electrolyte e.g. catholyte through the system and over the cathode surface or by very vigorous agitation of the electrolyte with appropriately positioned propellers or other devices, etc.
  • Semi-bright nickel plating in accordance with this invention may also be carried out under lower speed conditions by immersing a basis metal cathode into a nickel plating bath as hereinbefore disclosed.
  • the anode may be either a soluble anode, typically nickel metal, or an insoluble anode, typically lead. If nickel is used as the anode, it is preferably SD type of nickel.
  • Plating may be carried out in chloride-containing baths for 30-60 minutes, say 30 minutes at 40-60 C., say 50 C., with 9 mechanical or air agitation.
  • the cathode current density may typically be 2.5- ASD, preferably 5 ASD.
  • the novel process of this invention may permit attainment of a 12.5 to 50 microns, say 25 microns of semi-bright nickel plate characterized by its fine grain, high ductility, high gloss, uniform appearance, high leveling, and high covering power.
  • the plate is also characterized by its essentially sulfur-free character.
  • EXAMPLE 1 100 ml. of methanol, 2.8 grams of potassium hydroxide and 8.1 grams of 7-hydroxy coumarin may be introduced into a 500 ml. Erlenmeyer flask, to form a deep red solution. 6.7 grams of 1,3-propane sultone may then be added and the flask then heated under reflux on a hot plate for 2 hours while the composition is magnetically stirred. A pink precipitate obtained, may be filtered out, cooled to ambient temperature, and washed several times with methanol. The precipitate may then be dried for 2 hours at 60 C., leaving 9.4 grams (59% yield) of potassium 7-oxyomegasulfopropyl coumarin. The melting point of 237 C.240 C. may then be determined.
  • EXAMPLE 2 6.5 grams of potassium hydroxide dissolved in 100 ml. of methanol may be introduced into a suspension of 20 grams of 6-chloro-7-hydroxy coumarin in 300 ml. of methanol producing a mustard colored precipitate. The suspension may then be heated to reflux and a solution of 13 grams of 1,3-propane sultone in 100 ml. of methanol added dropwise over a 15-minute period. This may be followed by stirring and refluxing for 4 hours to obtain a tan-gray precipitate of potassium 6-chloro-7-oxyomegasulfopropyl coumarin. The methanol may be removed by heating in a stream of air, leaving 40 grams of the crude coumarin derivative. The compound does not melt at temperatures of up to 300 C.
  • EXAMPLE 3 Other coumarin derivatives which may be prepared according to the general methods of the above examples include sodium 7-oxyomegasulfopropyl coumarin, prepared in a methanol solvent interaction of 7-hydroxy coumarin, 1,3-propane sultone and sodium hydroxide.
  • the bath may be thermostatically controlled at 60 C. and air agitated with a perforated glass-plastic air agitation coil.
  • a single cotton cloth bagged SD nickel anode may be positioned in the bath.
  • a highly polished brass strip of 20 cm. x 2.5 cm. x 0.08 cm., pleated in 45 angles, may then be cleaned and immersed as the cathode in the bath except for the top 2.5 cm.
  • a current of 2.5 amperes may be passed through the bath at 50 C. for 30 minutes to obtain a dull, grainy, non-uniform deposit.
  • 0.8 gram of potassium 7-oxyomegasulfopropyl coumarin additive may then be mixed into the bath and the plating test repeated. This time, a beautifully fine grained, very ductile deposit of high gloss and very uniform appearance may be obtained.
  • a similar cathode which had been scribed with a single pass of 1.2 cm. wide zero-grit emery paper, was thereafter plated for 30 minutes using the bath containing the additive, the emery paper scratches may be found to be substantially filled in indicating excellent leveling.
  • EXAMPLE 5 4 liters of the Watts bath of Example 4 may be prepared and 3.2 grams of potassium 7-oxyomegasulfopropyl coumarin and 0.5 gram of the low-foaming wetting agent sodium di-n-hexylsulfosuccinate added thereto. Electroplating may be carried out using a bagged SD nickel anode; and a highly polished, brass cathode strip pleated in 45 angles may then be plated at a current of 5 amperes at 50 C. for 30 minutes to obtain a beautifully fine grained, very ductile deposit of high gloss and very uniform appearance.
  • the essentially sulfur-free character of the deposits may be determined by analyzing the deposits obtained in Ex amples 4 and 5. It may be found in each instance that the sulfur content is about 0.003% by weight. This value is so unusually low that the deposits may be considered to be essentially sulfur-free.
  • the beneficial characteristics exemplified by Examples 4 and 5 may be maintained over a prolonged period of electrolysis, for example up to 500 ampere-hours or longer by periodically adjusting the bath pH to within recommended limits as with dilute sulfuric acid and by replenishing the additive.
  • the rate of consumption of the semi-bright additive of the invention appears to be substantially lower than that of coumarin. This may be due to the extending and augmenting of the grain refining effect of the coumarin group which is provided by the oxyomegasulfohydrocarbon-di-yl group. This grain refining effect may also be maintained more uniformly over a long period of operation and over a wider current density range than has previously been attained with prior art additives such as coumarin.
  • the essentially sulfur-free character of the deposits may be maintained as the current and plating time length is varied and also when other bath formulations and other additives of the invention are used.
  • Example 4 The process of Example 4 may be repeated using as the same semi-bright additive with essentially the same results obtained.
  • Example 7 The process of Example 4 using the Watts bath thereof may be repeated using as the additive 0.8 g./l. of potassium 6-chloro-7-oxyomegasulfopropyl coumarin with essentially the same results obtained.
  • EXAMPLE 8 The process of Example 4, using the Watts bath thereof may be repeated using as the additive 0.8 g./l. of sodium 7-oxyomegasulfopropy1 coumarin with essentially the same results obtained.
  • the bath may be thermostatically controlled at 70 C. and mechanically agitated by propellers during plating.
  • 0.4 g./l. of potassium 6-chloro-7-oxyomegasulfopropyl coumarin may be added to the bath.
  • a single cotton cloth bagged SD nickel anode is positioned in the bath.
  • a highly polished bent brass strip cathode pleated in 45 angles of 2.5 cm. x 20 cm. X 0.08 cm. may be scribed with a single pass of a 1.2 cm. wide zero-grit emery board.
  • the strip may be clamped in a plastic fixture exposing only the scribed side of the strip to the anode and the plating bath discharged from a pressure pump to impinge on the exposed scribed area of the strip at an angle of about 45".
  • a current density of 40 amperes per square decimeter may be applied at 50 C.
  • the cathode plate attained from the chloride free bath of this example possesses very little tensile stress.
  • the emery paper scratches may be found to be substantially filled in and the leveling is excellent.
  • EXAMPLE 10 375 grams per liter of nickel sulfamate may be sub stituted for nickel sulfate in the bath of Example 9 and the process repeated, with essentially the same results attained.
  • a process of electroplating a semi-bright nickel deposit which comprises passing current from an anode to a basis metal cathode through an aqueous acidic nickel plating solution containing at least one nickel compound providing nickel ions for electroplating nickel and including as a semi-bright additive, a suificient amount of a compound containing an oxyomegasulfohydrocarbon-di-yl coumarin anion wherein the hydrocarbon-di-yl moety contains at least two carbon atoms and the oxyomegasulfohydrocarbon-di-yl group is substituted on the carbocyclic nucleus of the coumarin group.
  • a process of electroplating a semi-bright nickel deposit which comprises passing current from a substantially non-polarizing anode to a basis metal cathode through an aqueous acidic nickel plating solution including at least one metal compound capable of providing nickel ions for electroplating nickel and including as a semi-bright additive a compound containing a sufiicient amount of oxyomegasulfohydrocarbon-di-yl coumarin wherein the hydrocarbon moiety contains at least two carbon atoms and the oxyornegasulfohydrocarbon-di-yl group is substituted on the carbocyclic nucleus of the coumarin group; maintaining the cathode current density during said plating at a level of at least ten amperes per square decimeter, and maintainin ga high relative velocity between said chloride-free nickel plating solution and said basis metal cathode thereby obtaining a glossy leveled, semi-bright, high speed nickel plate.
  • a nickel plating solution comprising an acidic aqueous nickel plating solution including at least one nickel compound capable of providing nickel ions for electrodeposition of nickel on a basis metal cathode and including as a semi-bright additive a sufiicient amount of a compound containing an oxyomegasulfohydrocarbon-di-yl coumarin anion wherein the hydrocarbon moiety contains at least two carbon atoms and the oxyomegasulfohydrocarbon-di-yl group is substituted on the carbocyclic nucleus of the cournarin group.

Description

United States Patent 3,367,854 NICKEL PLATING Frank Passal, Detroit, Mich, assignor to M & T Chemicals Inc., New York, N.Y., a corporation of Delaware No Drawing. Filed Dec. 21, 1964, Scr. No. 420,172 14 Claims. (Cl. 204-49) ABSTRACT OF THE DISCLOSURE In accordance with certain of its aspects, the novel process of this invention for electroplating a semi-bright sulfur-free, nickel plate onto a basis metal may comprise passing curernt from an anode to a basis metal cathode through an aqueous acidic nickel plating solution containing at least one nickel compound providing nickel ions for electroplating of nickel, and including as a semibright additive, a compound containing an oxyomegasulfohydrocarbon-di-yl coumarin anion wherein the hydrocarbon-di-yl moiety contains at least two carbon atoms and the oxyomegasulfohydrocarbon-di-yl group is substituted on the carbocyclic nucleus of the coumarin group.
This invention relates to the electroplating of nickel. More particularly, it relates to the electroplating of a semi-bright nickel characterized by its fine grain, uniformity, ductility, freedom from sulfur, and by its high leveling ability.
As is well known to those skilled-in-the-art, nickel may be electroplated onto various basis metals to obtain a bright nickel surface. When it is desired to produce a nickel surface possessing maximum brightness and luster and/or when the surface of the basis metal may possess numerous scratches or other minor imperfections, it is common to electroplate onto the surface a first layer of nickel particularly characterized by its leveling ability. This deposit may be called a semi-bright nickel deposit because it does not possess the extremely high brilliance and luster commonly attained by a bright-nickel deposit. There may commonly be deposited onto this first semibright nickel layer a second bright nickel layer. The semibright nickel layer may be polished and buffed prior to deposition of the bright nickel layer. The resulting duplexnickel system may be characterized by high degree of brilliance and by superior resistance to corrosion, even when the bright nickel deposit is relatively thin.
The first or semi-bright layer of nickel has heretofore commonly been deposited from various nickel-plating baths, including for example Watts baths, sulfamate baths, chloride-free baths, etc. which contain an additive. Prior art semi-bright nickel plating baths have commonly used coumarin as an additive. Although it may be possible to produce a semi-bright nickel deposit by prior art methods, there are numerous defects which render these processess less than fully satisfactory. Semi-bright nickel deposits formed from plating baths of the prior art suffer from inadequate leveling, high tensile stress and non-uniform grain size.
In an effort to correct these deficiencies of semi-bright nickel plating baths, various additives have been used including coumarin derivatives having various groups attached to the aromatic or to the heterocyclic ring. These compounds have, however, been found not to be satisfactory in that they do not permit attainment of an improved semi-bright nickel plate, but rather they have suffered from defects such as very low solubility, diificulty of synthesis, and tendency to readily decompose during electrolysis to give undesirable products, typically resinous or polymeric materials which result in inferior deposits, etc.
It is an object of this invention to provide a novel process for the electroplating of semi-bright nickel particularly characterized by its high leveling ability. Other objects will be apparent to those ski1led-in-the-art on inspection of the following description.
In accordance with certain of its aspects, the novel process of this invention for electroplating a semi-bright sulfur-free, nickel plate onto a basis metal may comprise passing current from an anode to a basis metal cathode through an aqueous acidic nickel plating solution con taining at least one nickel compound providing nickel ions for electroplating of nickel, and including as a semi-bright additive, a compound containing an oxyomegasulfohydrocarbon-di-yl coumarin anion wherein the hydrocarbon-di-yl moiety contains at least two carbon atoms and the oxyomegasulfohydrocarbon-di-yl group is substituted on the carbocyclic nucleus of the coumarin group.
The basis metal onto which the semi-bright deposits of this bath may be applied may include basis metals which are characterized by a low degree of luster or brightness or which possess a degree of surface roughness which would fail to permit attainment of a satisfactory quality of final finish and appearance if they were directly plated with a bright nickel plate. Typically the basis metals may include ferrous metal such as steel, copper, including its alloys such as brass, bronze, etc.; zinc, particularly in the form of die castings which may bear a plate of copper; etc.
The novel baths of this invention may typically include Watts-type baths, sulfamate-type baths, fiuoboratetype baths, chloride-free sulfate baths, chloride-free sulfamate baths, etc.
A typical Watts bath which may be used in practice of this invention may include the following components in aqueous solution, all values being in grams per liter (g./l.) except for the pH:
TABLE I Component Minimum Maximum Preferred Nickel sulfate.-- 200 500 300 Nickel chloride 30 80 45 Boric acid.. 35 55 45 Semi-bright additive 0.2 3 0. pH electrometric 3 5 4. 0
A typical sufamate-type bath which may be used in practice of this invention may include the following components:
components TABLE III Component Minimum Maximum Preferred Nickel fiuoborate.-. 250 400 300 Nickel chloride- 45 60 50 Boric acid 15 30 20 Semi-bright additive. 0.2 3 0. 75 pH electrometric 2 4 3. 0
A typical chloride-free sulfate-type bath which may be used in practice of this invention may include the followmg components:
A typical chloride-free sulfamate-type bath which may be used in practice of this invention may include the following components:
TABLE V Component Minimum Maximum Preferred Nickel sulfamate 300 400 350 Boric acid 35 55 45 Semi-bright additive 0.2 3 0.75 pH eleetrometrim. 3 5 4. 0
It will be apparent that the above baths may contain compounds in amounts falling outside the preferred minimum and maximum set forth, but most satisfactory and economical operation may normally be effected when the compounds are present in the baths in the amounts indicated. A particular advantage of the chloride-free baths of Tables IV and V, supra, is that the deposits obtained may be substantially free of tensile stress.
The semi-bright additives which may be employed in practice of this invention according to certain of its aspects may include compounds containing the oxyomegasulfohydrocarbon-di-yl coumarin anion wherein the hydrocarbon moiety contains at least two carbon atoms. The oxyomegasulfohydrocarbon-di-yl group is substituted on the carbocyclic ring of the coumarin nucleus and most preferably in the 7 position of the coumarin nucleus. The hydrocarbon-di-yl moiety may bear inert substituents. Typically such compounds may include those wherein the cation M (see infra) may be a bath-compatible cation, i.e. a cation which is soluble in the electroplating bath and which does not interfere with attainment of the desired semi-bright plate. Typically, the cation M may include hydrogen and alkali metals including sodium, potassium, lithium, etc.; polyvalent metals such as nickel, cobalt, magnesium, etc. The omega carbon atom of these novel compounds is the carbon atom linking the sulfo group to the remainder of the molecule. Most commonly the omega position is the carbon atom most distant from the coumarin nucleus. However, when the hydrocarbon-di-yi group in the chain linking the coumarin nucleus to the sulfo group contains carbon-containing substituents, the omega position as herein defined may not be the carbon atom most distant from the coumarin nucleus.
The novel compounds containing the oxyomegasulfohydrocarbon-di-yl coumarin anion may typically have the following formula:
wherein a, b, c and d are each integers less than two, i.e. 0 and 1, the sum of a, b, c, and d being greater than 0 and preferably 1 and wherein M is a cation as defined supra, R is a hydrocarbon-di-yl group wherein the hydrocarbon moiety contains at least two carbon atoms, and X is an inert substituent. Typical inert substituents (i.e. substituents which do not cause unfavorable effects to occur in electroplating baths including the novel compounds of this invention) include hydrogen, halogen e.g. chloro, alkyl, alkaryl, aralkyl, aryl, alkoxy, aryloxy, etc. As shown, the inert substituent when present is preferably on the aromatic ring of the coumarin nucleus.
In the above formula R may be a divalent hydrocarbon group having at least two carbon atoms. Typically R may be arylene such as o-phenylene; m-phenylene; p-phenylene; aralkylene such as O-benzyl; m-benzyl; or p-benzyl; alkarylene such as 1-methyl-2,3 phenylene; l-methyl-Z, 4-phenylene;l-rnethyl-2,5 phenylene; etc., alkylene such as ethane-1,2-di-yl; propane-l,2-diyl; propane-1,3-di-yl; butane-1,4-di-yl; butane-l,3-diyl; pentane-l,5-di-yl; etc. These groups may bear inert substituents including hydrocarbon substituents. The preferred R group may contain at least three carbon atoms, and more preferably 3-5 carbon atoms in a straight chain extending from the carbon atom closest to the coumarin nucleus to the omega carbon atom, the omega position being as hereinbefore defined. Preferred R groups may contain a linked chain of methylene groups and the most preferred R may be propane-1,3-di-yl, CH CH CH In formulae containing a plurality of R groups, the R groups may preferably be the same.
With respect to Formula 1 supra, it will be apparent that When a is 1, b is l, c is 0 and d is O the formula may be:
MO-SOz-R-( (II) and that when a is 0, b is 1, c is l, and d is 0 the formula may be:
X (III) and that when a is 0, b is l, c is 0 and d is 0 the formula may be:
X (IV) It will be apparent that the values of a, b, c, and d may be independently varied between 0 and 1 to produce ioumarin derivatives other than those specifically set orth.
It will also be apparent that when M is polyvalent, the valences thereof may be satisfied by linkage to other oxyomegasulfohydrocarbon-di-yl groups which may be on the same or on another coumarin nucleus. For example, when M is divalent, e.g. nickel, the compound may have one of the following illustrative formulae, inter alia:
} IIC (VII) The preferred compounds may include those having Formula IV wherein the oxyomegasulfohydrocarbon-di-yl group is substituted on the 7-position of the coumarin and M is an alkali metal; also preferred are those compounds wherein R is a hydrocarbon-di-yl group having 3-5 carbon atoms and most preferably one wherein R is a polymethylene chain preferably having 3 carbon atoms, viz.
wherein n is preferably 3-5, and most preferably 3.
It will be apparent to those skilled-in-the-art that the compounds noted supra will provide the baths of this invention with the desired anion viz.
(VIII) or the following corresponding anions to the above-noted specific compounds, (II), (HDand (IV):
nickel 6,7-di(oxyomegasulfopropyl) coumarin cobalt 7,8-di(oxyomegasulfopropyl) coumarin nickel di(7,7-oxyomegasulfopropyl) coumarin potassium 8-oxyomegasulfopropyl coumarin potassium 6-oxyomegasulfopropyl coumarin sodium S-oxyomegasulfobutyl coumarin potassium 7-oxyomegasulfobutyl cournarin sodium 7-oxyomegasulfobenzyl coumarin (i.e. sodium 7-oxy-ortho sulfobenzyl coumarin),viz.
SOaONa The most preferred compounds may typically be the first four compounds in Table VI. It will be apparent that other cations as hereinbefore noted may replace those present in the specific compounds in Table VI.
The novel oxyomegasulfohydrocarbon-di-yl coumarin compounds, wherein the hydrocarbon-di-yl moiety contains at least 2 carbon atoms and the oxyomegasulfohydrocarbon-di-yl is substituted on the carbocyclic nucleus of the coumarin group of this invention may, in accor ance with certain of its aspects, be prepared by the process which comprises mixing in a solvent dispersion, a hydroxy coumarin wherein the hydroxy group is substituted on the carbocyclic nucleus of the coumarin group, a compound of the formula NOH wherein M is a cation including those hereinbefore noted, and a hydrocarbon sultone wherein the hydrocarbon moiety contains at least 2 carbon atoms thereby forming a reaction mixture, and heating said reaction mixture.
The solvents used in this preparation may preferably be those in which the reactants are dispersible, i.e. suspendable or soluble and most preferably one in which the compound MOH is soluble. Such solvents may typically include organic solvents such as alcohols, etc.
The sultones which may be employed to prepare the novel compounds of this invention may include those containing a carbon-oxygen-sulfur-carbon linkage in a ring, the hexavalent sulfur atom being further bonded to two additional oxygen atoms. The sultone which may preferably be used may contain 3-5 carbon atoms, these sultones being characterized by generation of a minimum of foaming. The most preferred sultone may be 1,3-propane sultone,
although sultones such as 1,4-butane sultone,
/CE2 CH2 CH2 and 1,3-butane sultone,
also may produce highly useful additives. The longer chain alkane sultones or other sultones containing more than 5 carbon atoms, such as tolyl sultone,
carbocyclic nucleus of coumarin, typically including monoand poly-hydroxy coumarins such as:
S-hydroxy coumarin 6-hydroxy coumarin 7-hydroxy coumarin 8-hydroxy coumarin 6,7-dihydroxy coumarin 7,8-dihydroxy coumarin 6-chloro-7-hydroxy coumarin Preferred coumarins may include the 7-hydroxy coumarins such as 7-hydroxy coumarin se.
These hydroxy coumarins may be readily available or may be prepared by the reaction of the corresponding resorcinol with malic acid in the presence of catalyst e.g. concentrated sulfuric acid; e.g. to prepare 6-chloro-7-hydroxy coumarin, malic acid may be reacted with 4-chloro resorcinol. Besides concentrated sulfuric acid other catalysts may be used such as the pyrophosphates of titanium and zirconium used singly or in combination.
The preferred compounds MOH which may be used in the process of this invention include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, and lithium hydroxide.
In a preferred embodiment of the invention, 2.3-3.3 parts, say 2.8 parts of MOH, preferably potassium hydroxide, may be added to 3-4 moles, say 3.1 moles of solvent, preferably methanol. 7.5-11 parts, preferably 8.1 parts of 5-, 6-, 7- or 8-hydr0xy coumarin, preferably 7- hydroxy coumarin, may then be added together with 4.9- 3
7.3 parts, say 6.7 parts of hydrocarbon sultone, preferably 1,3-propane sultone. Preferably the molar ratio of MOI-I to hydrocarbon sultone may be about 1 to 1. The reaction mixture may then preferably be heated typically to reflux temperature for l4 hours, say 2 hours. All parts referred to above are parts by weight.
At the conclusion of the reaction time, the reaction vessel may be cooled and the desired product may precipitate. The product may be separated, washed with a solvent in which the product is sparingly soluble, such as methanol and dried, Typically the pure yield may be at least about 60% by weight based on the coumarin starting material, although crude yield may also be used as semibright additives to electro-plating baths without deleterious results. Alternatively, the solvent, such as methanol, may be removed by heating under reduced pressure and the residual product dissolved in water to a convenient concentration and used as the additive stock solution to essentially obtain a quantitative yield of the active ingredient.
If it be desired to convert the alkali metal salt of the oxyomegasulfohydrocarbon-di-yl coumarin to other salts, the alkali metal salt of the oxyomegasulfohydrocarbon-diyl coumarin compound may preferably be reacted with a cationic exchange resin such as a sulfonic acid cationic exchange resin on the hydrogen cycle. The free sulfonic acid in the eluate may then be reacted with the oxide, hydroxide, carbonate, etc. of the metal desired e.g. nickel or cobalt to neutrality to form the desired metal salt of the free sulfonic acid. Any excess of the oxide, hydroxide, carbonate, etc. may be removed by filtration.
The novel compounds or additives of this invention may preferably be used in nickel plating baths, such as those of Tables I-V, in amounts of at least 0.2 g./l. of plating bath. Lower concentrations may give appreciable grain refinement but the deposits may be less glossy. When the concentration of additive exceeds 3 g./l. of plating bath the results obtained generally do not give additional advantages over the lower ranges. The preferred concentration ranges from about 0.5-1 g./l. of additive in the plating bath.
The presence of the oxyomegasulfohydrocarbon-di-yl group in the additives for the plating baths which may be used in this invention imparts surface active anti-pitting properties and extends and augments the grain refining effect of the coumarin group. The plating baths may also contain optional additional constituents such as anionic wetting agents to reduce pitting even further than would be effected by the novel additives of the invention. High foaming anionic wetting agents such as sodium lauryl sulfate may be used in conjunction with mechanical agitation; and low foaming anionic Wetting agents such as sodium dialkyl sulfosuccinates may be used with air agitation. Although these wetting agents may commonly contain sulfur, unexpectedly, no increase in the sulfur content of the deposits may be observed when they are used with the additives of the invention.
It is a particular feature of this invention according to certain of its aspects that medium or very high-speed electroplating of semi-bright nickel may be effected by the process comprising passing current from a substantially non-polarizing anode to a basis metal cathode through an aqueous nickel plating solution including at least one nickel compound capable of providing nickel ions for electroplating nickel and including as a semi-bright additive a compound containing oxyomegasulfohydrocarbondi-yl coumarin anion wherein the hydrocarbon moiety contains at least 2 carbon atoms and oxyomegasulfohydrocarbon-di-yl group is substituted on the carbocyclic nucleus of the coumarin group, maintaining the cathode current density during said plating at a level of at least 10 amperes per square decimeter (ASD) and maintaining a high relative velocity between said nickel plating solution and said basis metal cathode thereby obtaining a glossy, leveled, semi-bright high-speed nickel plate.
The substantially non-polarizing anodes which may be used in the medium or very high-speed electropolating aspect of this invention may be insoluble anodes, such as lead which have very little tendency to polarize, even at very high current density, or certain soluble anodes, such as the commercially available SD type of nickel which has less tendency to polarize than other soluble nickel anodes and may be used at current densities as high as 40 ASD. The SD type of nickel is an electrolytic nickel containing a controlled amount of sulfur.
Thus, according to this aspect of the invention a current density of over about 10 ASD, and preferably of 20-26 ASD, may be used, although a current even as high as or higher than ASD may be applied during electroplating of nickel using baths containing the novel additives of the invention. Plating carried out in this manner may permit deposition of predetermined thick nesses of semi-bright, leveled nickel in a time which is as little as 10% or less of the time required when ordinarily used plating conditions with soluble nickel anodes are used. Typically production of a semi-bright nickel plate 25 microns thick according to this aspect of the invention may require 3 minutes in contrast to 30 minutes for usual plating conditions.
When medium or very high speed electroplating is desired, a high relative velocity may be maintained between the bath and the cathodeto attain a substantially homogeneous catholyte. This serves to replenish the cathode film with nickel ions as they are plated out therefrom. Typically the high relative velocity between the bath and the cathode is maintained at a level equivalent to 60-320, say cm./second. The agitation may be produced by vibration (including ultrasonic), rotation of the cathode relative to the solution, by pumping the electrolyte e.g. catholyte through the system and over the cathode surface or by very vigorous agitation of the electrolyte with appropriately positioned propellers or other devices, etc.
Semi-bright nickel plating in accordance with this invention may also be carried out under lower speed conditions by immersing a basis metal cathode into a nickel plating bath as hereinbefore disclosed. The anode may be either a soluble anode, typically nickel metal, or an insoluble anode, typically lead. If nickel is used as the anode, it is preferably SD type of nickel. Plating may be carried out in chloride-containing baths for 30-60 minutes, say 30 minutes at 40-60 C., say 50 C., with 9 mechanical or air agitation. The cathode current density may typically be 2.5- ASD, preferably 5 ASD.
The novel process of this invention may permit attainment of a 12.5 to 50 microns, say 25 microns of semi-bright nickel plate characterized by its fine grain, high ductility, high gloss, uniform appearance, high leveling, and high covering power. The plate is also characterized by its essentially sulfur-free character.
The following illustrative examples disclose synthesis of typical additives of this invention, nickel plating baths containing the novel additives of this invention, and electroplating processes wherein these baths are used.
EXAMPLE 1 100 ml. of methanol, 2.8 grams of potassium hydroxide and 8.1 grams of 7-hydroxy coumarin may be introduced into a 500 ml. Erlenmeyer flask, to form a deep red solution. 6.7 grams of 1,3-propane sultone may then be added and the flask then heated under reflux on a hot plate for 2 hours while the composition is magnetically stirred. A pink precipitate obtained, may be filtered out, cooled to ambient temperature, and washed several times with methanol. The precipitate may then be dried for 2 hours at 60 C., leaving 9.4 grams (59% yield) of potassium 7-oxyomegasulfopropyl coumarin. The melting point of 237 C.240 C. may then be determined.
EXAMPLE 2 6.5 grams of potassium hydroxide dissolved in 100 ml. of methanol may be introduced into a suspension of 20 grams of 6-chloro-7-hydroxy coumarin in 300 ml. of methanol producing a mustard colored precipitate. The suspension may then be heated to reflux and a solution of 13 grams of 1,3-propane sultone in 100 ml. of methanol added dropwise over a 15-minute period. This may be followed by stirring and refluxing for 4 hours to obtain a tan-gray precipitate of potassium 6-chloro-7-oxyomegasulfopropyl coumarin. The methanol may be removed by heating in a stream of air, leaving 40 grams of the crude coumarin derivative. The compound does not melt at temperatures of up to 300 C.
EXAMPLE 3 Other coumarin derivatives which may be prepared according to the general methods of the above examples include sodium 7-oxyomegasulfopropyl coumarin, prepared in a methanol solvent interaction of 7-hydroxy coumarin, 1,3-propane sultone and sodium hydroxide.
EXAMPLE 4 1 liter of the following Watts bath may be prepared:
Nickel sulfate g./l 300 Nickel chloride ....g./l 60 Boric acid g./l 45 pH electrometric 4.0
Water to 1 liter.
The bath may be thermostatically controlled at 60 C. and air agitated with a perforated glass-plastic air agitation coil. A single cotton cloth bagged SD nickel anode may be positioned in the bath. A highly polished brass strip of 20 cm. x 2.5 cm. x 0.08 cm., pleated in 45 angles, may then be cleaned and immersed as the cathode in the bath except for the top 2.5 cm.
In a control run, a current of 2.5 amperes may be passed through the bath at 50 C. for 30 minutes to obtain a dull, grainy, non-uniform deposit.
In practice of the invention, 0.8 gram of potassium 7-oxyomegasulfopropyl coumarin additive may then be mixed into the bath and the plating test repeated. This time, a beautifully fine grained, very ductile deposit of high gloss and very uniform appearance may be obtained. When a similar cathode, which had been scribed with a single pass of 1.2 cm. wide zero-grit emery paper, was thereafter plated for 30 minutes using the bath containing the additive, the emery paper scratches may be found to be substantially filled in indicating excellent leveling.
EXAMPLE 5 4 liters of the Watts bath of Example 4 may be prepared and 3.2 grams of potassium 7-oxyomegasulfopropyl coumarin and 0.5 gram of the low-foaming wetting agent sodium di-n-hexylsulfosuccinate added thereto. Electroplating may be carried out using a bagged SD nickel anode; and a highly polished, brass cathode strip pleated in 45 angles may then be plated at a current of 5 amperes at 50 C. for 30 minutes to obtain a beautifully fine grained, very ductile deposit of high gloss and very uniform appearance.
The essentially sulfur-free character of the deposits may be determined by analyzing the deposits obtained in Ex amples 4 and 5. It may be found in each instance that the sulfur content is about 0.003% by weight. This value is so unusually low that the deposits may be considered to be essentially sulfur-free.
The beneficial characteristics exemplified by Examples 4 and 5 may be maintained over a prolonged period of electrolysis, for example up to 500 ampere-hours or longer by periodically adjusting the bath pH to within recommended limits as with dilute sulfuric acid and by replenishing the additive.
It may be found that the rate of consumption of the semi-bright additive of the invention appears to be substantially lower than that of coumarin. This may be due to the extending and augmenting of the grain refining effect of the coumarin group which is provided by the oxyomegasulfohydrocarbon-di-yl group. This grain refining effect may also be maintained more uniformly over a long period of operation and over a wider current density range than has previously been attained with prior art additives such as coumarin.
The essentially sulfur-free character of the deposits may be maintained as the current and plating time length is varied and also when other bath formulations and other additives of the invention are used.
EXAMPLE 6 1 liter of the following sulfamate bath formulation may be prepared:
Nickel sulfamate g./l 360 Nickel chloride g./l l5 Boric acid g./l 45 pH electrometric 3.5
Water to 1 liter.
The process of Example 4 may be repeated using as the same semi-bright additive with essentially the same results obtained.
EXAMPLE 7 The process of Example 4 using the Watts bath thereof may be repeated using as the additive 0.8 g./l. of potassium 6-chloro-7-oxyomegasulfopropyl coumarin with essentially the same results obtained.
EXAMPLE 8 The process of Example 4, using the Watts bath thereof may be repeated using as the additive 0.8 g./l. of sodium 7-oxyomegasulfopropy1 coumarin with essentially the same results obtained.
EXAMPLE 9 4 liters of the following chloride-free nickel bath formulation may be prepared:
Nickel sulfate g./l 375 Boric acid g./l 45 pH electronietric 4.0
Water to 1 liter.
The bath may be thermostatically controlled at 70 C. and mechanically agitated by propellers during plating.
0.4 g./l. of potassium 6-chloro-7-oxyomegasulfopropyl coumarin may be added to the bath. A single cotton cloth bagged SD nickel anode is positioned in the bath. A highly polished bent brass strip cathode pleated in 45 angles of 2.5 cm. x 20 cm. X 0.08 cm. may be scribed with a single pass of a 1.2 cm. wide zero-grit emery board. The strip may be clamped in a plastic fixture exposing only the scribed side of the strip to the anode and the plating bath discharged from a pressure pump to impinge on the exposed scribed area of the strip at an angle of about 45". A current density of 40 amperes per square decimeter may be applied at 50 C. for 3 minutes to obtain by this high speed process a glossy beautifully fine grained, very ductile deposit having a thickness of 25 microns. The cathode plate attained from the chloride free bath of this example possesses very little tensile stress. The emery paper scratches may be found to be substantially filled in and the leveling is excellent.
EXAMPLE 10 375 grams per liter of nickel sulfamate may be sub stituted for nickel sulfate in the bath of Example 9 and the process repeated, with essentially the same results attained.
Although this invention has been illustrated by reference to specific examples, numerous changes and modifications thereof which clearly fall within the scope of the invention will be apparent to those skilled-in-the-art.
I claim:
1. A process of electroplating a semi-bright nickel deposit which comprises passing current from an anode to a basis metal cathode through an aqueous acidic nickel plating solution containing at least one nickel compound providing nickel ions for electroplating nickel and including as a semi-bright additive, a suificient amount of a compound containing an oxyomegasulfohydrocarbon-di-yl coumarin anion wherein the hydrocarbon-di-yl moety contains at least two carbon atoms and the oxyomegasulfohydrocarbon-di-yl group is substituted on the carbocyclic nucleus of the coumarin group.
2. The process of claim 1 wherein said semi-bright additive is wherein X is an inert substituent, M is a cation, R is a hydrocarbon-di-yl group containing at least two carbon atoms, and a, b, c, and d are each integers less than 2, the sum of a, b, c, and d being at least 1.
3. The process of claim 1 wherein said semi-bright additive is wherein M is a cation and X is an inert substituent.
4. The process of claim 3 wherein M is an alkali metal. 5. The process of claim 1 wherein said semi-bright additive is present to the extent of at least about 0.2 g./l. of the solution.
6. A process of electroplating a semi-bright nickel deposit which comprises passing current from a substantially non-polarizing anode to a basis metal cathode through an aqueous acidic nickel plating solution including at least one metal compound capable of providing nickel ions for electroplating nickel and including as a semi-bright additive a compound containing a sufiicient amount of oxyomegasulfohydrocarbon-di-yl coumarin wherein the hydrocarbon moiety contains at least two carbon atoms and the oxyornegasulfohydrocarbon-di-yl group is substituted on the carbocyclic nucleus of the coumarin group; maintaining the cathode current density during said plating at a level of at least ten amperes per square decimeter, and maintainin ga high relative velocity between said chloride-free nickel plating solution and said basis metal cathode thereby obtaining a glossy leveled, semi-bright, high speed nickel plate.
7. A nickel plating solution comprising an acidic aqueous nickel plating solution including at least one nickel compound capable of providing nickel ions for electrodeposition of nickel on a basis metal cathode and including as a semi-bright additive a sufiicient amount of a compound containing an oxyomegasulfohydrocarbon-di-yl coumarin anion wherein the hydrocarbon moiety contains at least two carbon atoms and the oxyomegasulfohydrocarbon-di-yl group is substituted on the carbocyclic nucleus of the cournarin group.
8. The nickel plating solution of claim 7 wherein said semi-bright additive is wherein M is a cation and X is an inert substituent.
9. The nickel plating solution of claim 7 wherein said semibright additive is wherein M is a cation.
10. The nickel plating solution of claim 9 wherein M is an alkali metal.
11. The nickel plating solution of claim 7 wherein said semi-bright additive is M0SO1(CH2)3-O- \O 0 wherein M is a cation.
12. The nickel plating solution of claim 7 wherein said semi-bright additive is wherein X is an inert substiutent, M is a cation, R is a hydrocarbon-di-yl group containing at least two carbon atoms, and a, b, c, and d are each integers less than 2, the sum of a, b, c, and at being at least 1.
13. The nickel plating solution of claim 12 wherein said aqueous acidic nickel plating solution is chloridetree.
14. The nickel plating solution of claim 12 wherein said semi-bright additive is present to the extent of at least about 0.2 g./l. of the solution.
(References on following page) References Cited UNITED STATES PATENTS FOREIGN PATENTS 632,773 12/1961 Canada.
IJuROSe Great Britain.
DuRose et a1. 20449 Faust et al- 201 9 X 5 HOWARD S. WILLIAMS, Plzmary Examzner. Marx 204-49 JOHN H. MACK, Examiner.
Foulke et a1 20'449 G. KAPLAN, Assistant Examiner.
US420172A 1964-12-21 1964-12-21 Nickel plating Expired - Lifetime US3367854A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DENDAT1302891D DE1302891B (en) 1964-12-21
US420172A US3367854A (en) 1964-12-21 1964-12-21 Nickel plating
GB52174/65A GB1135187A (en) 1964-12-21 1965-12-08 Improvements in or relating to nickel plating
GB28690/68A GB1135188A (en) 1964-12-21 1965-12-08 Substituted coumarin derivatives and process for their production
DE1793558A DE1793558C3 (en) 1964-12-21 1965-12-15 Coumarin derivatives and processes for their preparation
CH1761865A CH495977A (en) 1964-12-21 1965-12-20 Process for the preparation of ω-sulfohydrocarbonoxycoumarin compounds
ES0320950A ES320950A1 (en) 1964-12-21 1965-12-20 A procedure deforming by electrolytic shaping a semibrilling nickel deposit. (Machine-translation by Google Translate, not legally binding)
SE16469/65A SE328585B (en) 1964-12-21 1965-12-20
NL6516626A NL6516626A (en) 1964-12-21 1965-12-21
FR43088A FR1460490A (en) 1964-12-21 1965-12-21 Process, baths and additives for electrolytic nickel plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US420172A US3367854A (en) 1964-12-21 1964-12-21 Nickel plating

Publications (1)

Publication Number Publication Date
US3367854A true US3367854A (en) 1968-02-06

Family

ID=23665368

Family Applications (1)

Application Number Title Priority Date Filing Date
US420172A Expired - Lifetime US3367854A (en) 1964-12-21 1964-12-21 Nickel plating

Country Status (8)

Country Link
US (1) US3367854A (en)
CH (1) CH495977A (en)
DE (2) DE1793558C3 (en)
ES (1) ES320950A1 (en)
FR (1) FR1460490A (en)
GB (2) GB1135187A (en)
NL (1) NL6516626A (en)
SE (1) SE328585B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3502550A (en) * 1965-11-01 1970-03-24 M & T Chemicals Inc Nickel electroplating electrolyte
US20130084760A1 (en) * 2011-09-30 2013-04-04 Apple Inc. Connector with multi-layer ni underplated contacts
US9004960B2 (en) 2012-08-10 2015-04-14 Apple Inc. Connector with gold-palladium plated contacts

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3677913A (en) * 1971-04-01 1972-07-18 M & T Chemicals Inc Nickel plating
US4439284A (en) * 1980-06-17 1984-03-27 Rockwell International Corporation Composition control of electrodeposited nickel-cobalt alloys

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2635076A (en) * 1947-01-29 1953-04-14 Harshaw Chem Corp Bright nickel plating
US2782155A (en) * 1954-02-16 1957-02-19 Harshaw Chem Corp Electroplating of nickel
US2840517A (en) * 1957-07-10 1958-06-24 Rockwell Spring & Axle Co Nickel-iron-zinc alloy electroplating
US2961386A (en) * 1957-02-21 1960-11-22 Wilmot Breeden Ltd Electro-deposition of nickel
US2976225A (en) * 1959-03-03 1961-03-21 Hanson Van Winkle Munning Co Electrodeposition of nickel
CA632773A (en) * 1961-12-12 Kardos Otto Electrodeposition of nickel
GB942867A (en) * 1959-06-29 1963-11-27 Udylite Res Corp Improvements in or relating to the electrodeposition of nickel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA632773A (en) * 1961-12-12 Kardos Otto Electrodeposition of nickel
US2635076A (en) * 1947-01-29 1953-04-14 Harshaw Chem Corp Bright nickel plating
US2782155A (en) * 1954-02-16 1957-02-19 Harshaw Chem Corp Electroplating of nickel
US2961386A (en) * 1957-02-21 1960-11-22 Wilmot Breeden Ltd Electro-deposition of nickel
US2840517A (en) * 1957-07-10 1958-06-24 Rockwell Spring & Axle Co Nickel-iron-zinc alloy electroplating
US2976225A (en) * 1959-03-03 1961-03-21 Hanson Van Winkle Munning Co Electrodeposition of nickel
GB942867A (en) * 1959-06-29 1963-11-27 Udylite Res Corp Improvements in or relating to the electrodeposition of nickel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3502550A (en) * 1965-11-01 1970-03-24 M & T Chemicals Inc Nickel electroplating electrolyte
US20130084760A1 (en) * 2011-09-30 2013-04-04 Apple Inc. Connector with multi-layer ni underplated contacts
US8637165B2 (en) * 2011-09-30 2014-01-28 Apple Inc. Connector with multi-layer Ni underplated contacts
US9004960B2 (en) 2012-08-10 2015-04-14 Apple Inc. Connector with gold-palladium plated contacts

Also Published As

Publication number Publication date
DE1302891B (en) 1971-01-07
ES320950A1 (en) 1966-10-16
DE1793558A1 (en) 1972-03-02
CH495977A (en) 1970-09-15
DE1793558B2 (en) 1975-05-15
SE328585B (en) 1970-09-21
GB1135188A (en) 1968-12-04
FR1460490A (en) 1966-11-25
DE1793558C3 (en) 1975-12-18
NL6516626A (en) 1966-06-22
GB1135187A (en) 1968-12-04

Similar Documents

Publication Publication Date Title
US2837472A (en) Brighteners for electroplating baths
US2849352A (en) Electroplating process
US3023150A (en) Bath for the production of metal electroplates
US2647866A (en) Electroplating of nickel
US2910413A (en) Brighteners for electroplating baths
US3276979A (en) Baths and processes for the production of metal electroplates
US3367854A (en) Nickel plating
US3862019A (en) Composition of electroplating bath for the electrodeposition of bright nickel
US3677913A (en) Nickel plating
US3556959A (en) Nickel plating
US3703448A (en) Method of making composite nickel electroplate and electrolytes therefor
US3002903A (en) Electrodeposition of nickel
US3940320A (en) Electrodeposition of copper
US3203878A (en) Acid metal electroplating bath containing an organic sulfonic acid-thioureadithiocarbamic acid reaction product
US3810917A (en) Oxyomegasulfohydrocarbon-di-yl-coumarins
US3515652A (en) Bright nickel plating
US3580821A (en) Bright silver electroplating
US3502550A (en) Nickel electroplating electrolyte
US3008883A (en) Electrodeposition of bright nickel
US3152975A (en) Electrodeposition of nickel
US3276977A (en) Metal electroplating process and bath
US2485149A (en) Bright nickel plating compositions and process
US2994648A (en) Nickel plating additives
US3399123A (en) Electrolytes and method for electroplating nickel
US2818376A (en) Nickel plating