US3351992A - Method for packaging tow - Google Patents
Method for packaging tow Download PDFInfo
- Publication number
- US3351992A US3351992A US476225A US47622565A US3351992A US 3351992 A US3351992 A US 3351992A US 476225 A US476225 A US 476225A US 47622565 A US47622565 A US 47622565A US 3351992 A US3351992 A US 3351992A
- Authority
- US
- United States
- Prior art keywords
- tow
- tube
- package
- bin
- traverse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 28
- 238000004806 packaging method and process Methods 0.000 title description 24
- 239000000463 material Substances 0.000 claims description 31
- 230000008569 process Effects 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 5
- 238000010276 construction Methods 0.000 description 21
- 239000004753 textile Substances 0.000 description 9
- 230000003068 static effect Effects 0.000 description 7
- 239000000835 fiber Substances 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 229940000425 combination drug Drugs 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229940084430 four-way Drugs 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H54/00—Winding, coiling, or depositing filamentary material
- B65H54/76—Depositing materials in cans or receptacles
- B65H54/78—Apparatus in which the depositing device or the receptacle is reciprocated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2701/00—Handled material; Storage means
- B65H2701/30—Handled filamentary material
- B65H2701/31—Textiles threads or artificial strands of filaments
Definitions
- WHITNEY a CARTER I INVENTOR. I BY j mfl% A/MM 2244/15 ATTORNEYS Nov. 14, 1967 w. B. CARTER METHOD FOR PACKAGING TOW 8 Sheets-Sheet '7 Original Filed Feb. 4, 1964 WHITNEY B. CARTER INVENTOR.
- tubular conduit devices which conduits are actuated on universal, ball-joint type swivels and are adapted to traverse in several directions.
- the tube has extended only to the upper edge of the package formation.
- This invention has for one object to provide an apparatus and method arrangement for packaging tow whereby the tow may be laid into the package in a particular uniform and regular manner which is superior to the uniformity and regularity obtainable by prior constructions and methods. Another object is to provide apparatus as aforesaid which is capable of operating for extended periods without repair and still continue to give good uniformity and regularity by permitting the production of a high quality package in a consistent manner. A further object is to provide apparatus construction of the class indicated wherein the tow is conducted well into the packaging unit through a conduit arranged to traverse in one direction within the packaging unit while substantially simultaneously there may be obtained traverse in another direction by other means.
- Still another object is to provide a construction with the aforesaid traverse whereby automatic means are provided so that at a predetermined position within the packaging unit the extent of tube traverse may be altered thereby accomplishing better uniformity of the package.
- Still another object is to provide a systematized method of operating apparatus as aforesaid to accomplish rapid yet uniform and smooth operation.
- a further object is to provide a package construction in which the density of the packaged textile material at the corners of the package is approximately the same as at other zones or areas within the package.
- FIG. 1 is a semidiagrammatic perspective view of a prior art device for packaging tow into a container.
- FIG. 2 likewise is a semidiagrammatic perspective view generally similar to FIG. 1 but showing the incorporation of a tube or conduit in accordance with the broader aspects of the present invention.
- FIGS. 3 and 4 are views similar to FIG. 2 but illustrate certain preferred ways of traversing the tubular conduit.
- FIG. 5 is a semidiagrammatic side elevation view of the lower portion of the baler, the upper portion of which will be referred to in connection with the description of FIG. 4.
- FIG. 6 is a front elevation view of one of the preferred embodiments of my invention, utilizing in cooperative relation the several elements which I have found to give excellent bale formation.
- FIG. 7 is a side elevation view generally corresponding to the embodiment shown in FIG. 6.
- FIG. 8 is a schematic side elevation view for showing certain features of the reversing mechanism and hydraulic system which may be utilized in the above combinati-ons.
- the prior apparatus for packaging tow therein shown consists of a pair of feed rolls I mounted on a frame 2 which is reciprocated by a hydraulic cylinder 3 and which draws tow 4 from a source and pulls it through the roll nip and discharges the tow into a bin 5 or other receptacle, in which case the tow free falls vertically downward for some distance before reaching the tow bed 7.
- the prior art apparatus also incoporates a traversing guide 6 which moves back and forth parallel to the feed ro-ll axis, and which slides the tow edgewise along the surface of one feed roll. Traversin'g the tow in this manner causes the tow to occasionally fold in the area between the traversing guide 6 and the roll nip 9. When this fold is pressed in at the nip it usually remains permanently folded, which presents difiiculty in the withdrawal operation.
- the tow is free of folds which are pressed in by the roll nip, (b) the problems caused by drag from air resistance have been overcome, (c) the troublesome static electricity has been largely eliminated, (d) the traverse speeds have been substantially increased, (e) the condition of the tow in the finished 'bale retains a greater amount of secondary crimp.
- my invention will improve the tow laying characteristics of continuous filamentary tow which in turn results in an improvement to the tow package and withdrawal characteristics therefrom.
- the tow 10 is drawn from a source (not shown) by rotating driven feed rolls 11 through the reciprocating traverse guide 12.
- Rigidly attached to traverse guide 12 is the tube support bracket 13 which in turn is rigidly fastened to the tube 14.
- the traverse guide 12, support bracket 13, and tube 14 move as a unit, making continuous, constant speed, reciprocating traverses across the length of the tow bed 15.
- the tow 10 is caused to free fall verti-cally downward, but is guided along axis AA, by tube 14, as it is deposited on the surface of tow bed 15.
- the tow bed consists of previously deposited tow.
- Guide 12, support bracket 13, tube 1-4, and feed rolls 11 are connected with, and reciprocate as a unit, along direction B-B' with frame 16.
- Frame 16 is supported by casters 17 which ride on tracks 18 and is reciprocated along axis B-B' by a horizontally mounted, double acting hydraulic cylinder 19.
- Tube 14 completes approximately eight traverse cycles in direction A-A' while simultaneously making one cycle in direction BB, thus causing the tow 10 to be deposited in nearly straight parallel ribbons on the tow bed 15.
- the free falling tow 10 is unguided from the discharge end of the tube to the bottom of the bin.
- This simplest version of the present invention provides added control over the free falling tow in that it directs the tow more nearly to the desired place on the tow bed.
- the traverse speeds in direction A-A' are limited to about one-thirtieth the sped at which the tow is drawn through the feed rolls, due to drag which occurs in the roll nip and the inertia effect of the cantilever supported tube.
- FIG. 3 The further improvement of the present invention (FIG. 3) consists of a pair of feed rolls 20, mounted in bearings 21, which are rigidly fixed to the stationary frame 22. Below the feed rolls 20, is tube 23 which is pivotally mounted at shaft 24 to the movable frame 25. Frame 25 is in turn pivotally mounted at shaft 26, to the stationary frame 27.
- the discharge end of tube 23 is caused to oscillate repeatedly through arc CC' and are DD'. simultaneously, by mechanically driving the shafts at axes 24 and 26.
- Tube 23 can be traversed along arc C-C' with the linear speed at the discharge end of the tube at speeds of, for example, one-fifth the linear speed at which the tow is drawn through the feed rolls and obtain very satisfactory filling out at the ends of the stroke.
- the speed of the tube 23 traversing through arc DD' is timed to make one cycle while the traverse through arc C-C' completes six to ten cycles.
- the tow 28 is fed through feed rolls 20 and discharged into tube 23.
- the tow is deposited in the bin 29 on tow bed 30 in the pattern illustrated in FIG. 3.
- Guide 31 serves to align the tow properly with the centerline of tube 23.
- FIG. 4 consists of a pair of rotating feed rolls 32 fixed to traversing frame 33 by bearings 34.
- Support frame 35 is rigidly fixed to frame 33.
- Tube 36 is connected to frame 35 by shaft 37 and bearings 53, and is caused to oscillate, by a drive (not shown) about shaft 37.
- the lower tip of tube 36 repeatedly traverses through arc E-E', within the bin while the entire frame 33 reciprocates, causing the tip of tube 36 to move from F to F.
- the speed of the tube 36 is normally adjusted to make six to ten cycles in the E-E' direction while one cycle is completed in the F-F direction.
- the tow 40 is drawn through stationary guide 38, into feed rolls 32, where it makes a free fall descent through tube 36. Due to the traversing motion of the tube 36, the tow is caused to lay in the pattern illustrated on two bed 39.
- FIG. 4 also incorporates photoelectric switch 41 and light source 42, which are placed in a fixed position below the lower end of tube 36.
- Photoelectric switch 41 is connected to the hydraulic system which operates the bin cylinders 43, so that the bin is lowered at gradual intervals and the tow bed level is kept at a constant height throughout the filling interval of bin 44.
- the light source 42 passes a light beam to the photoelectric switch 41 through the plastic windows 52.
- the bin 44 When the bin 44 is full of tow, it is at its lowest position, and the hydraulic cylinders 43 fully retracted.
- a sliding door 45 (see FIG. 5) which serves as the bottom of the bin 44, is extended away from the bin bottom, as shown thus transferring the weight of accumulated tow to the platen 47.
- the platen 47 at this point is positioned about one inch below the surface of the bottom sliding door 45.
- the action of the photoelectric switch 41 is now trans ferred from the cylinders supporting bin 44 to the hydraulic ram 48, so that the ram 48 drops at gradual intervals as signals are received and thus maintaining a constant tow bed 'level throughout the manufacture of a bale.
- the ram 48 is lowered, the column of tow is lowered into the stripper bin 46.
- the tow bed 39 is lowered into the stripper bin 46; slide 45 is closed to start a new bale filling cycle in bin 44.
- the bin 44 is raised to its upper limit of travel to maintain the constant tow bed level at the photoelectric switch 41. At this point, the previous bale is pressed out in the stripper bin, wrapped and strapped, and removed from the baler.
- the traverse speed, along arc C-C at the tip of the tube 23 has been operated at linear speeds from one-fifth to one-tenth the linear rate at which the tow is drawn through the feed rolls.
- the linear rate at which the tow is drawn through the feed rolls is in excess of 900 feet per minute.
- the tube tip speed along arc D-D is adjusted to make one cycle per six to ten cycles of arc C-C.
- One caution is not to traverse the tube tip at speeds much faster than 4 feet/second. At speeds greater than 4 feet/second the tow band may be caused to flare or bloom due to air resistance at the point between the tube discharge end and the tow bed.
- Another item of control which it is desirable to follow is the distance between the lower end of the tube and the tow bed. My devices just described appear to obtain best results when this distance is from three to eighteen inches.
- the type drives which power the moving parts in this invention could be either mechanical, hydraulic or air powered.
- My device may be used to package tow, yarn or other filamentary material into a container either for shipment or for subsequent processing.
- the size of the bin or container need not be of any particular dimension, and hence size of package is not :a limiting factor.
- the withdrawal characteristics are closely related to the uniformity and evenness with which the tow was laid into the package.
- a primary factor in a desirable tow laying technique is to lay the tow in a package so that a given normal length of tow is laid to its full length across the surface of the package. While this ideal condition has not been entirely attained in the present invention, a significant improvement has been made in this direction.
- the air resistance acting on the tow limits the speed which the tow can be traversed. This limiting factor has been overcome to a great degree by the use of this tube laying device, because the tube serves to physically guide the tow in a precision like path, at much increased speeds which nullifies the effect of air resistance.
- FIGURES 6, 7 and 8 consists of a group of three feed rolls 68 fixed to traversing frame 66 by bearings 70.
- Tube 55 is pivotally fastened to tube support frame 82 by shaft 71 and bearings 72.
- Tube 55 is caused to traverse repeatedly through arc G-G' by cylinder 60 which is pivotally connected at shaft 62 to support 83, and is pivotally connected at shaft 61 to tube 55.
- Support frames 82 and 83 are rigidly fixed to and move as an integral part of main support frame 66.
- the main support frame is reciprocated by cylinder 67 such that the tube 55 and rolls 68 move along path H-H'; simultaneously with the movement of tube 55 in direction G-G'.
- the speed of tube 55 is normally adjusted to make five to fifteen cycles in direction G-G' to one cycle in direction HH'.
- the tow 84 is continuously drawn from a source (not shown) across guide 69, passes around the rolls through both roll nips as shown, and feeds downward into tube 55, where it then makes a free fall descent through tube 55.
- the traversing motion of tube 55 causes the tow to be laid on the tow bed 85 in approximately parallel ribbons.
- the length of the stroke will be changed automatically when the tow in the bale reaches a predetermined height.
- the traverse speed of tube 55 will be changed automatically when the tow in the balereaches the predetermined height.
- the traverse speed may be increased which will provide an approximately equivalent result.
- the change can be made in the opposite direction.
- diverter valve 81 When selector switch 77 is set in position 2 and the light beam to photoelectric cell 76 is not broken, diverter valve 81 is energized and the flow of oil is directed through flow control valve 79.
- Flow control valve 79 is set to obtain the desired traverse speed of tube 55, during the interval when the tow is building in the bin below the level of photoelectric cell 76.
- diverter valve 81 When the tow builds sufficiently high to black out the light beam to photoelectric cell 76, diverter valve 81 is deenergized and the flow of oil is diverted through flow control valve 78, which is set at a faster speed of traverse than is valve 79.
- the previous bale of tow is removed from the press section as already mentioned.
- the bins are positioned as shown in FIGURE 5 and the holdup slide is moved to its outward position, thus transferring the weight of the deposited tow to the main ram 47, 48.
- the tow bed 85 builds up to the level of photoelectric cell 57.
- Photoelectric cell 57 is connected electrically with the hydraulic valves controlling the main ram, such that when the photoelectric cell is blocked by tow, the ram is lowered until the light beam is clear of tow. This operation is repeated throughout the remainder of the filling time for the bale, such that the tow bed 85 is kept at a constant level at photoelectric cell 57 once it fills to that elevation.
- the four-way valve 80 used is a solenoid controlled, pilot pressure operated valve with pilot choke attachment. This type valve provides for a very smooth reversal in the stroke of tube 55.
- the three-way valve 81 is a conventional type quick acting hydraulic, solenoid operated valve.
- Limit switches 64 and 87 are vane operated, magnetic type limit switches, and are selected because of their long life characteristic. A more conventional type limit switch could be used.
- the rectangular cross-section of tube 55 is generally preferred since the rectangular tube eliminates false twist in the tow ribbon.
- a round cross-section tube is suitable where false twist is not a consideration. Maintaining a constant distance between the lower end of tube 55 and the tow bed 85 (as previously discussed in connection with FIG. 4) is not essential in the constructions of FIGS. 6, 7 and 8.
- the hydraulic cylinder 60 may be a conventional type cylinder with a double rod end. The extra rod end is not essential, but provides a convenient means to operate the reversing mechanism.
- the stroke length could be changed at one point and the stroke speed could be changed at another or both could be changed simultaneously.
- the position of stops 75 could be changed gradually and automatically as for example by an electric motor drive which was programmed through a predetermined cycle.
- the traverse speed could be altered continuously through a specific portion of the baling cycle by automatic, power operated means to vary the flow rate of the hydraulic fluid to cylinder 60.
- the tow laying and withdrawal characteristics observed appear to be much more uniform than with the prior art device.
- the tow is essentially free of folds since the tow is not dragged edgewise between the feed rolls.
- the slow traverse speeds caused by air resistance in the prior art have been greatly increased.
- the problem of static electricity has been virtually eliminated by the present invention, because of the reduction in fiber to fiber friction.
- a process for uniformly depositing a filamentary material into a package form which comprises the steps of feeding the filamentary material from a source of supply, directing the material through a guiding means into the package, simultaneously effecting a plurality of traversing movements between said package and said guide, and adjusting at least one of said plurality of movements responsive to the amount of material in the package.
- a process for uniformly depositing a filamentary material into a package form which comprises the steps of feeding the material from a source of supply, directing the material through a guide means into the package, simultaneously traversing said guide means in a plurality of directions over the area of said package, and adjusting the traverse of said guide means in at least one direction responsive to the material build-up within said package.
- a process for uniformly depositing filamentary material into a bin which comprises feeding said material between a plurality of feed rolls into an elongated conduit which extends a substantial distance into said bin, permitting the filamentary material to free fall through said conduit and into said bin, traversing said rolls and conduit in a first direction over the bin bottom and simultaneously oscillating the conduit in another direction different from said first direction, adjusting the conduit oscillation and further adjusting the vertical position of the bin both in response to the amount of filamentary material deposited in said bin.
- a process for uniformly depositing a filamentary material into a package form which comprises the steps of feeding the filamentary material from a source of supply, directing the material through a guiding means into the package, simultaneously effecting a plurality of traversing movements between said package and said guide, and adjusting the package position in response to the amount of filamentary material deposited therein.
Landscapes
- Fluid-Pressure Circuits (AREA)
- Coiling Of Filamentary Materials In General (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US476225A US3351992A (en) | 1964-02-04 | 1965-06-17 | Method for packaging tow |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US34234764A | 1964-02-04 | 1964-02-04 | |
US476225A US3351992A (en) | 1964-02-04 | 1965-06-17 | Method for packaging tow |
Publications (1)
Publication Number | Publication Date |
---|---|
US3351992A true US3351992A (en) | 1967-11-14 |
Family
ID=34519830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US476225A Expired - Lifetime US3351992A (en) | 1964-02-04 | 1965-06-17 | Method for packaging tow |
Country Status (5)
Country | Link |
---|---|
US (1) | US3351992A (en)) |
BE (1) | BE659181A (en)) |
ES (2) | ES308897A1 (en)) |
FR (1) | FR1424094A (en)) |
GB (1) | GB1103303A (en)) |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3656383A (en) * | 1970-11-09 | 1972-04-18 | Eastman Kodak Co | Apparatus for automatically cutting connecting tow of continuous filamentary material between tote boxes |
US3917250A (en) * | 1973-06-21 | 1975-11-04 | Applied Power Inc | Strip laying apparatus |
US3968877A (en) * | 1970-08-17 | 1976-07-13 | E. I. Du Pont De Nemours & Company | High density tow cartons |
US3994147A (en) * | 1974-02-04 | 1976-11-30 | Opi Cryochimie | Installation for treating textile materials in the form of slivers or rovings of fibers with a liquid |
US4179776A (en) * | 1977-09-19 | 1979-12-25 | Harold Wortman | Method and apparatus for deregistering and processing an open synthetic tow into fiber-filled articles |
US4366751A (en) * | 1981-07-24 | 1983-01-04 | Eastman Kodak Company | Device for transferring layers of tow in a tow baler |
DE3248896A1 (de) * | 1981-07-24 | 1983-07-07 | Eastman Kodak Co., 14650 Rochester, N.Y. | Strangbuendelvorrichtung |
US4408378A (en) * | 1980-11-21 | 1983-10-11 | Associated Electrical Industries Limited | Apparatus for forming a filament coil of figure of eight conformation |
US4408747A (en) * | 1976-12-30 | 1983-10-11 | Bulten-Kanthal Ab | Device and method for collecting chains or the like |
US4897982A (en) * | 1988-10-17 | 1990-02-06 | Fulflex International Co. | Plastic lined packaging |
US5489351A (en) * | 1992-07-16 | 1996-02-06 | Teijin Limited | Method for molding nonwoven web into molded form |
US5506381A (en) * | 1992-03-06 | 1996-04-09 | Matsushima; Tsutomu | Wire electric discharge machine |
US5560179A (en) * | 1994-04-02 | 1996-10-01 | Trutzschler Gmbh & Co. Kg | Apparatus for handling flat coiler cans before, during and after filling by a sliver producing textile processing machine |
US5711134A (en) * | 1995-09-18 | 1998-01-27 | Ykk Corporation | Apparatus for folding and receiving tape |
US5921064A (en) * | 1997-06-16 | 1999-07-13 | Kt Holdings, Inc. | Packaging a strip of material |
US5927051A (en) * | 1997-06-19 | 1999-07-27 | Kt Holdings Inc. | Packaging a continuous strip of material |
US5956926A (en) * | 1997-06-19 | 1999-09-28 | Kt Holdings, Inc. | Packaging a strip of material by folding and cutting the folded package |
US5987851A (en) * | 1998-05-20 | 1999-11-23 | Stac-Pac Technologies Inc. | Packaging a strip of material |
US6009689A (en) * | 1998-02-17 | 2000-01-04 | Stac-Pac Technologies Inc. | Packaging a strip of material in layers |
US6067775A (en) * | 1997-11-18 | 2000-05-30 | Stac-Pac Technologies Inc. | Packaging a strip of material by folding |
US6176068B1 (en) * | 1998-04-23 | 2001-01-23 | Bki Holding Corporation | Packaging a strip of material in layers with intervening splices |
US6263814B1 (en) | 1997-07-08 | 2001-07-24 | Bki Holding Corporation | Strip of material with splices and products formed therefrom |
US6293075B1 (en) | 1999-03-08 | 2001-09-25 | Bki Holding Corporation | Packaging a strip of material |
US6321512B1 (en) | 1999-03-08 | 2001-11-27 | Bki Holding Corporation | Method of packaging a strip of material |
US6321511B1 (en) | 1988-05-20 | 2001-11-27 | Bki Holding Corporation | Packaging a strip of material with compression to reduce volume |
US6336307B1 (en) | 1997-10-09 | 2002-01-08 | Eki Holding Corporation | Method of packaging a strip of material for use in cutting into sheet elements arranged end to end |
US20020144924A1 (en) * | 2001-03-23 | 2002-10-10 | Bki Holding Corporation | Packaging a strip of material of varying width |
US6675442B2 (en) * | 2000-10-23 | 2004-01-13 | Bayer Faser Gmbh | Method for the storing of elastan filaments with coarse tires |
US20040031239A1 (en) * | 2002-06-06 | 2004-02-19 | Bernhard Schoennagel | Method and device for depositing a filament tow |
US6729471B2 (en) | 1997-06-16 | 2004-05-04 | Bki Holding Corporation | Packaging a strip of material with compression to reduce volume |
US6926655B1 (en) | 1998-01-02 | 2005-08-09 | Bki Holding Corporation | Method of packaging a web, and a package produced thereby |
WO2006029768A1 (de) * | 2004-09-16 | 2006-03-23 | Saurer Gmbh & Co. Kg | Vorrichtung und verfahren zum ablegen eines spinnkabels |
US20060065554A1 (en) * | 2004-09-28 | 2006-03-30 | Magnolia Manufacturing Company, Inc. | System and method for packaging cotton sliver |
US20060243142A1 (en) * | 2005-04-28 | 2006-11-02 | Mullins Charles D | Method and apparatus for forming a bale having substantially flat upper and lower surfaces |
US20060249406A1 (en) * | 2005-05-09 | 2006-11-09 | Celanese Acetate, Llc | Fiber bale and a method for producing the same |
US7191580B2 (en) | 2002-06-06 | 2007-03-20 | Neumag Gmbh & Co. Kg | Apparatus for depositing a filament tow |
US20080216674A1 (en) * | 2007-03-05 | 2008-09-11 | Celanese Acetate Llc | Method of making a bale of cellulose acetate tow |
US7624867B2 (en) * | 2000-09-13 | 2009-12-01 | Ocv Intellectual Capital, Llc | Method and apparatus for the bulk collection of texturized strand |
US20100064635A1 (en) * | 2008-09-17 | 2010-03-18 | Paper-Pak Industries | Packaging a continuous length of products using indexed layers |
US20100300468A1 (en) * | 2007-12-21 | 2010-12-02 | Rhodia Acetow Gmbh | Filter tow bale, method and device for producing a filter tow bale and filter tow strips |
US20110047768A1 (en) * | 2009-08-28 | 2011-03-03 | Huff Norman T | Apparatus And Method For Making Low Tangle Texturized Roving |
CN103787142A (zh) * | 2013-12-23 | 2014-05-14 | 滁州安兴环保彩纤有限公司 | 短丝吊顶式往复落丝装置 |
JP2014091610A (ja) * | 2012-11-02 | 2014-05-19 | Kowa Kk | ロープ繰り出し装置 |
CN112777411A (zh) * | 2021-01-21 | 2021-05-11 | 绿沅(上海)实业有限公司 | 一种耳套绳的盘线架 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2129462A (en) * | 1982-10-02 | 1984-05-16 | Robert Alec Lewis Rose | Laying hose in a container |
DE19644383C1 (de) * | 1996-10-25 | 1998-04-30 | Kortec Gmbh | Vorrichtung und Verfahren zum Verlegen von band- oder streifenförmigem Material |
DE102015001412B3 (de) * | 2015-02-06 | 2016-04-21 | ITA Technologietransfer GmbH | Verfahren zum Zuführen eines Stapelfaserbands zu einem Legekopf, Textilmaschine und Verfahren zum Nachrüsten einer Textilmaschine |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2936509A (en) * | 1958-10-07 | 1960-05-17 | Western Electric Co | Apparatus for collecting strands |
US2986781A (en) * | 1959-08-24 | 1961-06-06 | Chemstrand Corp | Apparatus for longitudinal feeding and laying of flexible strands |
US3172185A (en) * | 1961-11-07 | 1965-03-09 | Bancroft & Sons Co J | Yarn packaging and treatment |
-
1965
- 1965-02-02 BE BE659181D patent/BE659181A/xx unknown
- 1965-02-02 FR FR4057A patent/FR1424094A/fr not_active Expired
- 1965-02-03 ES ES0308897A patent/ES308897A1/es not_active Expired
- 1965-02-04 GB GB4875/65A patent/GB1103303A/en not_active Expired
- 1965-03-23 ES ES0310880A patent/ES310880A1/es not_active Expired
- 1965-06-17 US US476225A patent/US3351992A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2936509A (en) * | 1958-10-07 | 1960-05-17 | Western Electric Co | Apparatus for collecting strands |
US2986781A (en) * | 1959-08-24 | 1961-06-06 | Chemstrand Corp | Apparatus for longitudinal feeding and laying of flexible strands |
US3172185A (en) * | 1961-11-07 | 1965-03-09 | Bancroft & Sons Co J | Yarn packaging and treatment |
Cited By (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3968877A (en) * | 1970-08-17 | 1976-07-13 | E. I. Du Pont De Nemours & Company | High density tow cartons |
US3656383A (en) * | 1970-11-09 | 1972-04-18 | Eastman Kodak Co | Apparatus for automatically cutting connecting tow of continuous filamentary material between tote boxes |
US3917250A (en) * | 1973-06-21 | 1975-11-04 | Applied Power Inc | Strip laying apparatus |
US3994147A (en) * | 1974-02-04 | 1976-11-30 | Opi Cryochimie | Installation for treating textile materials in the form of slivers or rovings of fibers with a liquid |
US4408747A (en) * | 1976-12-30 | 1983-10-11 | Bulten-Kanthal Ab | Device and method for collecting chains or the like |
US4179776A (en) * | 1977-09-19 | 1979-12-25 | Harold Wortman | Method and apparatus for deregistering and processing an open synthetic tow into fiber-filled articles |
US4408378A (en) * | 1980-11-21 | 1983-10-11 | Associated Electrical Industries Limited | Apparatus for forming a filament coil of figure of eight conformation |
US4366751A (en) * | 1981-07-24 | 1983-01-04 | Eastman Kodak Company | Device for transferring layers of tow in a tow baler |
WO1983000307A1 (en) * | 1981-07-24 | 1983-02-03 | Eastman Kodak Co | Improved tow baler |
DE3248896A1 (de) * | 1981-07-24 | 1983-07-07 | Eastman Kodak Co., 14650 Rochester, N.Y. | Strangbuendelvorrichtung |
US6321511B1 (en) | 1988-05-20 | 2001-11-27 | Bki Holding Corporation | Packaging a strip of material with compression to reduce volume |
US4897982A (en) * | 1988-10-17 | 1990-02-06 | Fulflex International Co. | Plastic lined packaging |
US5506381A (en) * | 1992-03-06 | 1996-04-09 | Matsushima; Tsutomu | Wire electric discharge machine |
US5556551A (en) * | 1992-03-06 | 1996-09-17 | Mitsubishi Denki Kabushiki Kaisha | Wire electric discharge machine |
US5505815A (en) * | 1992-07-16 | 1996-04-09 | Teijin Limited | Apparatus for molding nonwoven web into molded form |
US5489351A (en) * | 1992-07-16 | 1996-02-06 | Teijin Limited | Method for molding nonwoven web into molded form |
US5560179A (en) * | 1994-04-02 | 1996-10-01 | Trutzschler Gmbh & Co. Kg | Apparatus for handling flat coiler cans before, during and after filling by a sliver producing textile processing machine |
US5711134A (en) * | 1995-09-18 | 1998-01-27 | Ykk Corporation | Apparatus for folding and receiving tape |
US5921064A (en) * | 1997-06-16 | 1999-07-13 | Kt Holdings, Inc. | Packaging a strip of material |
US6729471B2 (en) | 1997-06-16 | 2004-05-04 | Bki Holding Corporation | Packaging a strip of material with compression to reduce volume |
US5927051A (en) * | 1997-06-19 | 1999-07-27 | Kt Holdings Inc. | Packaging a continuous strip of material |
US5956926A (en) * | 1997-06-19 | 1999-09-28 | Kt Holdings, Inc. | Packaging a strip of material by folding and cutting the folded package |
US5966905A (en) * | 1997-06-19 | 1999-10-19 | Stac-Pac Technologies Inc. | Packaging a strip of material in layers with intervening splices |
US6035608A (en) * | 1997-06-19 | 2000-03-14 | Stac-Pac Technologies Inc. | Packaging a strip of material |
US6526899B2 (en) | 1997-07-08 | 2003-03-04 | Bki Holding Corp | Strip of material with splices and products formed therefrom |
US6263814B1 (en) | 1997-07-08 | 2001-07-24 | Bki Holding Corporation | Strip of material with splices and products formed therefrom |
US6336307B1 (en) | 1997-10-09 | 2002-01-08 | Eki Holding Corporation | Method of packaging a strip of material for use in cutting into sheet elements arranged end to end |
US6067775A (en) * | 1997-11-18 | 2000-05-30 | Stac-Pac Technologies Inc. | Packaging a strip of material by folding |
US6926655B1 (en) | 1998-01-02 | 2005-08-09 | Bki Holding Corporation | Method of packaging a web, and a package produced thereby |
US6009689A (en) * | 1998-02-17 | 2000-01-04 | Stac-Pac Technologies Inc. | Packaging a strip of material in layers |
US6176068B1 (en) * | 1998-04-23 | 2001-01-23 | Bki Holding Corporation | Packaging a strip of material in layers with intervening splices |
US5987851A (en) * | 1998-05-20 | 1999-11-23 | Stac-Pac Technologies Inc. | Packaging a strip of material |
US6321512B1 (en) | 1999-03-08 | 2001-11-27 | Bki Holding Corporation | Method of packaging a strip of material |
US6679028B2 (en) | 1999-03-08 | 2004-01-20 | Bki Holding Corporation | Method of packaging a strip of material |
US6293075B1 (en) | 1999-03-08 | 2001-09-25 | Bki Holding Corporation | Packaging a strip of material |
US6702118B2 (en) | 1999-03-08 | 2004-03-09 | Bki Holding Corporation | Packaging a strip of material |
US7624867B2 (en) * | 2000-09-13 | 2009-12-01 | Ocv Intellectual Capital, Llc | Method and apparatus for the bulk collection of texturized strand |
US6675442B2 (en) * | 2000-10-23 | 2004-01-13 | Bayer Faser Gmbh | Method for the storing of elastan filaments with coarse tires |
US20020144924A1 (en) * | 2001-03-23 | 2002-10-10 | Bki Holding Corporation | Packaging a strip of material of varying width |
EP1369370A3 (de) * | 2002-06-06 | 2004-04-14 | Saurer GmbH & Co. KG | Verfahren und Vorichtung zum Ablegen eines Spinnkabels |
US20040031239A1 (en) * | 2002-06-06 | 2004-02-19 | Bernhard Schoennagel | Method and device for depositing a filament tow |
US7191580B2 (en) | 2002-06-06 | 2007-03-20 | Neumag Gmbh & Co. Kg | Apparatus for depositing a filament tow |
US7107740B2 (en) * | 2002-06-06 | 2006-09-19 | Neumag Gmbh & Co. Kg | Method and device for depositing a filament tow |
US20070199281A1 (en) * | 2004-09-16 | 2007-08-30 | Saurer Gmbh & Co. Kg | Apparatus and method for laying a tow |
CN101023015A (zh) * | 2004-09-16 | 2007-08-22 | 苏拉有限及两合公司 | 用于铺放丝束的装置和方法 |
WO2006029768A1 (de) * | 2004-09-16 | 2006-03-23 | Saurer Gmbh & Co. Kg | Vorrichtung und verfahren zum ablegen eines spinnkabels |
CN101023015B (zh) * | 2004-09-16 | 2012-12-12 | 苏拉有限及两合公司 | 用于铺放纺丝束的装置和方法 |
US20060065554A1 (en) * | 2004-09-28 | 2006-03-30 | Magnolia Manufacturing Company, Inc. | System and method for packaging cotton sliver |
US7410051B2 (en) | 2004-09-28 | 2008-08-12 | Magnolia Manufacturing Company, Inc. | System and method for packaging cotton sliver |
US20060243142A1 (en) * | 2005-04-28 | 2006-11-02 | Mullins Charles D | Method and apparatus for forming a bale having substantially flat upper and lower surfaces |
US8156862B2 (en) | 2005-04-28 | 2012-04-17 | Eastman Chemical Company | Method and apparatus for forming a bale having substantially flat upper and lower surfaces |
US20100199864A1 (en) * | 2005-04-28 | 2010-08-12 | Eastman Chemical Company | Method and apparatus for forming a bale having substantially flat upper and lower surfaces |
US7730832B2 (en) | 2005-04-28 | 2010-06-08 | Eastman Chemical Company | Method and apparatus for forming a bale having substantially flat upper and lower surfaces |
US20060249406A1 (en) * | 2005-05-09 | 2006-11-09 | Celanese Acetate, Llc | Fiber bale and a method for producing the same |
US7424850B2 (en) | 2005-05-09 | 2008-09-16 | Celanese Acetate Llc | Fiber bale and a method for producing the same |
US7610852B2 (en) | 2007-03-05 | 2009-11-03 | Celanese Acetate Llc | Method of making a bale of cellulose acetate tow |
US7487720B2 (en) | 2007-03-05 | 2009-02-10 | Celanese Acetate Llc | Method of making a bale of cellulose acetate tow |
US20080216674A1 (en) * | 2007-03-05 | 2008-09-11 | Celanese Acetate Llc | Method of making a bale of cellulose acetate tow |
US20100300468A1 (en) * | 2007-12-21 | 2010-12-02 | Rhodia Acetow Gmbh | Filter tow bale, method and device for producing a filter tow bale and filter tow strips |
US20100064635A1 (en) * | 2008-09-17 | 2010-03-18 | Paper-Pak Industries | Packaging a continuous length of products using indexed layers |
US20110047768A1 (en) * | 2009-08-28 | 2011-03-03 | Huff Norman T | Apparatus And Method For Making Low Tangle Texturized Roving |
US8474115B2 (en) | 2009-08-28 | 2013-07-02 | Ocv Intellectual Capital, Llc | Apparatus and method for making low tangle texturized roving |
JP2014091610A (ja) * | 2012-11-02 | 2014-05-19 | Kowa Kk | ロープ繰り出し装置 |
CN103787142A (zh) * | 2013-12-23 | 2014-05-14 | 滁州安兴环保彩纤有限公司 | 短丝吊顶式往复落丝装置 |
CN112777411A (zh) * | 2021-01-21 | 2021-05-11 | 绿沅(上海)实业有限公司 | 一种耳套绳的盘线架 |
Also Published As
Publication number | Publication date |
---|---|
ES310880A1 (es) | 1965-08-16 |
GB1103303A (en) | 1968-02-14 |
ES308897A1 (es) | 1965-05-16 |
FR1424094A (fr) | 1966-01-07 |
BE659181A (en)) | 1965-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3351992A (en) | Method for packaging tow | |
US3371877A (en) | Method for packaging multistrand roving | |
US3281913A (en) | Apparatus and method for handling yarn bundles | |
US3367587A (en) | Method for forming and packaging roving | |
US2919467A (en) | Production of net-like structures | |
US3819122A (en) | Apparatus for winding strand material | |
US3083437A (en) | Apparatus for packaging tow | |
US3498550A (en) | Apparatus for forming,processing and packaging multi-strand roving | |
US2345601A (en) | Yarn winding | |
EP0028461B1 (en) | Traverse motion used in combination with device for winding a continuous elongate element | |
US3523650A (en) | Roving and method and apparatus for forming and packaging same | |
US2749055A (en) | Portable cap spinning unit with hydraulic traverse | |
US3285721A (en) | Method and apparatus for producing strand package | |
US5054705A (en) | Reciprocating strand guide for split strand roving packages | |
US3365145A (en) | Filamentary roving package | |
US3697008A (en) | Apparatus for packaging linear material | |
DE102004063027B4 (de) | Vorrichtung an einer Spinnereivorbereitungsmaschine, z.B. Karde, Kardenstreckwerk, Strecke, Kämmmaschine o. dgl., zum Wechseln von Spinnkannen | |
US3695529A (en) | Traverse device in package winding apparatus | |
US4585181A (en) | Yarn traverse apparatus | |
US2205384A (en) | Winding | |
CN107345330B (zh) | 一种双工位大盘卷装整经收卷机 | |
US3819344A (en) | Method and apparatus producing perturbations while winding glass fibers | |
US3552667A (en) | Apparatus for packaging linear material | |
US3685764A (en) | Glass fiber forming and supply package | |
US2629559A (en) | Yarn packaging device |