US3332115A - Textile drafting apparatus - Google Patents

Textile drafting apparatus Download PDF

Info

Publication number
US3332115A
US3332115A US462899A US46289965A US3332115A US 3332115 A US3332115 A US 3332115A US 462899 A US462899 A US 462899A US 46289965 A US46289965 A US 46289965A US 3332115 A US3332115 A US 3332115A
Authority
US
United States
Prior art keywords
apron
rolls
roll
fiber control
cradle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US462899A
Inventor
William P Warthen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deering Milliken Research Corp
Milliken Research Corp
Original Assignee
Milliken Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US267541A external-priority patent/US3254375A/en
Application filed by Milliken Research Corp filed Critical Milliken Research Corp
Priority to US462899A priority Critical patent/US3332115A/en
Application granted granted Critical
Publication of US3332115A publication Critical patent/US3332115A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H5/00Drafting machines or arrangements ; Threading of roving into drafting machine
    • D01H5/18Drafting machines or arrangements without fallers or like pinned bars
    • D01H5/70Constructional features of drafting elements
    • D01H5/86Aprons; Apron supports; Apron tensioning arrangements
    • D01H5/88Cradles; Tensors

Definitions

  • This invention relates to an improved textile processing apparatus, and more particularly to an improvement in textile drafting or drawing apparatus.
  • FIGURE 1 is a partially cutaway view in perspective of a drafting cradle arrangement constructed in accordance with the present invention.
  • FIGURE 2 is a longitudinal section view of the arrangement of FIGURE 1.
  • FIGURE 3 is a perspective view of the cradle of FIG- URE 1 without the rolls or aprons on which the cradle is conventionally mounted for running operation.
  • FIGURES 4 and 5 are perspective views similar to FIGURE 1 of modifications according to the invention.
  • FIGURES 6 and 6a are perspective views of another cradle assembly and the cradle used therein, respectively.
  • FIGURES 7a and 7b are perspective views of another cradle assembly and FIGURE 8 is a transverse sectional view taken along line VIII-VIII of FIGURE 7a of the assembly mounted for operation.
  • FIGURES 9a and 9b are perspective views of still another cradle assembly and FIGURE 10 is a cross-sectional 3,332,115 Patented July 25, 1967 view taken along line IX-IX' of FIGURE 9a of the assembly mounted for operation.
  • a cradle assembly 11 for mounting on a pair of upper and lower conventional drafting rolls 13, 15 which may constitute one pair of several succeeding sets of drafting rolls as in conventional practice, the other pairs'of drafting rolls being normally disposed in spaced relation preceding and subsequent to the rolls 13, 15.
  • the drafting cradle assembly 11 is illustrated as including side plates 17, 19, which are connected together by spacer elements 21, 23 secured to or formed as an integral part of the side plates 17, 19.
  • Fiber control aprons 25, 27 are disposed about a portion of the peripheral surface of each of the drafting rolls 13, 15, and extend outwardly from the roll surfaces toward a succeeding pair of rolls, now shown, to form interfacing apron fiber control runs 25a and 27a.
  • the direction of rotation of the upper roll 13 is counterclockwise as viewed in FIGURE 1, and the direction of rotation of roll 15 is clockwise, whereby the fiber control runs 25a, 27a are pushed forward away from the nip formed between the rolls 13 and 15 to a reversal zone where the aprons form a bulb-shaped nose 25b, 27b as a result of this pushing action on the aprons as well as the pulling action exerted on the return runs 250, 270 of the two aprons by the rolls 13 and 15, and the provision of side guide pressure elements 11a, 11b which serve to deflect the respective return runs 250, 27c inwardly along a path substantially closer to the respective fiber control run 25a, 27a, than would be formed by the normal outwardly bowed return path of the apron from the zone of reversal 25b, 27b without the utilization of the external pressure guide elements 11a and 11b and utilizing internal guide elements as in conventional practice.
  • the roll 15 being normally the drive roll efrects pushing of the fiber control runs 25a, 27a forward away from the nip of the rolls and into the bulb-nose reversal zone, while withdrawing the apron at a corresponding rate from the bulb-nose reversal zones 25b, 27b and under the external deflecting guide elements 11a, 11b, along the apron return runs 250, 27c to and about the rolls 13, 15.
  • the result of this operation is to provide a truly resilient finger control on the fibers along substantially the entire length of the fiber control runs 25a, 27a without requiring utilization of internal tensor elements.
  • the pins or other guide elements 11a, 11b have their intersurfaces sufiiciently spaced apart as to accommodate this traverse of the fiber flow path without creating the likelihood of contact of adhering fibers on the apron from the fiber flow path coming into contact with the guide elements 11a, 1117.
  • the natural elasticity of the aprons which are of rubber or other desired flexibly elastic material, together with the overall length of the aprons, will have a basic effect on the size and shape of the bulb nose 25b, 27b of the respective aprons, and this natural elasticity and tendency to recover on the part of the aprons will also be most advantageous in pressing the two aprons together along the length of the fiber control runs 250, 27c inasmuch as the aprons will attempt to assume as large a radius of curvature as possible, and the bulb noses 25b and 27b are, of course, smaller than the largest possible radius of curvature.
  • the aprons Since the aprons are in face-to-face relation along the fiber control runs 25a, 27a, they will in their tendency to assume a larger radius of curvature as an extension of the bulb nose zone 25b, 27b, resiliently bias themselves against one another along these fiber control runs for desired resilient and gentle control of the fibers along these runs.
  • the pressure elements 11a, 11b, on opposite sides and out of the vertical plane of travel of the fibers between the aprons it will be seen that there will be no fiber pickup and accumulation on these elements resulting from fibers which have adhered to the aprons from contact with the bundle of fibers passing between the aprons in their normal flow path.
  • the apron deflecting side guide pressure elements 111a, 111b are canted. This canting of these elements may be advantageous in some instances in maintaining the apron in a centered position.
  • the side guide pressure elements 211a, 211b are formed as rollers, to reduce the frictional action of these apron deflecting side guide elements on the apron travel.
  • the structure and operation of this embodiment is substantially the same as that of FIGURES 1-3.
  • the axes of rollers 211a and 211b may be canted with respect to one another so that the free end of the rollers will be further from the apron fiber control run path than the supported end.
  • a single apron 325 is employed in conjunction with its respective roll 313, and the cradle 311, also shown in FIGURE 6a, takes the form in which two adjustable external apron pressuring and guiding elements in the form of side pins 311a, formed on positioning bars 336, which are adjustably mounted by a pair of screws 337 and washers 338 on engaging bridge element 327 to form a unitary external apron guiding structure and stationary fiber control run between rolls 315 and 316. Adjustability and interlocking is obtained by a slot 339 in each of positioning bars 336.
  • the positioning bars 336 can be provided in a variety of heights and provided with keyed elements for fitting onto bridge 327 so that adjustability is achieved by selection of the particular positioning bars which will position the pins 311a with respect to apron 325 in a predetermined position.
  • Bridge 327 has an upper surface 327a interfacing the fiber control run 325a of the single apron to provide the fiber control run.
  • the fibers pass between the stationary guide surface 327a and fiber control run 325a of the apron, and it will readily be apparent that the apron is maintained in resilient dependent contact with the surface 327a as a function of the elasticity of the apron 325 and the size of the bulb nose portion 325b, which is proximate roll 314, as well as the distance between the respective guide pressure elements 311a and the guide surface 327a.
  • pressure on the fibers at the area of the bulb nose portion 325b can be adjusted by positioning the pins 311a forwardly or backwardly or upwardly or downwardly with respect to that portion and also that the pressure of the apron will diminish toward the rear end of the fiber control run 327a, which facilitates the passage of fibers into the zone between the two interfacing 325a and 327a, particularly inasmuch as the fiber mass is larger in this zone than it is in the zone near the nose end of the apron 3251: after substantial drafting has been effected thereon.
  • the cradle assembly 311 may be effectively maintained in position by engagement of the cradle with each of the two bottom rolls 315 and 316, and in this illustrative embodiment the cradle preferably includes two curved leg portions 331 and 333 which are formed of sufiiciently elastic material to permit them to be snapped into position between the rolls 315 and 316. These two leg portions preferably engage with and thus also serve to clean the surfaces of the rolls 315 and 316 along a desired extent thereof, and particularly along the fiber carrying portion thereof, or they may ride on the smaller diameter necks only of these rolls if desired.
  • Lateral positioning of the cradle is provided by a shoulder 332 on each side of the cradle 311 which lap over the ends of the bottom roll 315 and the edges of fiber control run 325a. These shoulders also assist the positioning bars 336 in preventing the apron 325 from walking from one side to the other of roll 313.
  • FIGURES 7a, 7b, 8, 9a, 9b and 10 employ enclosed apron guiding systems which effectively precludes fibers from coming in contact with the inside surface of the apron or aprons employed in these systems and their respective rolls.
  • These embodiments employ a roll top desk type of external apron surface guide means.
  • the configuration of the tracking surface is such that a slight compressive loading force is exerted on the external face of the apron proximate both its edges along their complete periphery, thus providing a seal which keeps lint from the interior of the apron and its roll.
  • a reverse curved configuration is imparted to the apron which produces a forward bulb-shaped nose configuration for the apron so that a snub bar is not required to keep the apron properly positioned.
  • this embodiment of the cradle assemblies of this invention employs a single apron 425 is employed in conjunction with its respective roll 413, which is slightly shorter in length than the width of the apron, and a cradle 411, similar to that shown in FIG- URES 6 and 6a, is employed as a stationary fiber control run.
  • the positioning of the apron 425 is achieved by side plate 411c and 411d formed of a resilient material such as polyformal or polyfluorohydrocarbon, which are interconnected by an oval spacer element 421 mounted on side plate 411d to fit inside apron 425 without touching.
  • spacer element 421 On the free end of spacer element 421 is a locking element 421a which can be forced through slot 42112, which slot is shaped to snugly fit spacer element 421 and provide a locking fit with side plate 411a.
  • a backing locking element 421c prevents the rearward portions of plates 411a and 411d from exerting too great a load on the apron 425.
  • the side plates 411c and 411d are each provided with a recessed area 441 on their inside surface which is shaped so that the resulting shoulder 443 provides a tracking surface for the peripheral outer surfaces 426a and 426.5 of apron 425 which tracking surface causes the apron to conform substantially to the shape it would otherwise take as a result of being forced to assume a bulb nose shape at its forward portion 4255 because of the curve reversal portion 411a and 41117 of the shoulders 443.
  • Recessed area 441 of side plate 411d is provided with a further recessed round area 445 to provide a bearing for shoulder 413a of roll.413.
  • Side element 411a is provided with a round aperture 423 for mounting on shaft 413!) of roll 413.
  • a slit 447 passes through aperture 423 to the adjacent end of side plate 411s so that the side plate can be snapped over shaft 413b, the slot being locked shut, when the side plate is properly mounted, by a snap locking means 447a.
  • Both side plates 411a and 411d are provided with an ear 436 provided with a vertical slot 439 for adjustably interlocking the side plates with respective sides of cradle 411 by means of a screw 437 passing through the vertical slot and a horizontal slot 438 in each side of the cradle.
  • a single bolt, passing through cradle 411, and nut can be employed for interlocking, rather than a pair of screws.
  • Cradle 411 with the exception of slots 438 of FIGURE 7a and shoulders 332 of FIGURE 60, has the same construction as cradle 311 shown in FIGURE 6 and 6a and is similarly arranged for engagement with rolls 415 and 416.
  • FIGURES 9a, 9b The embodiment of FIGURES 9a, 9b and is designed for use in a double apron system and is also formed of a resilient material, such as a polyformal or polyfluorohydrocarbon.
  • the cradle 411 shown in FIGURE 731 has been replaced by an apron 527 whose upper surface 527a forms a moving bottom half of a fiber control run, with the lower surface 425a of apron 425 forming the top half.
  • the bottom half of side plates 5110 and Ella are each shaped substantially in the same manner as their upper half to provide an apron guiding system for apron 527.
  • the construction of the upper half of side plates 5110 and 511d is similar to that of the embodiment shown in FIGURES 7a, 7b and 8 except that the further recessed portion 545 of plate 511d and the aperture 523 are vertically elongated to permit adjustment of rolls 513 and 515 with respect to each other.
  • the lower half of side plates 511a and 511d have generally the inverted shape of the upper half, each being provided with a slit 547 for slipping the side plate over shaft 515a of roll. 515, and an aperture 554 for mounting the side plate on shaft 515a, a recessed area 541 to provide a shoulder 543 which, with curve reversal points 511a and 5111) and roll 515, determine the configuration assumed by apron 527.
  • Slit 547 of side plate 511d is locked shut by snap locking means 547a whereas the corresponding slit of side plate 5110 is locked shut by snap locking means 551.
  • a narrow wall 553 is provided between upper recessed portion 441 and lower recessed portion 541 of each side plate. As shown in FIGURE 10', one of these walls fits between the peripheral portions 426a and 426b of apron 425 and one fits between 528a and 5282) of apron 527 so that these peripheral portions are compressed away from each other by shoulders 443 and 543, respectively, of the upper and lower halves of sides plates 5110 and 511d. As with the embodiment shown in FIG- URES 7a, 7b and 8, forward lateral positioning is maintained by the overlapping of the forward ends of side plates S and 511d over the ends of roll 414 and, in this embodiment, also over the ends of roll 416.
  • a textile drafting system comprising: a pair of rolls in nip forming engagement, at fiber control apron around at least one roll of said pair of rolls, said apron being continuous and having a fiber control run, a return run and a reverse bend connecting said fiber control run and said return run, a cradle supporting one roll of said pair of rolls, said cradle having spaced apart side walls, guide means on each of said side walls engaging the outer external edges of the return run of said apron to form an intermediate inward bend of said apron toward said fiber control run to cause said reverse bend to assume a bulb nose shape, said guide means on each side wall extending generally toward one another on said apron and leaving a central space therebetween, said central space between said guide means being greater than the width of the longitudinal path of travel of the fibers to be drafted.
  • each of said fixed pins have a canted apron-engaging surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Or Twisting Of Yarns (AREA)

Description

y 1967 WY P. WARTHEN 3,332,115
TEXTILE DRAFTING APPARATUS Original Filed March 25, 1963 2 Sheets-Sheet l INVENTOR WILLIAM P. WARTHEN AT TORNEY July 25, 1967 w w H 3,332,115
TEXTILE DRAFTING APPARATUS Original Filed March 25, 1963 2 Sheets-Sheet 2 INVENTOR.
WILLIAM P. WARTHEN ATTORNEY United States Patent .0
3,332,115 TEXTILE DRAFTING APPARATUS William P. Warthen, Spartanburg, S.C., assignor to Deering Millilren Research Corporation, Spartanburg, S.C., a corporation of Delaware Original application Mar. 25, 1963, Ser. No. 267,541. Divided and this application June 10, 1965, Ser. No.
4 Claims. (Cl. 19-254) This application is a division of copending application Ser. No. 267,541, filed Mar. 25, 1963, now Patent No. 3,254,375.
This invention relates to an improved textile processing apparatus, and more particularly to an improvement in textile drafting or drawing apparatus.
It is common practice in the textile art to draft or draw a bundle of staple fibers into a smaller size bundle by employing increasingly faster driven pairs of drafting rolls in sequential order. It has also been conventional practice to employ aprons about one or more pairs of these rolls in order to provide better control of the fibers in the draft zone between the succeeding pairs of rolls. In employing such aprons it has been the conventional practice to utilize one or more internal apron reversing nose bars or tensor elements spaced from the respective rolls and disposed in guiding relation within the respective aprons. It has also been proposed in US. Patent 1,213,744 to employ external pressure elements in the form of rods or rollers in pressure contact with the outer surfaces of the return runs of the aprons. However, this prior art proposal of external pressure elements has been deficient in that the external pressure elements which are employed for deflecting the apron or aprons are subject to considerable linting or lint accumulation due to their extending across the complete width of the apron or aprons. Thus, any lint which may be carried by the external surface of the apron as the apron leaves the fiber control zone at the nose reversal point will thereupon be brought into engagement with the external pressure element and in most instances will be stopped by this external pressure element and accumulate thereat. After a period of time this accumulation of lint may be quite troublesome, requiring operator cleaning. Also, the accumulation of this lint may interfere with the normal operation of the apron prior to any substantial accumulation thereof. It is a feature of the present invention that this deficiency of the prior art is overcome.
Still other objects, features and attendant advantages will become apparent to those skilled in the art from the foregoing detailed description of several illustrative embodiments constructed in accordance with the invention, taken in conjunction with the accompanying drawings wherein:
FIGURE 1 is a partially cutaway view in perspective of a drafting cradle arrangement constructed in accordance with the present invention.
FIGURE 2 is a longitudinal section view of the arrangement of FIGURE 1.
FIGURE 3 is a perspective view of the cradle of FIG- URE 1 without the rolls or aprons on which the cradle is conventionally mounted for running operation.
FIGURES 4 and 5 are perspective views similar to FIGURE 1 of modifications according to the invention.
FIGURES 6 and 6a are perspective views of another cradle assembly and the cradle used therein, respectively.
FIGURES 7a and 7b are perspective views of another cradle assembly and FIGURE 8 is a transverse sectional view taken along line VIII-VIII of FIGURE 7a of the assembly mounted for operation.
FIGURES 9a and 9b are perspective views of still another cradle assembly and FIGURE 10 is a cross-sectional 3,332,115 Patented July 25, 1967 view taken along line IX-IX' of FIGURE 9a of the assembly mounted for operation.
Referring now in detail to the figures of the drawing, in the embodiment of FIGURES l-3 there is provided a cradle assembly 11 for mounting on a pair of upper and lower conventional drafting rolls 13, 15 which may constitute one pair of several succeeding sets of drafting rolls as in conventional practice, the other pairs'of drafting rolls being normally disposed in spaced relation preceding and subsequent to the rolls 13, 15.
The drafting cradle assembly 11 is illustrated as including side plates 17, 19, which are connected together by spacer elements 21, 23 secured to or formed as an integral part of the side plates 17, 19. Fiber control aprons 25, 27 are disposed about a portion of the peripheral surface of each of the drafting rolls 13, 15, and extend outwardly from the roll surfaces toward a succeeding pair of rolls, now shown, to form interfacing apron fiber control runs 25a and 27a. The direction of rotation of the upper roll 13 is counterclockwise as viewed in FIGURE 1, and the direction of rotation of roll 15 is clockwise, whereby the fiber control runs 25a, 27a are pushed forward away from the nip formed between the rolls 13 and 15 to a reversal zone where the aprons form a bulb- shaped nose 25b, 27b as a result of this pushing action on the aprons as well as the pulling action exerted on the return runs 250, 270 of the two aprons by the rolls 13 and 15, and the provision of side guide pressure elements 11a, 11b which serve to deflect the respective return runs 250, 27c inwardly along a path substantially closer to the respective fiber control run 25a, 27a, than would be formed by the normal outwardly bowed return path of the apron from the zone of reversal 25b, 27b without the utilization of the external pressure guide elements 11a and 11b and utilizing internal guide elements as in conventional practice. Rotation of the rolls 13 and 15, the roll 15 being normally the drive roll efrects pushing of the fiber control runs 25a, 27a forward away from the nip of the rolls and into the bulb-nose reversal zone, while withdrawing the apron at a corresponding rate from the bulb- nose reversal zones 25b, 27b and under the external deflecting guide elements 11a, 11b, along the apron return runs 250, 27c to and about the rolls 13, 15. The result of this operation is to provide a truly resilient finger control on the fibers along substantially the entire length of the fiber control runs 25a, 27a without requiring utilization of internal tensor elements. In order to minimize any buildup of lint on the external guide elements 11a, 11b, it is an important feature that these guide elements be spaced apart sutiiciently far apart across the width of the aprons as to be outside of the longitudinal path of travel of the fibers. In other words, if there is a single fiber drafting path without traverse such will normally be along the center portion of the length of the aprons and the raised knurled portions of the rolls, and guide elements 11a, 11b, need merely have their interfacing ends spaced apart on opposite sides of this path of fibers between the aprons. However, in order to employ a single cradle assembly for both traverse and nontraverse type drafting, or in other words irrespective of whether the fibers are traversed or passed in a single nontraversed substantially stationary line of travel between the aprons, it is desirable that the pins or other guide elements 11a, 11b, have their intersurfaces sufiiciently spaced apart as to accommodate this traverse of the fiber flow path without creating the likelihood of contact of adhering fibers on the apron from the fiber flow path coming into contact with the guide elements 11a, 1117.
In some instances, particularly in the case of long fiber control runs 25a, 27a, it may be desirable to employ additional guide elements for guiding the inner surface of the lower apron 27 along its intermediate flow path in order to minimize any possible tendency of separation of the aprons along this path. In this instance, it is also desirable that the guide elements 110 be disposed onopposite sides and out of the line of fiber flow path between the aprons.
It will thus be apparent that according to the embodiment of FIGURES l-3 the upper apron 25 is driven in a counterclockwise direction and the lower apron 27 is driven in a clockwise direction as viewed in FIGURES 1 and 2, with the interfacing fiber control runs 25a and 27a being pushed forward toward the bulbous nose ends 25b, 2712, respectively, from which nose ends the aprons are continually withdrawn along the return runs 25c, 27c to and about the respective rolls 13, 15. The fiber flow path is maintained along the fiber control runs 25a, 27a and between the interfacing ends of the opposing external side guiding apron deflecting elements 11a, 11b, for each of the respective aprons. The natural elasticity of the aprons, which are of rubber or other desired flexibly elastic material, together with the overall length of the aprons, will have a basic effect on the size and shape of the bulb nose 25b, 27b of the respective aprons, and this natural elasticity and tendency to recover on the part of the aprons will also be most advantageous in pressing the two aprons together along the length of the fiber control runs 250, 27c inasmuch as the aprons will attempt to assume as large a radius of curvature as possible, and the bulb noses 25b and 27b are, of course, smaller than the largest possible radius of curvature. Since the aprons are in face-to-face relation along the fiber control runs 25a, 27a, they will in their tendency to assume a larger radius of curvature as an extension of the bulb nose zone 25b, 27b, resiliently bias themselves against one another along these fiber control runs for desired resilient and gentle control of the fibers along these runs. As a consequence of forming the pressure elements 11a, 11b, on opposite sides and out of the vertical plane of travel of the fibers between the aprons, it will be seen that there will be no fiber pickup and accumulation on these elements resulting from fibers which have adhered to the aprons from contact with the bundle of fibers passing between the aprons in their normal flow path.
In the alternative embodiment of FIGURE 4 the apron deflecting side guide pressure elements 111a, 111b are canted. This canting of these elements may be advantageous in some instances in maintaining the apron in a centered position.
In the alternative embodiment of FIGURE 5 the side guide pressure elements 211a, 211b, are formed as rollers, to reduce the frictional action of these apron deflecting side guide elements on the apron travel. Otherwise, the structure and operation of this embodiment is substantially the same as that of FIGURES 1-3. If desired, the axes of rollers 211a and 211b may be canted with respect to one another so that the free end of the rollers will be further from the apron fiber control run path than the supported end.
In the further embodiment of FIGURE 6 a single apron 325 is employed in conjunction with its respective roll 313, and the cradle 311, also shown in FIGURE 6a, takes the form in which two adjustable external apron pressuring and guiding elements in the form of side pins 311a, formed on positioning bars 336, which are adjustably mounted by a pair of screws 337 and washers 338 on engaging bridge element 327 to form a unitary external apron guiding structure and stationary fiber control run between rolls 315 and 316. Adjustability and interlocking is obtained by a slot 339 in each of positioning bars 336. Alternatively, the positioning bars 336 can be provided in a variety of heights and provided with keyed elements for fitting onto bridge 327 so that adjustability is achieved by selection of the particular positioning bars which will position the pins 311a with respect to apron 325 in a predetermined position. Bridge 327 has an upper surface 327a interfacing the fiber control run 325a of the single apron to provide the fiber control run. The fibers pass between the stationary guide surface 327a and fiber control run 325a of the apron, and it will readily be apparent that the apron is maintained in resilient dependent contact with the surface 327a as a function of the elasticity of the apron 325 and the size of the bulb nose portion 325b, which is proximate roll 314, as well as the distance between the respective guide pressure elements 311a and the guide surface 327a. It will also be apparent that pressure on the fibers at the area of the bulb nose portion 325b can be adjusted by positioning the pins 311a forwardly or backwardly or upwardly or downwardly with respect to that portion and also that the pressure of the apron will diminish toward the rear end of the fiber control run 327a, which facilitates the passage of fibers into the zone between the two interfacing 325a and 327a, particularly inasmuch as the fiber mass is larger in this zone than it is in the zone near the nose end of the apron 3251: after substantial drafting has been effected thereon.
The cradle assembly 311 may be effectively maintained in position by engagement of the cradle with each of the two bottom rolls 315 and 316, and in this illustrative embodiment the cradle preferably includes two curved leg portions 331 and 333 which are formed of sufiiciently elastic material to permit them to be snapped into position between the rolls 315 and 316. These two leg portions preferably engage with and thus also serve to clean the surfaces of the rolls 315 and 316 along a desired extent thereof, and particularly along the fiber carrying portion thereof, or they may ride on the smaller diameter necks only of these rolls if desired. Lateral positioning of the cradle is provided by a shoulder 332 on each side of the cradle 311 which lap over the ends of the bottom roll 315 and the edges of fiber control run 325a. These shoulders also assist the positioning bars 336 in preventing the apron 325 from walking from one side to the other of roll 313.
In order to minimize any tendency of the fibers to Wrap around the roll 315 during passage of the fibers between the rolls 313, 315, and toward the rolls 314, 316, it is desirable to employ a smooth surfaced roll 315 and an undercut 335 on the concave curved surf-ace facing the roll 315 forming a clear space of approximately .010- .030 depth and approximately /8%" arc length between the periphery of the roll 315 and the adjacent interfacing portion of the undercut 335. The exact mode of operation of this undercut is not known, but such has been found most advantageous in the operation of a single apron embodiment of this nature.
The embodiments shown in FIGURES 7a, 7b, 8, 9a, 9b and 10 employ enclosed apron guiding systems which effectively precludes fibers from coming in contact with the inside surface of the apron or aprons employed in these systems and their respective rolls. These embodiments employ a roll top desk type of external apron surface guide means. The configuration of the tracking surface is such that a slight compressive loading force is exerted on the external face of the apron proximate both its edges along their complete periphery, thus providing a seal which keeps lint from the interior of the apron and its roll. As with the configurations of the other figures, a reverse curved configuration is imparted to the apron which produces a forward bulb-shaped nose configuration for the apron so that a snub bar is not required to keep the apron properly positioned.
Referring now specifically to the embodiment of FIG- URES 7a, 7b and 8, this embodiment of the cradle assemblies of this invention employs a single apron 425 is employed in conjunction with its respective roll 413, which is slightly shorter in length than the width of the apron, and a cradle 411, similar to that shown in FIG- URES 6 and 6a, is employed as a stationary fiber control run. The positioning of the apron 425 is achieved by side plate 411c and 411d formed of a resilient material such as polyformal or polyfluorohydrocarbon, which are interconnected by an oval spacer element 421 mounted on side plate 411d to fit inside apron 425 without touching. On the free end of spacer element 421 is a locking element 421a which can be forced through slot 42112, which slot is shaped to snugly fit spacer element 421 and provide a locking fit with side plate 411a. A backing locking element 421c prevents the rearward portions of plates 411a and 411d from exerting too great a load on the apron 425. The side plates 411c and 411d are each provided with a recessed area 441 on their inside surface which is shaped so that the resulting shoulder 443 provides a tracking surface for the peripheral outer surfaces 426a and 426.5 of apron 425 which tracking surface causes the apron to conform substantially to the shape it would otherwise take as a result of being forced to assume a bulb nose shape at its forward portion 4255 because of the curve reversal portion 411a and 41117 of the shoulders 443. Recessed area 441 of side plate 411d is provided with a further recessed round area 445 to provide a bearing for shoulder 413a of roll.413. Side element 411a is provided with a round aperture 423 for mounting on shaft 413!) of roll 413. Surrounding aperture 423 is a shoulder 424 extending upwardly from the recessed portion 441 to provide a bearing surface for the end 4130 of roll 413, thus keeping the rearward portion of the cradle assembly transversely positioned. A slit 447 passes through aperture 423 to the adjacent end of side plate 411s so that the side plate can be snapped over shaft 413b, the slot being locked shut, when the side plate is properly mounted, by a snap locking means 447a. Both side plates 411a and 411d are provided with an ear 436 provided with a vertical slot 439 for adjustably interlocking the side plates with respective sides of cradle 411 by means of a screw 437 passing through the vertical slot and a horizontal slot 438 in each side of the cradle. When all of the vertical and horizontal slots are positioned in alignment, a single bolt, passing through cradle 411, and nut can be employed for interlocking, rather than a pair of screws. Cradle 411, with the exception of slots 438 of FIGURE 7a and shoulders 332 of FIGURE 60, has the same construction as cradle 311 shown in FIGURE 6 and 6a and is similarly arranged for engagement with rolls 415 and 416. Lateral forward alignment of side plates 4110 and 4110! is maintained by the overlapping of their forward portions with the ends of roll 414. As shown in FIGURE 8, the peripheral length of shoulders 443 of the recessed portions 441 of side plates 4110 and 411d is such that the peripheral portions 426a and 42612 of the outer surface apron 425 are compressed slightly by shoulders 443, thus providing a continuous seal between the apron 425 and side plates 411c and 411d which prevents lint from collecting on roll 413 or on the interior face of apron 425.
The embodiment of FIGURES 9a, 9b and is designed for use in a double apron system and is also formed of a resilient material, such as a polyformal or polyfluorohydrocarbon. In this embodiment, the cradle 411 shown in FIGURE 731 has been replaced by an apron 527 whose upper surface 527a forms a moving bottom half of a fiber control run, with the lower surface 425a of apron 425 forming the top half. The bottom half of side plates 5110 and Ella are each shaped substantially in the same manner as their upper half to provide an apron guiding system for apron 527. The construction of the upper half of side plates 5110 and 511d is similar to that of the embodiment shown in FIGURES 7a, 7b and 8 except that the further recessed portion 545 of plate 511d and the aperture 523 are vertically elongated to permit adjustment of rolls 513 and 515 with respect to each other. The lower half of side plates 511a and 511d have generally the inverted shape of the upper half, each being provided with a slit 547 for slipping the side plate over shaft 515a of roll. 515, and an aperture 554 for mounting the side plate on shaft 515a, a recessed area 541 to provide a shoulder 543 which, with curve reversal points 511a and 5111) and roll 515, determine the configuration assumed by apron 527. Slit 547 of side plate 511d is locked shut by snap locking means 547a whereas the corresponding slit of side plate 5110 is locked shut by snap locking means 551. A narrow wall 553 is provided between upper recessed portion 441 and lower recessed portion 541 of each side plate. As shown in FIGURE 10', one of these walls fits between the peripheral portions 426a and 426b of apron 425 and one fits between 528a and 5282) of apron 527 so that these peripheral portions are compressed away from each other by shoulders 443 and 543, respectively, of the upper and lower halves of sides plates 5110 and 511d. As with the embodiment shown in FIG- URES 7a, 7b and 8, forward lateral positioning is maintained by the overlapping of the forward ends of side plates S and 511d over the ends of roll 414 and, in this embodiment, also over the ends of roll 416.
While the invention has been described with respect to several illustrative embodiments constructed in accordance therewith it will be apparent that various modifications and improvements may be made without departing from the scope and spirit of the invention. Accordingly, it is to be understood that the invention is not to be limited by these specific illustrative embodiments, but only by the scope of the appended claims.
That which is claimed is:
1. A textile drafting system comprising: a pair of rolls in nip forming engagement, at fiber control apron around at least one roll of said pair of rolls, said apron being continuous and having a fiber control run, a return run and a reverse bend connecting said fiber control run and said return run, a cradle supporting one roll of said pair of rolls, said cradle having spaced apart side walls, guide means on each of said side walls engaging the outer external edges of the return run of said apron to form an intermediate inward bend of said apron toward said fiber control run to cause said reverse bend to assume a bulb nose shape, said guide means on each side wall extending generally toward one another on said apron and leaving a central space therebetween, said central space between said guide means being greater than the width of the longitudinal path of travel of the fibers to be drafted.
2. The structure of claim 1 wherein said guide means are fixed pins extending inwardly from said side walls.
3. The structure of claim 2 wherein each of said fixed pins have a canted apron-engaging surface.
4. The structure of claim 1 wherein said guide means are rotable elements mounted on said side walls.
References Cited UNITED STATES PATENTS 1,213,744 1/ 1917 C-asablancas 19-252 1,240,670 9/ 1917 Casablancas 19-255 2,020,483 11/ 1935 T ruslow 19-255 MERVIN STEIN, Primary Examiner. DONALD W. PARKER, Examiner.
D. NEWTON, Assistant Examiner.

Claims (1)

1. A TEXTILE DRAFTING SYSTEM COMPRISING: A PAIR OF ROLLS IN NIP FORMING ENGAGEMENT, A FIBER CONTROL APRON AROUND AT LEAST ONE ROLL OF SAID PAIR OF ROLLS, SAID APRON BEING CONTINUOUS AND HAVING A FIBER CONTROL RUN, A RETURN RUN AND A REVRSE BEND CONNECTING SAID FIBER CONTROL RUN AND SAID RETURN RUN, A CRADLE SUPPORTING ONE ROLL OF SAID PAIR OF ROLLS, SAID CRADLE HAVING SPACED APART SIDE WALLS, GUIDE MEANS ON EACH OF SAID SIDE WALLS ENGAGING THE OUTER EXTERNAL EDGES OF THE RETURN RUN OF SAID APRON TO FORM AN INTERMEDIATE INWARD BEND OF SID APRON TOWARD SAID FIBER CONTROL RUN TO CAUSE SAID REVERSE BEND TO ASSUME A BULB NOSE SHAPE, SAID GUIDE MEANS ON EACH SIDE WALL EXTENDING GENERALLY TOWARD ONE ANOTHER ON SAID APRON AND LEAVING A CENTRAL SPACE THEREBETWEEN, SAID CENTRAL SPACE BETWEEN SAID GUIDE MEANS BEGING GREATER THAN THE WIDTH OF THE LONGITUDINAL PATH OF TRAVEL OF THE FIBERS TO BE DRAFTED.
US462899A 1963-03-25 1965-06-10 Textile drafting apparatus Expired - Lifetime US3332115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US462899A US3332115A (en) 1963-03-25 1965-06-10 Textile drafting apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US267541A US3254375A (en) 1963-03-25 1963-03-25 Textile drafting apparatus
US462899A US3332115A (en) 1963-03-25 1965-06-10 Textile drafting apparatus

Publications (1)

Publication Number Publication Date
US3332115A true US3332115A (en) 1967-07-25

Family

ID=26952499

Family Applications (1)

Application Number Title Priority Date Filing Date
US462899A Expired - Lifetime US3332115A (en) 1963-03-25 1965-06-10 Textile drafting apparatus

Country Status (1)

Country Link
US (1) US3332115A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1213744A (en) * 1915-10-15 1917-01-23 Fernando Casablancas Spinning-frame.
US1240670A (en) * 1917-03-12 1917-09-18 Fernando Casablancas Mechanism for drawing fibers with endless belts.
US2020483A (en) * 1934-01-02 1935-11-12 Whitin Machine Works Long draft spinning

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1213744A (en) * 1915-10-15 1917-01-23 Fernando Casablancas Spinning-frame.
US1240670A (en) * 1917-03-12 1917-09-18 Fernando Casablancas Mechanism for drawing fibers with endless belts.
US2020483A (en) * 1934-01-02 1935-11-12 Whitin Machine Works Long draft spinning

Similar Documents

Publication Publication Date Title
US3090081A (en) Fiber handling arrangement and process
US2522332A (en) Textile drafting apparatus
US3332115A (en) Textile drafting apparatus
US2203423A (en) Long draft apparatus
US2430611A (en) Drawing mechanism for spinning and roving frames
US3254375A (en) Textile drafting apparatus
US3310846A (en) Textile drafting apparatus
US2683290A (en) Fiber condensing means for use in preparatory and spinning machines
GB1132093A (en) Improvements in or relating to drafting mechanisms in textile processing machines
US2074556A (en) Drawing mechanism of spinning machines
US2422444A (en) Drawing mechanism for textile slivers
US2677858A (en) Cradle for top aprons as used in high-draft systems
US2233963A (en) Drawing mechanism for textile fibers
US2771639A (en) System for drafting fibrous materials
CN104928814A (en) Fiber control member, draft device, and spinning machine
US3523335A (en) Pneumatic clearer
US3156953A (en) Textile drafting apparatus
US3038213A (en) Drafting mechanism for textiles
US2027212A (en) Spinning frame
US2735141A (en) Condenser supports
US4067088A (en) Apron drafting arrangement
US2741802A (en) Clearer for textile machines
US3404434A (en) Fiber drafting system
US3386136A (en) Drafting system
US3136006A (en) Textile sliver drafting machines