US3325348A - Ultrasonic device for placing materials in suspension - Google Patents
Ultrasonic device for placing materials in suspension Download PDFInfo
- Publication number
- US3325348A US3325348A US399039A US39903964A US3325348A US 3325348 A US3325348 A US 3325348A US 399039 A US399039 A US 399039A US 39903964 A US39903964 A US 39903964A US 3325348 A US3325348 A US 3325348A
- Authority
- US
- United States
- Prior art keywords
- fluid
- stock
- paper
- flocculent
- headbox
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 title description 72
- 239000000725 suspension Substances 0.000 title description 11
- 239000012530 fluid Substances 0.000 claims description 89
- 238000000034 method Methods 0.000 claims description 19
- 239000006185 dispersion Substances 0.000 claims description 6
- 239000002360 explosive Substances 0.000 claims description 6
- 238000004880 explosion Methods 0.000 description 17
- 230000015572 biosynthetic process Effects 0.000 description 12
- 239000000523 sample Substances 0.000 description 12
- 239000000945 filler Substances 0.000 description 11
- 239000000835 fiber Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 238000005192 partition Methods 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 238000004040 coloring Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- -1 printing Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000011872 intimate mixture Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 208000037995 tubular obstruction Diseases 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/44—Mixers in which the components are pressed through slits
- B01F25/441—Mixers in which the components are pressed through slits characterised by the configuration of the surfaces forming the slits
- B01F25/4413—Mixers in which the components are pressed through slits characterised by the configuration of the surfaces forming the slits the slits being formed between opposed conical or cylindrical surfaces
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06B—TREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
- D06B13/00—Treatment of textile materials with liquids, gases or vapours with aid of vibration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F31/00—Mixers with shaking, oscillating, or vibrating mechanisms
- B01F31/80—Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
- B01F31/82—Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations the material being forced through a narrow vibrating slit
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M10/00—Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
- D06M10/02—Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21F—PAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
- D21F1/00—Wet end of machines for making continuous webs of paper
- D21F1/0018—Devices for dispensing fibres in a fluid
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/16—Picture reproducers using cathode ray tubes
- H04N9/28—Arrangements for convergence or focusing
Definitions
- This invention relates to an ultrasonic device for placing materials in suspension especially in fluids for emulsifying, and for making intimate mixtures in general.
- Ultrasonic means can be utilized for the suspension of mercury in water for instance and other materials are also successfully suspended.
- such materials as clays, fillers and pigment for various industrial processes as in the making of textiles, printing, paper making, etc. can be suspended in appropriate fluids.
- the present invention relates to a continuous flow method of providing materials in such suspension, etc. so that the device may be placed directly in the flow of the industrial process being utilized and avoids the common necessity of using relatively unwieldy and costly batch methods where the materials have to be transferred from a vat to another position in which they are made use of during further processing.
- the materials placed in suspension may be substantially immediately utilized for their intended purpose.
- the particular device described herein will provide solids in suspension in a fluid medium for a relatively long period of time and are carried through in the process in substantially completely suspended condition, thus increasing the speed of the process in which the suspended material is utilized and also greatly improving the end product thereof, among other advantages.
- the insertion of the ultrasonic device in the flow of the stock greatly enhances the dispersion of the fibers therein; and further, fillers, fines, colors, clay, etc. of any desired description may be inserted in the flow, passing through the ultrasonic device and thus becoming suspended uniformly throughout the stock so that the paper formation is greatly improved by having the filler, clay, etc. dispersed uniformly therein and avoiding the present difiiculty where the solids approach one side or the other of the formation of the paper.
- Uniformity of product i.e., particularly in paper, and uniformity of the paper formation is greatly to be desired and is commonly not obtained.
- one side of the sheet is a dilferent shade from the other side of the sheet because the coloring material utilized is settled somewhat, i.e., been forced to one side or the other of the paper during the formation of the paper, and this can be cured by the use of the present invention because the coloring material is uniformly dispersed throughout the stock as it approaches the paper forming means, i.e., such as the Fourdrinier wire. Also fillers, clays, etc.
- a further object of the invention resides in the provision of an ultrasonic device as stated which is located in an explosion box.
- the explosion box itself provides a very satisfactory dispersion of particles as for instance the fibers in paper stock, but when combined with the present ultrasonic device, the explosion box is made a great deal more effective as well as providing for dispersion of other matters in the fluid in addition to the fibers, i.e., such things as coloring materials, fillers, clays, etc.
- this conduit has in it material continuously flowing in the direction of the arrow, this material being a fluid in which is contained a solid or other material to be processed.
- This material can be substantially anything such as clays, fillers, coloring material, etc., particularly adapted for paper making and textiles, or any other material which is desired to be uniformly dispersed throughout the: fluid which acts in this case as a carrier.
- the fluid will also have in it semi-dispersed stock fibers which however usually become flocculent due to being pumped through the pipe or due to being forced through a device such as a headbox slice or the like.
- the pipe 10 has flowing through it under pressure a fluid material carrying semi-dispersed materials which are to be dispersed into a suspended state throughout the fluid. Also it is to be understood that the representation in the drawing of the pipe 10 can be in any desired location in any piece of machinery adapted for any purpose in which the fluid flows as stated and under the conditions mentioned.
- the pipe at 12 diverges, in the case shown, into a funnel-like flaring enlargement and this enlargement leads into any kind of a reservoir, flow box or the like, generally indicated 'by the reference numeral 14 into which the fluid flows from pipe 10.
- the box at 14 then is utilized to pass the fluids with the suspended matter therein and the dispersed material to Whatever process is desired to be utilized thereafter.
- the box 14 may contain the fluids for a relatively short period of time or pass them on continuously according to the conditions encountered in the particular art in which the invention may be used.
- the enlargement at 12 is provided with what is called an explosion block 16.
- This explosion block is mounted on a stem 18 supported by overhead apparatus not shown and it may if desired be moved up and down in order to vary the passage 20 which surrounds block 16 and is contained between block 16 and the walls of the enlargement 12.
- the fluid of course flows through this passage into the box 14 and thus there is a clear continuous path for the fluid from the pipe 10 into box 14 and thence to Wherever the fluid is to be utilized.
- the passage 20 is restricted relative to the flow volume of pipe 10.
- the enlargement 12 and block 16 are preferably conical.
- the member 16 is substantially solid but it contains therein a commercially manufactured ultrasonic device generally indicated by the reference numeral 22.
- This device is manufactured by Branson Instruments, Inc., Danb'ury, Connecticut. The construction and operation of these ultrasonic devices are Well known.
- the ultrasonic device 22 by reason of being located where it is in the conical member 16 creates thereby an agitation area in the region and substantially the shape depicted at approximately the area 24 in the pipe 10.
- any material in the stream in the pipe becomes thoroughly suspended in the fluid, or as a matter of fact generally immiscible fluids become emulsified, and the material in uniform suspended or dispersed condition flows continuously into the box 14 and thence into the subsequent areas of the machine and through the processes thereafter utilized.
- the effect of the present invention is to provide extremely improved uniformity of the end product which is being manufactured under the influence of fluid as described in the present invention regardless of the art or industry to which it is applied. It is believed that the paper making industry will immediately recognize the benefits to be derived and the resulting uniformity of the paper formation. The printer will recognize that printing will be more uniform without any lifting action and that the color of the paper will be uniform throughout rather than varying through the thickness of the paper. It is well known to the paper maker that the effect of additives such as fillers, fines, etc. is to unbalance the stock due to the drainage on the wire and in recent years the beating action of the pulp has tended to be speeded up and in some cases this results in poorer formation which is obviated by the present invention.
- the stock fibers are more uniformly dispersed and the filler itself is thereby better retained as there is less drainage when the fibers are square rather than relatively uneven because unevenness in the fiber formation provides holes through which the fillers can be easily drained by the suction boxes. Furthermore if the dyes are absorbed in the fibers and the fibers are relatively more evenly dispersed, the color is also more evenly dispersed, and for many other reasons not necessary to go into here the paper formation is greatly enhanced as it is made more uniform and the same is true as to materials of suspension in fluids throughout the arts and industries in general. Also, less carrier fluid need be used and the formation can be made much faster.
- the support and mount for the ultrasonic device is thereby provided and occasions no interruption of flow or problems concerned with respect to interruptions to the flow or ridges or shelflike members which might interfere with the flow or which might catch articles to become built up and plugged, so that it is seen that a greater uninterrupted flow of fluid material is occasioned by the construction herein while at the same time the explosion box effect is added to the effect of the ultrasonic device as described above.
- the conical block 16 should be omitted, the explosion is lost but the suspension or emulsification is retained. Also, the effective area 24 is displaced upwardly, but still the entire flow is past the ultrasonic device. If
- the explosion block 16' as a block, can be omitted, with the probe itself formed into a similar shape, i.e., to generally correspond with the side walls at 12 forming the restricted path or passage at 20, and the same results and advantages are obtained.
- Such a construction merely makes the explosion block as a part of the probe, rather than as a separate part.
- energy below ultra sonic ranges can be useful to process certain materials, especially thick ones, and where the ultrasonic term is used, it is to be understood that some virbrations also are included.
- said source of ultrasonic energy includes a probe which is disposed within and concentric with said tubular passageway.
- tubular passageway and said tubular obstruction includes flared out and tubular conical portions adapted to provide a restricted annular orifice of variable size
- the method of dispersing fluid material comprising:
- the method of dispersing flocculent fluid paper stock comprising:
- fluid moving means for moving the fluid material into said first fluid material receiving means, said passageway, and said second fluid material receiving means
- a source of vibrating energy disposed in advance of said passageway so as to uniformly act upon all of the fluid prior to passage therethrough to initially disperse same prior to passage thereof into said second fluid material receiving means.
- said first fluid material receiving means is in the passageway during movement thereof from said first form of a tubular member opening into the bottom area to said second area to thereby effect the velocity of said box-like receptacle and having at least the of movement thereof; and portion thereof proximate said box-like member of (c) selectively adjusting said partition to vary the conincreasing diameter to form a cone the base of which figuration of said passageway and the effect on the is in the plane of the bottom of said box-like memfloccullent fluid paper stock passing therethrough. ber; and 8.
- said separating means has a conical configuration (a) said adjustably disposed partition and the portion substantially conforming with that of said conical of said passageway in juxtaposition thereto are coniportion of said first fluid material receiving means, cal in configuration; is being disposed concentrically therewith, and car- (b) the portion of said passageway in advance of said ries said source of vibrating energy.
- said source of ultrasonic energy includes a probe carried by said partition so as to face said tubular portion of said passageway.
- Apparatus for dispersing fluid material comprising (a) a tubular conduit for conducting a moving body of fluid unidirectionally from a first location to a 14 wherein said source of vibrating energy includes a suitably actuated ultrasonic probe disposed in said separating means so as to be contiguous with at least the tip thereof.
- a headbox for dispersing flocculent fluid paper stock comprising:
- a source of ultrasonic energy disposed in said con- (a) a plurality of vertically disposed and spaced walls interconnected with and rising from a bottom wall duit so as to be spaced from the walls of said con- 40 and forming therewith a box-like receptacle adapted duit and unconnected therewith and so as to unito receive fluid paper stock;
- said conduit is of circular cross section and in- (c) a stock intake pipe extending from beneath and cludes a conical portion flaring out in the direction towards said bottom wall of said receptacle and havof fluid flow; and ing a cross-sectional configuration which is similar to (b) a conical shaped obstruction means is movably said predetermined cross-sectional configuration of disposed for coa-otion with said conical portion of said opening but which for at least a portion of its said conduit to provide therebetween a restricted paslength is smaller than said opening; sageway for said material; (d) said stock intake pipe further including a connect- (c) said source of ultrasonic energy being carried by ing portion having a crosssectional configuration said obstruction means.
- configuration of said opening and which increases in (a) said source of ultrasonic energy includes a subsize as it approaches said opening until it coincides stantially cylindrical probe; there-with and connects with said bottom wall of said (b) said probe extending towards said first location. receptacle thereabout;
- Apparatus for dispersing fluid material comprising: adapted to form with the opposed surfaces thereof (a) a first fluid material receiving means adapted to a passageway for controlling the flow of fluid paper receive fluid material and to subject at least a portion stock from said stock intake pipe to said receptacle; of said fluid material to a first pressure of a first (f) pump means adapted to pump flocculent fluid paper predetermined magnitude; stock through said stock intake pipe and to apply a (b) second fluid material receiving means adapted to predetermined pressure thereto such that as said fluid receive said portion of said fluid material from said paper stock emerges from said passageway it is disfirst fluid receiving means and to subject same to persed with an explosive type action; and a second pressure the magnitude of which is sulfi- (g) ultrasonic means
- said ultrasonic means includes a probe adapted to References Cited be energized from a source of suitable power and UNITED STATES PATENTS disposed in said hollow of said explosion block.
- said probe faces 251119 1/1962 Rawdmgtowards said intake Pippa 5 1,992,938 3/1935 Chambers et a1 259 4 X 19.
- the headboX of claim 16 wherein said cross-sec- 24782O7 8/1949 Robmson 259-4 tiona'l configuration of said opening, said Stock intake 2,652,234 9/1953 Feldman 2594 pipe including said connecting portion, and said explo- 3,169,013 2/1965 Jones 259 4 sion block, are substantially circular.
- FOREIGN PATENTS 20 The headbox of claim 16 wherein said passageway 10 650 434 10/1962 Canada diminishes'in size as it approaches said receptacle and then enlarges in size as it enters same.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Signal Processing (AREA)
- Materials Engineering (AREA)
- Multimedia (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Colloid Chemistry (AREA)
- Paper (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US399039A US3325348A (en) | 1964-09-24 | 1964-09-24 | Ultrasonic device for placing materials in suspension |
DE19651457308 DE1457308A1 (de) | 1964-09-24 | 1965-09-17 | Verfahren und Vorrichtung zum UEberfuehren von Materialien in Suspension |
NL6512292A NL6512292A (enrdf_load_stackoverflow) | 1964-09-24 | 1965-09-21 | |
SE12336/65A SE309027B (enrdf_load_stackoverflow) | 1964-09-24 | 1965-09-23 | |
GB40659/65A GB1119212A (en) | 1964-09-24 | 1965-09-23 | Ultrasonic device for placing materials in suspension |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US399039A US3325348A (en) | 1964-09-24 | 1964-09-24 | Ultrasonic device for placing materials in suspension |
Publications (1)
Publication Number | Publication Date |
---|---|
US3325348A true US3325348A (en) | 1967-06-13 |
Family
ID=23577882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US399039A Expired - Lifetime US3325348A (en) | 1964-09-24 | 1964-09-24 | Ultrasonic device for placing materials in suspension |
Country Status (5)
Country | Link |
---|---|
US (1) | US3325348A (enrdf_load_stackoverflow) |
DE (1) | DE1457308A1 (enrdf_load_stackoverflow) |
GB (1) | GB1119212A (enrdf_load_stackoverflow) |
NL (1) | NL6512292A (enrdf_load_stackoverflow) |
SE (1) | SE309027B (enrdf_load_stackoverflow) |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4448344A (en) * | 1982-09-01 | 1984-05-15 | Diamond International Corporation | Egg cell construction |
US5863387A (en) * | 1997-05-01 | 1999-01-26 | Voith Sulzer Technology North America, Inc | Ultrasonic device for deflocculating fiber suspension in a paper-making machine headbox nozzle |
US20020053085A1 (en) * | 2000-06-13 | 2002-05-02 | Yasuhiro Toguri | Apparatus, method, and system for information processing, and recording meduim |
US20030178049A1 (en) * | 2002-03-23 | 2003-09-25 | Samsung Electronics Co., Ltd. | Megasonic cleaning apparatus for fabricating semiconductor device |
US20080062811A1 (en) * | 2006-09-08 | 2008-03-13 | Kimberly-Clark Worldwide, Inc. | Ultrasonic liquid treatment chamber and continuous flow mixing system |
US20080063718A1 (en) * | 2006-09-08 | 2008-03-13 | Kimberly-Clark Worldwide, Inc. | Delivery Systems For Delivering Functional Compounds to Substrates and Processes of Using the Same |
US20080063806A1 (en) * | 2006-09-08 | 2008-03-13 | Kimberly-Clark Worldwide, Inc. | Processes for curing a polymeric coating composition using microwave irradiation |
US20080061000A1 (en) * | 2006-09-08 | 2008-03-13 | Kimberly Clark Worldwide, Inc. | Ultrasonic Treatment System For Separating Compounds From Aqueous Effluent |
US20080155764A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Process for dyeing a textile web |
US20080155766A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Process for dyeing a textile web |
US20080155762A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Process for dyeing a textile web |
US20080157442A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Process For Cutting Textile Webs With Improved Microwave Absorbing Compositions |
US20080156737A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Ultrasonic liquid treatment system |
US20080159063A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Ultrasonic liquid treatment system |
US20080155763A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Process for dyeing a textile web |
US20080156428A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Process For Bonding Substrates With Improved Microwave Absorbing Compositions |
US20080156157A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Process For Cutting Textile Webs With Improved Microwave Absorbing Compositions |
US20090014393A1 (en) * | 2007-07-12 | 2009-01-15 | Kimberly-Clark Worldwide, Inc. | Treatment chamber for separating compounds from aqueous effluent |
US20090017225A1 (en) * | 2007-07-12 | 2009-01-15 | Kimberly-Clark Worldwide, Inc. | Delivery systems for delivering functional compounds to substrates and processes of using the same |
US20090147905A1 (en) * | 2007-12-05 | 2009-06-11 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for initiating thermonuclear fusion |
US20090158936A1 (en) * | 2007-12-21 | 2009-06-25 | Kimberly-Clark Worldwide, Inc. | Gas treatment system |
US20090162258A1 (en) * | 2007-12-21 | 2009-06-25 | Kimberly-Clark Worldwide, Inc. | Liquid treatment system |
US20090166177A1 (en) * | 2007-12-28 | 2009-07-02 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for preparing emulsions |
US20090165654A1 (en) * | 2007-12-28 | 2009-07-02 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for increasing the shelf life of formulations |
US20090168590A1 (en) * | 2007-12-28 | 2009-07-02 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for preparing antimicrobial formulations |
US20090262597A1 (en) * | 2007-12-28 | 2009-10-22 | Philip Eugene Kieffer | Ultrasonic Treatment Chamber for Preparing Emulsions |
US7674300B2 (en) | 2006-12-28 | 2010-03-09 | Kimberly-Clark Worldwide, Inc. | Process for dyeing a textile web |
US20100152042A1 (en) * | 2008-12-15 | 2010-06-17 | Kimberly-Clark Worldwide, Inc. | Compositions comprising metal-modified silica nanoparticles |
US7998322B2 (en) | 2007-07-12 | 2011-08-16 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber having electrode properties |
US8206024B2 (en) | 2007-12-28 | 2012-06-26 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for particle dispersion into formulations |
US8632613B2 (en) | 2007-12-27 | 2014-01-21 | Kimberly-Clark Worldwide, Inc. | Process for applying one or more treatment agents to a textile web |
US8685178B2 (en) | 2008-12-15 | 2014-04-01 | Kimberly-Clark Worldwide, Inc. | Methods of preparing metal-modified silica nanoparticles |
US9239036B2 (en) | 2006-09-08 | 2016-01-19 | Kimberly-Clark Worldwide, Inc. | Ultrasonic liquid treatment and delivery system and process |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1992938A (en) * | 1932-11-19 | 1935-03-05 | William H Ashton | Method of dispersion |
US2478207A (en) * | 1945-09-05 | 1949-08-09 | Raytheon Mfg Co | Vibrating apparatus |
US2652234A (en) * | 1950-03-31 | 1953-09-15 | Feldmann Bernard | Homogenizer |
USRE25119E (en) * | 1956-10-04 | 1962-01-30 | rawding | |
CA650434A (en) * | 1962-10-16 | N.V. Philips Gloeilampenfabrieken | Ultra-sonic vibrator for dispersing fluids | |
US3169013A (en) * | 1963-01-14 | 1965-02-09 | John P B Jones | Sonic emulsifying and homogenization apparatus |
-
1964
- 1964-09-24 US US399039A patent/US3325348A/en not_active Expired - Lifetime
-
1965
- 1965-09-17 DE DE19651457308 patent/DE1457308A1/de active Pending
- 1965-09-21 NL NL6512292A patent/NL6512292A/xx unknown
- 1965-09-23 SE SE12336/65A patent/SE309027B/xx unknown
- 1965-09-23 GB GB40659/65A patent/GB1119212A/en not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA650434A (en) * | 1962-10-16 | N.V. Philips Gloeilampenfabrieken | Ultra-sonic vibrator for dispersing fluids | |
US1992938A (en) * | 1932-11-19 | 1935-03-05 | William H Ashton | Method of dispersion |
US2478207A (en) * | 1945-09-05 | 1949-08-09 | Raytheon Mfg Co | Vibrating apparatus |
US2652234A (en) * | 1950-03-31 | 1953-09-15 | Feldmann Bernard | Homogenizer |
USRE25119E (en) * | 1956-10-04 | 1962-01-30 | rawding | |
US3169013A (en) * | 1963-01-14 | 1965-02-09 | John P B Jones | Sonic emulsifying and homogenization apparatus |
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4448344A (en) * | 1982-09-01 | 1984-05-15 | Diamond International Corporation | Egg cell construction |
US5863387A (en) * | 1997-05-01 | 1999-01-26 | Voith Sulzer Technology North America, Inc | Ultrasonic device for deflocculating fiber suspension in a paper-making machine headbox nozzle |
US20020053085A1 (en) * | 2000-06-13 | 2002-05-02 | Yasuhiro Toguri | Apparatus, method, and system for information processing, and recording meduim |
US20030178049A1 (en) * | 2002-03-23 | 2003-09-25 | Samsung Electronics Co., Ltd. | Megasonic cleaning apparatus for fabricating semiconductor device |
US7017597B2 (en) * | 2002-03-23 | 2006-03-28 | Samsung Electronics., Co.,Ltd. | Megasonic cleaning apparatus for fabricating semiconductor device |
US20080063718A1 (en) * | 2006-09-08 | 2008-03-13 | Kimberly-Clark Worldwide, Inc. | Delivery Systems For Delivering Functional Compounds to Substrates and Processes of Using the Same |
US9283188B2 (en) | 2006-09-08 | 2016-03-15 | Kimberly-Clark Worldwide, Inc. | Delivery systems for delivering functional compounds to substrates and processes of using the same |
US20080063806A1 (en) * | 2006-09-08 | 2008-03-13 | Kimberly-Clark Worldwide, Inc. | Processes for curing a polymeric coating composition using microwave irradiation |
US20080061000A1 (en) * | 2006-09-08 | 2008-03-13 | Kimberly Clark Worldwide, Inc. | Ultrasonic Treatment System For Separating Compounds From Aqueous Effluent |
US7703698B2 (en) | 2006-09-08 | 2010-04-27 | Kimberly-Clark Worldwide, Inc. | Ultrasonic liquid treatment chamber and continuous flow mixing system |
US20080062811A1 (en) * | 2006-09-08 | 2008-03-13 | Kimberly-Clark Worldwide, Inc. | Ultrasonic liquid treatment chamber and continuous flow mixing system |
US8034286B2 (en) | 2006-09-08 | 2011-10-11 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment system for separating compounds from aqueous effluent |
US8616759B2 (en) | 2006-09-08 | 2013-12-31 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment system |
US9239036B2 (en) | 2006-09-08 | 2016-01-19 | Kimberly-Clark Worldwide, Inc. | Ultrasonic liquid treatment and delivery system and process |
US20100067321A1 (en) * | 2006-09-08 | 2010-03-18 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment system and method of using the system |
US20080159063A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Ultrasonic liquid treatment system |
US20080156428A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Process For Bonding Substrates With Improved Microwave Absorbing Compositions |
US20080156157A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Process For Cutting Textile Webs With Improved Microwave Absorbing Compositions |
US20080155763A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Process for dyeing a textile web |
US20080156737A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Ultrasonic liquid treatment system |
US20080157442A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Process For Cutting Textile Webs With Improved Microwave Absorbing Compositions |
US8182552B2 (en) | 2006-12-28 | 2012-05-22 | Kimberly-Clark Worldwide, Inc. | Process for dyeing a textile web |
US20080155762A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Process for dyeing a textile web |
US20080155766A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Process for dyeing a textile web |
US7740666B2 (en) | 2006-12-28 | 2010-06-22 | Kimberly-Clark Worldwide, Inc. | Process for dyeing a textile web |
US7712353B2 (en) | 2006-12-28 | 2010-05-11 | Kimberly-Clark Worldwide, Inc. | Ultrasonic liquid treatment system |
US7568251B2 (en) | 2006-12-28 | 2009-08-04 | Kimberly-Clark Worldwide, Inc. | Process for dyeing a textile web |
US20080155764A1 (en) * | 2006-12-28 | 2008-07-03 | Kimberly-Clark Worldwide, Inc. | Process for dyeing a textile web |
US7673516B2 (en) | 2006-12-28 | 2010-03-09 | Kimberly-Clark Worldwide, Inc. | Ultrasonic liquid treatment system |
US7674300B2 (en) | 2006-12-28 | 2010-03-09 | Kimberly-Clark Worldwide, Inc. | Process for dyeing a textile web |
US7998322B2 (en) | 2007-07-12 | 2011-08-16 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber having electrode properties |
US7947184B2 (en) | 2007-07-12 | 2011-05-24 | Kimberly-Clark Worldwide, Inc. | Treatment chamber for separating compounds from aqueous effluent |
US20090014393A1 (en) * | 2007-07-12 | 2009-01-15 | Kimberly-Clark Worldwide, Inc. | Treatment chamber for separating compounds from aqueous effluent |
US20090017225A1 (en) * | 2007-07-12 | 2009-01-15 | Kimberly-Clark Worldwide, Inc. | Delivery systems for delivering functional compounds to substrates and processes of using the same |
US7785674B2 (en) | 2007-07-12 | 2010-08-31 | Kimberly-Clark Worldwide, Inc. | Delivery systems for delivering functional compounds to substrates and processes of using the same |
US20090147905A1 (en) * | 2007-12-05 | 2009-06-11 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for initiating thermonuclear fusion |
US20100206742A1 (en) * | 2007-12-05 | 2010-08-19 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for treating hydrogen isotopes |
US8454889B2 (en) | 2007-12-21 | 2013-06-04 | Kimberly-Clark Worldwide, Inc. | Gas treatment system |
US20090158936A1 (en) * | 2007-12-21 | 2009-06-25 | Kimberly-Clark Worldwide, Inc. | Gas treatment system |
US20090162258A1 (en) * | 2007-12-21 | 2009-06-25 | Kimberly-Clark Worldwide, Inc. | Liquid treatment system |
US8858892B2 (en) | 2007-12-21 | 2014-10-14 | Kimberly-Clark Worldwide, Inc. | Liquid treatment system |
US8632613B2 (en) | 2007-12-27 | 2014-01-21 | Kimberly-Clark Worldwide, Inc. | Process for applying one or more treatment agents to a textile web |
US20090262597A1 (en) * | 2007-12-28 | 2009-10-22 | Philip Eugene Kieffer | Ultrasonic Treatment Chamber for Preparing Emulsions |
US8206024B2 (en) | 2007-12-28 | 2012-06-26 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for particle dispersion into formulations |
US8215822B2 (en) | 2007-12-28 | 2012-07-10 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for preparing antimicrobial formulations |
US20090166177A1 (en) * | 2007-12-28 | 2009-07-02 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for preparing emulsions |
US20090165654A1 (en) * | 2007-12-28 | 2009-07-02 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for increasing the shelf life of formulations |
US8143318B2 (en) | 2007-12-28 | 2012-03-27 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for preparing emulsions |
US8057573B2 (en) | 2007-12-28 | 2011-11-15 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for increasing the shelf life of formulations |
US20090168590A1 (en) * | 2007-12-28 | 2009-07-02 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for preparing antimicrobial formulations |
US9421504B2 (en) | 2007-12-28 | 2016-08-23 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for preparing emulsions |
US8163388B2 (en) | 2008-12-15 | 2012-04-24 | Kimberly-Clark Worldwide, Inc. | Compositions comprising metal-modified silica nanoparticles |
US8685178B2 (en) | 2008-12-15 | 2014-04-01 | Kimberly-Clark Worldwide, Inc. | Methods of preparing metal-modified silica nanoparticles |
US20100152042A1 (en) * | 2008-12-15 | 2010-06-17 | Kimberly-Clark Worldwide, Inc. | Compositions comprising metal-modified silica nanoparticles |
Also Published As
Publication number | Publication date |
---|---|
GB1119212A (en) | 1968-07-10 |
DE1457308A1 (de) | 1969-10-30 |
SE309027B (enrdf_load_stackoverflow) | 1969-03-10 |
NL6512292A (enrdf_load_stackoverflow) | 1966-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3325348A (en) | Ultrasonic device for placing materials in suspension | |
US3363759A (en) | Screening apparatus with rotary pulsing member | |
US6659636B1 (en) | Method and apparatus for feeding a chemical into a liquid flow | |
US7758725B2 (en) | Method of mixing a paper making chemical into a fiber suspension flow | |
US2960318A (en) | Mixing, emulsifying, homogenizing and the like machines | |
CN87105652A (zh) | 用于流体动力混合的方法和装置 | |
US3529936A (en) | Apparatus for producing binder particles by precipitation | |
US4699324A (en) | Combined screening and reject reduction | |
JP2007508129A (ja) | 液体の流れに化学物質を供給するための方法および装置 | |
GB1216088A (en) | Method and apparatus for cleaning and fractionating a pulp suspension | |
US2956679A (en) | Centrifugal apparatus for separating solids | |
US2737857A (en) | Hydraulic apparatus | |
US4396502A (en) | Screening apparatus for a papermaking machine | |
US2918263A (en) | Mixing liquids and solids | |
US3561603A (en) | Pulp screen or the like | |
US4288317A (en) | Method and a system for separating an aqueous suspension containing fibrous particles into fractions of different average characteristics | |
CN112144317B (zh) | 一种用于向纤维幅材机的流送系统添加化学品的方法及设施 | |
US2599543A (en) | Gyratory processing apparatus | |
DE1561697A1 (de) | Verfahren zum kontinuierlichen Verduennen und/oder Mischen von langen,zum Verspinnen neigende Fasern enthaltenen Suspensionen und Vorrichtung zum Durchfuehren dieses Verfahrens | |
CN112118903A (zh) | 包括转子和定子的混合设备 | |
US3061008A (en) | Stock flow distributor | |
US4466862A (en) | Method for screening, separating, and removing fiber bundles, lumps, knots and foreign matter from aqueous dispersions used in forming non-woven fabrics by wet-laying | |
US3326475A (en) | Reject spouts | |
US4057497A (en) | Method and apparatus for dispensing multi-component liquid suspensions | |
US3617228A (en) | Process for making agglomerates from suspensions |