US3300149A - Electric stress sensing devices for crushing machines - Google Patents
Electric stress sensing devices for crushing machines Download PDFInfo
- Publication number
- US3300149A US3300149A US327183A US32718363A US3300149A US 3300149 A US3300149 A US 3300149A US 327183 A US327183 A US 327183A US 32718363 A US32718363 A US 32718363A US 3300149 A US3300149 A US 3300149A
- Authority
- US
- United States
- Prior art keywords
- crusher
- framework
- crushing
- shaft
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16P—SAFETY DEVICES IN GENERAL; SAFETY DEVICES FOR PRESSES
- F16P7/00—Emergency devices preventing damage to a machine or apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C13/00—Disintegrating by mills having rotary beater elements ; Hammer mills
- B02C13/26—Details
- B02C13/31—Safety devices or measures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C2/00—Crushing or disintegrating by gyratory or cone crushers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C2/00—Crushing or disintegrating by gyratory or cone crushers
- B02C2/02—Crushing or disintegrating by gyratory or cone crushers eccentrically moved
- B02C2/04—Crushing or disintegrating by gyratory or cone crushers eccentrically moved with vertical axis
- B02C2/047—Crushing or disintegrating by gyratory or cone crushers eccentrically moved with vertical axis and with head adjusting or controlling mechanisms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C2/00—Crushing or disintegrating by gyratory or cone crushers
- B02C2/02—Crushing or disintegrating by gyratory or cone crushers eccentrically moved
- B02C2/04—Crushing or disintegrating by gyratory or cone crushers eccentrically moved with vertical axis
- B02C2/06—Crushing or disintegrating by gyratory or cone crushers eccentrically moved with vertical axis and with top bearing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C2/00—Crushing or disintegrating by gyratory or cone crushers
- B02C2/10—Crushing or disintegrating by gyratory or cone crushers concentrically moved; Bell crushers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C25/00—Control arrangements specially adapted for crushing or disintegrating
Definitions
- the present invention relates to electric devices for detecting stresses occurring in crushing machines, more particularly in gyratory crushers, due to a cramming or tamping action or to the passage across the machine of materials or bodies which resist crushing.
- a crushing machine is adapted to break up the materials between cast-iron or special-steel attrition pieces.
- a crusher of the gyratory type one of these pieces is located on an oscillating shaft possessed at its base with an eccentric movement, the other piece being secured on the framework of the machine.
- the materials to be crushed often include bodies resisting the crushing action, for instance metal or wood fragments which, when getting in contact with the wearing pieces between which they are to be crushed, cause abnormal stresses on the various mechanical members of the machine and, especially, on the oscillatory shaft in the case of gyratory crushers.
- the present invention has for its object to provide an intelligently acting electrical device enabling to immediately sense the presence of foreign bodies Within the materials to be crushed, to estimate the importance thereof and detect the occurrence of any cramming or tamping action in the crushing chamber; viz. an electrical detection device of any abnormal stresses to which the crushers are being subjected.
- An electric stress-sensing device for crushing machines particularly gyratory crushers, according to the invention, comprises: a low or very low-voltage power supply connected, on one hand, to the electrically isolated shaft carrying the movable crushing members, and, on the other hand, to the framework of the crusher, whereby a servocontrol member placed in the circuit thus established is adapted to stop the crusher and/or to cause the switching in of an alarm or protection system.
- the servo-controlled member may be actuated by a contact established by the passage through the crusher of generally conductive, crush-resisting bodies. It may also be actuated through the effect of elastic deformations of a member of the crusher as said deformations are detected by an extensometric strain gauge located on the crusher in parallel across said circuit.
- the gauge is preferably provided at a point where the possible deformation is at a maximum.
- the shaft may be isolated from the framework of the crushing machine, by establishing the suspension members thereof out of an insulating material, such as plastic and the like.
- An adjustable timing mechanism may be inserted in the electric circuit in order to delay the action of said servocontrol means.
- FIGURE 1 illustrates, by way of a non limiting exapplied to a mechanically suspended gyratory crusher.
- FIGURE 2 shows diagrammaticaly the device of the invention as applied to a hydraulically suspended gyratory crusher.
- FIGURE 1 illustrates, by way of a non limiting example, the device as applied to a gyratory crusher wherein the oscillatory shaft 1 is isolated from the framework of the crusher by a foot-ring 2 of an insulating material, such as plastic material, for instance.
- the shaft is insulated by an assembly of insulating elements including a cross-bar bearing 3 and an attrition ring 4; these elements may be also made of plastic material.
- the suspension ring 5 may itself consist of a plastic material, thus avoiding the use of an attrition ring 4 and of the cross-bar bearing 3 of insulating material.
- the current is applied to the crusher, on one hand at the top of the oscillatory shaft, by means of a convenient flexible system 6, and, on the other hand, to any desired point of the framework 7.
- the current may be connected to this portion of the equipment, as well as to the shaft-supporting member, i.e. to cross-bar 8, the upper framework 9, the lower frame-work 10 or to the sleeve bearing 11.
- a DC. or A.C. power supply 12 feeds the circuit at a low or at a very low voltage, for safety reasons.
- a servo-system 13 adapted to control either an alarm device, or a relay-circuit breaker 14 for the motor, or both simultaneously.
- the servo-control system 13, relay or the like may break off the relay-circuit-breaker 14 of the motor and actuate a sound or luminous alarm device to signal the stopping of the machine.
- Delay means controlled by an adjustable timing de-' vice may be combined with the servo-control device'13 to allow the passage of small-size metallic pieces.
- control means adapted to control deformations produced in the mechanical members of the crusher.
- Such control means may consist, for instance, of an extensometric strain gauge 15 secured to shaft 1 at a suitably selected point where the deformation is maximum or on any other deformable element, such as, for instance, the arms of cross-bar 8.
- the extensometric strain gauge is inserted in a circuit connected in parallel across the electric circuit already described.
- the sensing device according to the invention may, of course, be applied moreover to a hydraulically suspended gyratory crusher.
- FIGURE 2 illustrates the application of the device of the invention on such a crusher equipped, for instance, with a hydraulic lifting jack 16 located at the upper end of shaft 1'.
- Said shaft 1' is insulated at the bottom by means of an annular member 2. and, at the top, by a cross-bar bearing 3' and a wear-ring 4'. These pieces may consist of a plastic or other insulating material.
- the electrical circuit is identical to that illustrated in FIGURE 1, but the servo-control device 13' controls, in this case, the opening of a hydraulic circuit and the flow back to tank 17 of the oil feeding the jack.
- shaft 1' with its crushing core will then travel down a maximum distance, which results in giving its maximal value to the discharge opening E, at the bottom of the crushing members.
- the electrical circuit will continue to remain closed and the timed delaying arrangement remains switched in, thus actuating the alarm and/ or the stopping devices of the crusher driving motor, after a predetermined interval of time.
- the detection of abnormal stresses due to a cramming or tamping action and to the passage of such crushresisting bodies may also be effected by means of an extensometric strain gauge 15' secured on a suitably selected point of maximum deformation, or, again, on any other point capable of being deformed, such as, for instance, the cross-bar.
- the sensing device may carry only the electric device for detecting the presence of foreign bodies, without adjoining the extensometric strain gauge.
- an electrical sensing device for detecting abnormal stresses, comprising a low-voltagev power supply, means for electrically isolating said carrier shaft from said crusher framework, an electrical circuit connecting said power supply source on one hand to said carrier shaft and on the other hand to said crusher framework, a servo-member in said electrical circuit operative upon an accidental electrical contact being established between the assembly formed by the carrier shaft and the crushing core member, on one hand, and the crusher framework, on the other, and means integral with said servo member effective to initiate stopping of the crusher.
- a device comprising means for delaying the operation of said servo-member.
- a gyratory crusher according to claim 4, wherein said means for sensing deformation comprises a second electric circuit shunted across said first electric circuit, an extensometric gauge in said second electric circuit secured to the point of maximum deformation of a member integral with the carrier shaft, and means for detecting the movements of said gauge.
- a device according to claim 3, wherein said delaying means include an adjustable timing device.
- an electrical sensing device for detecting abnormal stresses comprising a low voltage power supply and an extensometric stress gauge, said extensometric stress gauge being so located on said crusher as to be responsive to abnormal stress, an electrical circuit connecting said power supply and said stress gauge, a servo-member in said electrical circuit operative upon the detection of an abnormal stress by said stress gauge, and means integral with said servo-member effective to initiate stopping of the crusher.
Landscapes
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Crushing And Grinding (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR935293A FR1382099A (fr) | 1963-05-17 | 1963-05-17 | Dispositif électrique de détection des contraintes subies par les concasseurs |
Publications (1)
Publication Number | Publication Date |
---|---|
US3300149A true US3300149A (en) | 1967-01-24 |
Family
ID=8804164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US327183A Expired - Lifetime US3300149A (en) | 1963-05-17 | 1963-12-02 | Electric stress sensing devices for crushing machines |
Country Status (8)
Country | Link |
---|---|
US (1) | US3300149A (de) |
AT (1) | AT268024B (de) |
CH (1) | CH402576A (de) |
ES (1) | ES292331A1 (de) |
FI (1) | FI40673B (de) |
FR (1) | FR1382099A (de) |
GB (1) | GB1019379A (de) |
NL (1) | NL299978A (de) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3861604A (en) * | 1973-07-20 | 1975-01-21 | Bruun & Soerensen | Jaw crushers for reducing refuse and waste to a suitable size |
US4166030A (en) * | 1975-08-06 | 1979-08-28 | De La Rue Crosfield Limited | Apparatus for handling sheets of paper |
US4272030A (en) * | 1979-07-30 | 1981-06-09 | Afanasiev Mikhail M | Device for adjusting an inertia cone crusher discharge gap |
EP2535112A1 (de) * | 2011-06-17 | 2012-12-19 | Sandvik Intellectual Property AB | Fremdmaterialanzeige |
US20150053803A1 (en) * | 2012-04-03 | 2015-02-26 | Sandvik Intellectual Property Ab | Gyratory chrusher frame |
CN104525314A (zh) * | 2014-10-11 | 2015-04-22 | 内蒙古科技大学 | 一种粉碎机的粉碎室内气固两相流场特性的测试方法 |
WO2015108711A1 (en) * | 2014-01-14 | 2015-07-23 | Metso Minerals Industries, Inc. | Top supported mainshaft suspension system |
CN109201303A (zh) * | 2018-09-18 | 2019-01-15 | 中山斯瑞德环保科技股份有限公司 | 一种提高液压破碎机破碎效率的优化控制方法 |
CN110038687A (zh) * | 2019-04-29 | 2019-07-23 | 山东赛维环保科技有限公司 | 一种建筑垃圾处理装置 |
CN113769870A (zh) * | 2021-09-15 | 2021-12-10 | 淮北矿业股份有限公司临涣选煤厂 | 基于煤炭装车系统的精准配煤破碎筛分机构 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105583064B (zh) * | 2016-03-02 | 2018-09-07 | 灵武市伟畅机械科技有限公司 | 矿物破碎处理设备中的温度控制装置 |
CN113967528B (zh) * | 2021-09-18 | 2023-07-04 | 华北电力科学研究院有限责任公司 | 磨煤机、磨煤机煤层厚度运行控制方法及装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2022135A (en) * | 1930-05-16 | 1935-11-26 | Allis Chalmers Mfg Co | Crusher |
US2293670A (en) * | 1940-07-03 | 1942-08-18 | Agicide Lab Inc | Means for the localization, control, or prevention of fires |
US2971704A (en) * | 1955-11-07 | 1961-02-14 | Asplund Arne J A | Grinding apparatus for disintegrating fibrous material |
US3133707A (en) * | 1961-03-23 | 1964-05-19 | Fuller Co | Size adjustment mechanism for gyratory crusher |
-
0
- NL NL299978D patent/NL299978A/xx unknown
-
1963
- 1963-05-17 FR FR935293A patent/FR1382099A/fr not_active Expired
- 1963-10-03 CH CH1215263A patent/CH402576A/fr unknown
- 1963-10-09 ES ES0292331A patent/ES292331A1/es not_active Expired
- 1963-10-16 AT AT830563A patent/AT268024B/de active
- 1963-11-05 GB GB43643/63A patent/GB1019379A/en not_active Expired
- 1963-12-02 US US327183A patent/US3300149A/en not_active Expired - Lifetime
- 1963-12-12 FI FI2459/63A patent/FI40673B/fi not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2022135A (en) * | 1930-05-16 | 1935-11-26 | Allis Chalmers Mfg Co | Crusher |
US2293670A (en) * | 1940-07-03 | 1942-08-18 | Agicide Lab Inc | Means for the localization, control, or prevention of fires |
US2971704A (en) * | 1955-11-07 | 1961-02-14 | Asplund Arne J A | Grinding apparatus for disintegrating fibrous material |
US3133707A (en) * | 1961-03-23 | 1964-05-19 | Fuller Co | Size adjustment mechanism for gyratory crusher |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3861604A (en) * | 1973-07-20 | 1975-01-21 | Bruun & Soerensen | Jaw crushers for reducing refuse and waste to a suitable size |
US4166030A (en) * | 1975-08-06 | 1979-08-28 | De La Rue Crosfield Limited | Apparatus for handling sheets of paper |
US4272030A (en) * | 1979-07-30 | 1981-06-09 | Afanasiev Mikhail M | Device for adjusting an inertia cone crusher discharge gap |
US9149812B2 (en) | 2011-06-17 | 2015-10-06 | Sandvik Intellectual Property Ab | Tramp material indication |
EP2535112A1 (de) * | 2011-06-17 | 2012-12-19 | Sandvik Intellectual Property AB | Fremdmaterialanzeige |
WO2012171775A3 (en) * | 2011-06-17 | 2013-04-18 | Sandvik Intellectual Property Ab | Tramp material indication |
US20150053803A1 (en) * | 2012-04-03 | 2015-02-26 | Sandvik Intellectual Property Ab | Gyratory chrusher frame |
US9827569B2 (en) * | 2012-04-03 | 2017-11-28 | Sandvik Intellectual Property Ab | Gyratory chrusher frame |
WO2015108711A1 (en) * | 2014-01-14 | 2015-07-23 | Metso Minerals Industries, Inc. | Top supported mainshaft suspension system |
US9346057B2 (en) | 2014-01-14 | 2016-05-24 | Metso Minerals Industries, Inc. | Top supported mainshaft suspension system |
CN105916585A (zh) * | 2014-01-14 | 2016-08-31 | 美卓矿物工业公司 | 顶部支撑的主轴悬挂系统 |
AU2015206780B2 (en) * | 2014-01-14 | 2017-09-14 | Metso Outotec USA Inc. | Top supported mainshaft suspension system |
CN105916585B (zh) * | 2014-01-14 | 2018-05-15 | 美卓矿物工业公司 | 顶部支撑的主轴悬挂系统 |
CN104525314B (zh) * | 2014-10-11 | 2017-03-15 | 内蒙古科技大学 | 一种粉碎机的粉碎室内气固两相流场特性的测试方法 |
CN104525314A (zh) * | 2014-10-11 | 2015-04-22 | 内蒙古科技大学 | 一种粉碎机的粉碎室内气固两相流场特性的测试方法 |
CN109201303A (zh) * | 2018-09-18 | 2019-01-15 | 中山斯瑞德环保科技股份有限公司 | 一种提高液压破碎机破碎效率的优化控制方法 |
CN110038687A (zh) * | 2019-04-29 | 2019-07-23 | 山东赛维环保科技有限公司 | 一种建筑垃圾处理装置 |
CN113769870A (zh) * | 2021-09-15 | 2021-12-10 | 淮北矿业股份有限公司临涣选煤厂 | 基于煤炭装车系统的精准配煤破碎筛分机构 |
CN113769870B (zh) * | 2021-09-15 | 2022-12-09 | 淮北矿业股份有限公司临涣选煤厂 | 基于煤炭装车系统的精准配煤破碎筛分机构 |
Also Published As
Publication number | Publication date |
---|---|
FI40673B (de) | 1968-12-31 |
GB1019379A (en) | 1966-02-02 |
FR1382099A (fr) | 1964-12-18 |
ES292331A1 (es) | 1964-01-16 |
CH402576A (fr) | 1965-11-15 |
AT268024B (de) | 1969-01-27 |
NL299978A (de) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3300149A (en) | Electric stress sensing devices for crushing machines | |
CN202778572U (zh) | 一种液压保护颚式破碎机 | |
KR20110050810A (ko) | 콘 크러셔의 마모도 감시장치 | |
US3754716A (en) | Gyratory crushers | |
US3305181A (en) | Gyratory crushers | |
US3275538A (en) | Electrochemical machining method and apparatus | |
GB750535A (en) | Improvements in controlling the feed of material to crushers | |
GB1185447A (en) | Means and Method for Controlling the Output Granulometry of Grinders and Crushers. | |
US2293670A (en) | Means for the localization, control, or prevention of fires | |
US3405219A (en) | Tilt responsive and weight responsive means to protect arc furnace electrodes from accidental breakage | |
US3599883A (en) | Gyratory crusher with setting indicator | |
CN211248553U (zh) | 一种应于煤矿的剪板机堆料报警装置及剪板机 | |
CN211436397U (zh) | 一种可实现自动调节的反击板装置 | |
SU419241A1 (ru) | Конусная дробилка | |
US3573406A (en) | Contact sensor adapted to be engaged by traveling articles of electrically conducting material | |
CN107813039A (zh) | 等离子割炬初始定位装置 | |
CN208019218U (zh) | 一种压力可调冲压机 | |
US3829703A (en) | Power sensing and shut-off apparatus | |
CN206966395U (zh) | 冲床模具的保护装置 | |
US3396915A (en) | Bowl adjustment for crushers | |
CN210906313U (zh) | 一种圆锥式破碎机弹簧保险装置 | |
RU2318598C2 (ru) | Щековая дробилка | |
CN213981456U (zh) | 油缸及具有其的破碎机 | |
SU546368A1 (ru) | Щекова дробилка | |
US3473357A (en) | Safety devices for sheet metal presses and the like |