US3295327A - Underground structure - Google Patents
Underground structure Download PDFInfo
- Publication number
- US3295327A US3295327A US405432A US40543264A US3295327A US 3295327 A US3295327 A US 3295327A US 405432 A US405432 A US 405432A US 40543264 A US40543264 A US 40543264A US 3295327 A US3295327 A US 3295327A
- Authority
- US
- United States
- Prior art keywords
- shell
- liner
- vessel
- grout
- annular space
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C3/00—Vessels not under pressure
- F17C3/005—Underground or underwater containers or vessels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0104—Shape cylindrical
- F17C2201/0109—Shape cylindrical with exteriorly curved end-piece
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0104—Shape cylindrical
- F17C2201/0119—Shape cylindrical with flat end-piece
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/03—Orientation
- F17C2201/032—Orientation with substantially vertical main axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/05—Size
- F17C2201/052—Size large (>1000 m3)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/01—Reinforcing or suspension means
- F17C2203/011—Reinforcing means
- F17C2203/012—Reinforcing means on or in the wall, e.g. ribs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0604—Liners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0612—Wall structures
- F17C2203/0626—Multiple walls
- F17C2203/0629—Two walls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0636—Metals
- F17C2203/0639—Steels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0678—Concrete
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0302—Fittings, valves, filters, or components in connection with the gas storage device
- F17C2205/0323—Valves
- F17C2205/0335—Check-valves or non-return valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2209/00—Vessel construction, in particular methods of manufacturing
- F17C2209/23—Manufacturing of particular parts or at special locations
- F17C2209/232—Manufacturing of particular parts or at special locations of walls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/032—Hydrocarbons
- F17C2221/033—Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/032—Hydrocarbons
- F17C2221/035—Propane butane, e.g. LPG, GPL
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
- F17C2223/0161—Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/033—Small pressure, e.g. for liquefied gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/04—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
- F17C2223/042—Localisation of the removal point
- F17C2223/046—Localisation of the removal point in the liquid
- F17C2223/047—Localisation of the removal point in the liquid with a dip tube
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/04—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by other properties of handled fluid after transfer
- F17C2225/042—Localisation of the filling point
- F17C2225/043—Localisation of the filling point in the gas
- F17C2225/044—Localisation of the filling point in the gas at several points, e.g. with a device for recondensing gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/01—Propulsion of the fluid
- F17C2227/0128—Propulsion of the fluid with pumps or compressors
- F17C2227/0135—Pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/01—Propulsion of the fluid
- F17C2227/0128—Propulsion of the fluid with pumps or compressors
- F17C2227/0171—Arrangement
- F17C2227/0178—Arrangement in the vessel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0142—Applications for fluid transport or storage placed underground
- F17C2270/0144—Type of cavity
- F17C2270/0147—Type of cavity by burying vessels
Definitions
- An important object of the present invention is to provide a novel form of double-wall housing member.
- Another object is to provide a structure of this type having a metal liner encircled by a metal shell with reinforcing elements positioned in the space between the liner and shell.
- Another object is to provide such a structure in which the liner and shell are circular in cross-section and wherein the reinforcing elements are located in the an- -nulus between them to form a trussed beam, and means defining a passage into the annulus for directing a refrigerating medium into the space between the liner and shell.
- FIGURES 1, 2, and 3 are side elevations in diagrammatic form, showing steps in forming the shaft in the earth for subsequent reception of the double-wall reinforced structure embodying my invention.
- FIGURES 4 and 5 are side elevation views in diagrammatc form, showing steps in the method of placing the double-wall reinforced structure.
- FIGURE 6 is a side elevation of the completed structure installed in an underground location.
- FIGURE 7 is a sectional view, partly broken away, taken substantially on the lines 7-7 as shown in FIG- URE 6.
- FGURE 8 is a perspective view, partly broken away, illustrating a modified form of the double-wall reinforced structure.
- FIGURE 9 is a View similar to FIGURE 8, showing a second modification.
- FIGURE 10 is a view similar to FIGURE 6, showing a third modification.
- FIGURE 11 is an enlarged sectional detaii taken in the location shown by the arrows 11 on FIGURE 10.
- FIGURE 12 is a transverse sectional detail taken substantially on the lines 12-12 as shown in FIGURE 11.
- FIGURE 13 is a view similar to FIGURE 10, showing a further modification.
- FIGURE 14 is an enlarged sectional detail of a portion of FIGURE 13.
- FEGURE 15 is a sectional View taken substantially on lines 15-15 as shown on FIGUR'E 14.
- an excavation is first made in the earth to form a shallow hole 10 having sloping sides 11 and a horizontal fioor 12.
- a support structure '13 including a base ring 111, is then installed on the fioor 12.
- a conventional di'illing machine 15 turns a sectional pipe 16 having a bit 17 at the lower end in a conventional manner. A small diameter hole is thus drilled to the desired depth.
- the small hole 18 is enlarged by means of a Wing bit 19, having a pilot 20 and carried on the lower end of the sectional drill pipe 1a.
- a relatively large diameter shaft 21 is forrned by the bit 10 as the drilling machine 15 turns the drill pipe 16.
- An underreamer, not shown, is then used to form an enlarged cavity "ice 22 at the lower end of the shaft 21.
- Cementitious material such as, for example, concrete, is then introduced into the lower end of the hole by means of a tremie pipe 23. The concrete displaces the drilling fluid in the hole and forms a plug 24, filling the lower end of the shaft 21.
- the tremie pipe 23 is then withdrawn.
- a double-wall housing member, generally designated 25, is constructed in the shop and transported to the jobsite. As shown in the drawings, this member 25 comprises a cylindrical steel liner 26 encircled by a cylindrical steel shell 27. The liner and shell are concentric, and the annular space 23 between them contains steel reinforcing members 29 integrally joined' to the shell and liner by welding. Member 25 thus comprises a trussed ⁇ circular beam.
- a pipe coupling 31 is mounted centrally of this bottom wall 30 and projects therethrough.
- a grout delivery pipe 32 extends centrally through the member 25 and is connected to the coupling 31 at its lower end.
- a grout distributor assembly 33 is connected to the coupling 31 below the bottom wall 30.
- This assernbly 33 includes a central hollow member, having a plurality of tubular spokes 34 radiating therefrom.
- a short hollow tubular member 35 closed at its lower end also projects below the bottom wall 30 and communicates with the interior of the liner 26, to form a sump.
- the d'iameter of the shaft 21 is only slightly larger than the outer diameter of the cylindrical shell 27, while the cavity 22 is considerably larger.
- the member 25, which may be constmcted in the shop under ideal cond'itions, is transported to the jobsite and then placed upright position over the shaft 21.
- Conven'tional means are employed for lowering the double-wall member 25 into the shaft which is initially filled with drilling fluid. Since the lower end 30 of the member 25 is closed, the member may be '*iloated into position, displacing the mud fiuid 22 from the hole 21 and enlarged cavity 22. Control of the member 25 during the lowering operation is facilitated by controlling the buoyancy thereof, and this is effected by admitting drilli'ng fiuid into the interior of the liner 26. As the member 25 moves downward into the shaft, drilling fiuid is displaced upward' through the clearance space between the shell 25 and the hole 21 and also through the annular space 28 between the shell 27 and the liner 26.
- FIGURE 4 shows the position of the parts at the end of the lowering operation.
- the lower end of the member 25 projects into the enlarged cavity 22, and the grout distributor device 33 lies immediately above the cementitious plug 24.
- Drilling fluid remains in the enlarged cavity 22 and in the shaft 21 outside the member 25 and also remains inside the annular space 28. Excess drilli'ng fluid displaced from the cavity 22 and shaft 21, and not transferred into the interior of the liner 25, is pumped from the hole 10 by conventional means, not shown.
- Grout delivery pipes 37 are then installed in the annular space 28 so that their lower ends termi-nate near the lower end of said space 28, and grout is then forced downward through the pipes 32 and 37 into the lower end of the enlarged cavity 22. This action displaces the remaining drilling fluid and causes it to escape upward through the annulus 28 and through the clearance space between the shaft 21 and the shell 27.
- a trough 30 may be provided at the surface, if desired, to facilitate in removing the drilling fiuid thus displaced by means of pump 39 and discharge pipe 40. Efiicient displacement of drilling uid' by means of grout is assured by the action of the radiating hollow spokes 34 on the grout distributor 33.
- FIGURE 6 there is shown a cross-section of the completed installation.
- Metal landing shoes 41 fixed to the lower end of the double-wall member 25 are shown in position and embedded within the cementitious sheath 42. These landing shoes 41 are omitted in FIGURES 4 and for clarity of illustration.
- the interior of the liner 26 is pumped free of drilling fiuid, and the grout pipes 32 and 37 are withdrawn.
- a metal plug 43 replaces the coupling 31.
- a tubular extension 44 projects upward from the liner 26 and is connected thereto by means of a welded joint 45.
- An enclosure 46 formed by reinforced concrete walls 47 surrounds the upward extension 44, and the member 14 may be joined integrally to form a part of the walls 47.
- a reinforced concrete cover 48 may be provided and mounted to slide horizontally to expose the central opening 49, when desired.
- the double-wall member 25 with its reinforcing elements forming a trussed circular beam, forms an exceptionally strong underground housing or silo for a missile.
- the relatively light weight of the double-wall structure permits its fabrication under factory conditions rather than field conditions, and subsequent installation without danger of collapse.
- My divisional application entitled Method of Constructing an Underground Structure, Serial No. 495,372, filed September 1, 1965, is directed to a method of constructing an underground structure of the type described.
- the modified form of my invention shown in FIG- URES 10, 11, and 12, to which my divisional application entitled Underground Storage Vessel, Serial No. 551,710, fiied May 20, 1966, is directed, relates to a storage vessel 56 for liquid petroleum gas.
- the vessel comprises a steel and prestressed concrete structure that is capable of storing vapor-phase products under high pressures.
- a hole 51 is drilled in the earth having a diameter and depth to accommodate the size of the storage vessel. As an example, the diameter may be about 20 feet and the clepth about 250 feet, for a vessel of 10,000-barrel volume.
- a portion 52 of the hole 51 is reamed to a larger diameter near the upper end of the vessel 50, for example, about 25 to 32 feet below the ground surface 53. This reamed section 52 of the hole 51. provides space for the later construction of a concrete disk or cap 54 that is thus effectively keyed to undisturbed earth materials.
- the double-wall casing member 56 is preferably prefabricated in sections and comprises a cylindrical metal liner 57 encircled by a cylindrical metal shell 58.
- the metal shell 58 is longitudinally corrugated as shown in FIGURE 12.
- a cage 60 of metal-reinforcing bars is positioned in the annular space between the liner 57 and the corrugated shell 53.
- the cage 60 includes Vertical bars 61 welded to the liner 57, Vertical bars 62 spaced therefrom in a circumferential series, and horizontal crimped reinforcing bars 63 welded to the Vertical bars 61 and 62 and welded to the liner 57.
- the Vertical bars 62 are spaced so that they extend into the outer portions of the longitudinal corrugations in the shell 58.
- Vertical grout pipes 66 are loosely positioned within the reinforcing cage 56.
- the double-wall casing member 56 is 'fioated into the hole 51, additional Sections being connected end-to-end as the lowering operation progresses.
- the rate of lowering the casing member 66 is Controlled by pumping water into the annular space between the liner 57 and shell 53. This annular space is closed at the bottom by means of the annular steel ring 65a.
- a sand layer 67 is placed in the annular space between the corrugated shell 58 and the hole 51.
- the annular space between the liner 57 and shell 58 and the interior of the vessel are both filled with water.
- Cement is then poured through the pipe 71 to form the concrete floor 65 and is allowed to set.
- Grout is then pumped under pressure through the grout pipes 66 to fill the annular space between the liner 57 and the corrugated shell 58 with cementitious material.
- the grout pipes 66 are withdrawn upwardly while the pumps continue to force grout through the pipes 66 to fill the annular' space contai'ning the reinforcing cage 60.
- the pumping pressure is Controlled by limiting the fiow of water displaced from the annular space.
- the pressure grouting expands the outer shell 58 against the sand layer 67, but the liner 57 is substantially unatfected, because the pump pressure of the grout acts upon the water confined within the vessel.
- the grout pipes 66 are completely withdrawn from the annual space, the curing of the grout takes place while the interior of the vessel is still full of water.
- the earth exerts a ring-compression force against the vessel for elfectively closing any longitudinal cracks that may develop in the concrete grout. Circumferential cracks are closed by the weight of the vessel and to some degree by elastic rebound of the steel liner and shell and of the reinforcing cage 60.
- the reinforced concrete cap 54 is poured in position within the portion 52 of the hole 51.
- the modified form of the invention shown in FIGURE l3 relates to storage of liquid natural gas in a refrigerated underground pressure vessel.
- the pressure vessel is of the double-wall construction previously described and includes a metal 'cylindrical liner 81 enclosed by a metal corrugated shell 82.
- the corrugations of the shell 82 extend circumferentially rather than longitudinally.
- the annular space 83 between the liner 31 and the shell 82 contains metal reinforcing lbars welded to both the liner 81 and the shell 82.
- These bars84 may take any suitable or desirable form, and they serve as reinforcing spacers between the liner S1 and the shell 32.
- the shell 80 is floated into position within the hole 85 in the manner described above, and an insulating type of concrete, preferably containing vermiculite, is placed in position within the hole 85 and outside the corrugated shell 32.
- This cold tank draws natural gas from the main 91 through reducer 93 due to lowering of the temperature it is regasified either artificially or by lche ambient temperature of the ground.
- pressnres in the vessel may be somewhat lower, and a pump may be used to return gas to the main 91.
- Natural gas can be placed in storage during low-use months with relatively small compressing equipment.
- the operation of the storage is automatic.
- the vessel is cooled uniformly, thus reducing differential stresses occasioned by the low temperatnres.
- the refrigerant (methane) also acts as an insulator.
- elatively small storage facilities can be located along distribution systems to maintain minimal line pressures, much like standapipes on water-supply systems.
- Natural gas, rather than relatively pure methane can be stored because the liquid mixture of hydroearbons is returned to the main.
- the .heat transfer through the reinforcing bars is insignificant because of their small cross-sectional area. No corrosion of the steel liner or Shell occurs because the low Operating temperatures.
- a double-wall member having a cylindrical metal liner encircled by a cylindrical metal shell, said liner and shell defining ⁇ 'an annular space between them, metal reinforcing elements positioned in said annular space and joined with said liner and said shell to form a continuous trussed beam, cementitious material surrounding said shel-l, means defining a passage into said annular space for directing a refrigerating medium into the space between the liner and the s'hell, and a subsurface reinforced concrete Cap overlying said shell and said liner.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Description
Jan. 3, 1967 w. D. WATERMAN UNDERGROUND STRUCTURE 5 Sheets-Sheet 1 Filed 001:. 21, 1964 w W M mz p vf% mr f M fl/M/ 5 w. w W z M Jan. 3, 1967 w. D. WATERMAN 3,295'327 UNDERGROUND STRUCTURE Filed Oct. 21, 1964 5 Sheets-Sheet M R o EE M M7 z 0 M W 27 7 if W xw Z Z Wa a Y M B WM w W W z g v v M z Jan. 3, 1967 w. D. WATERMAN UNDERGROUND STRUCTURE 5 Sheets-Sheet :5
Filed Oct. 21, 1964 Jan. 3, 1967 w. D. WATERMAN UNDERGROUND STRUCTURE 5 Sheets-Sheet Filed Oct. 21, 1964 United States Patent 3,295,327 UNDERGROUND STRUCTURE Willis i). Waterman, Salina, Kans., assignor to Hallihurton Company, Duncan, Ghia., a corporation of Delaware Filed Get. 21, 1964, Ser. No. 405,432 1 Claim. (Cl. 61-5) This application is a continuation-in-part of my earlier application, Serial No. 207,658, filed luly 5, 1962. This i-'nvention relates to underground structures and is particularly directed to an improved underground storage vessel.
An important object of the present invention is to provide a novel form of double-wall housing member.
Another object is to provide a structure of this type having a metal liner encircled by a metal shell with reinforcing elements positioned in the space between the liner and shell.
Another object is to provide such a structure in which the liner and shell are circular in cross-section and wherein the reinforcing elements are located in the an- -nulus between them to form a trussed beam, and means defining a passage into the annulus for directing a refrigerating medium into the space between the liner and shell.
Other and more detaiied objects and advantages Will appear hereinafter.
in the drawings:
FIGURES 1, 2, and 3 are side elevations in diagrammatic form, showing steps in forming the shaft in the earth for subsequent reception of the double-wall reinforced structure embodying my invention.
FIGURES 4 and 5 are side elevation views in diagrammatc form, showing steps in the method of placing the double-wall reinforced structure.
FIGURE 6 is a side elevation of the completed structure installed in an underground location.
FIGURE 7 is a sectional view, partly broken away, taken substantially on the lines 7-7 as shown in FIG- URE 6.
FGURE 8 is a perspective view, partly broken away, illustrating a modified form of the double-wall reinforced structure.
FIGURE 9 is a View similar to FIGURE 8, showing a second modification.
FIGURE 10 is a view similar to FIGURE 6, showing a third modification.
FIGURE 11 is an enlarged sectional detaii taken in the location shown by the arrows 11 on FIGURE 10.
FIGURE 12 is a transverse sectional detail taken substantially on the lines 12-12 as shown in FIGURE 11.
FIGURE 13 is a view similar to FIGURE 10, showing a further modification.
FIGURE 14 is an enlarged sectional detail of a portion of FIGURE 13.
Referring to the drawings, an excavation is first made in the earth to form a shallow hole 10 having sloping sides 11 and a horizontal fioor 12. A support structure '13, including a base ring 111, is then installed on the fioor 12. A conventional di'illing machine 15 turns a sectional pipe 16 having a bit 17 at the lower end in a conventional manner. A small diameter hole is thus drilled to the desired depth.
As shown in FIGURE 2, the small hole 18 is enlarged by means of a Wing bit 19, having a pilot 20 and carried on the lower end of the sectional drill pipe 1a. A relatively large diameter shaft 21 is forrned by the bit 10 as the drilling machine 15 turns the drill pipe 16. An underreamer, not shown, is then used to form an enlarged cavity "ice 22 at the lower end of the shaft 21. Cementitious material, such as, for example, concrete, is then introduced into the lower end of the hole by means of a tremie pipe 23. The concrete displaces the drilling fluid in the hole and forms a plug 24, filling the lower end of the shaft 21. The tremie pipe 23 is then withdrawn.
A double-wall housing member, generally designated 25, is constructed in the shop and transported to the jobsite. As shown in the drawings, this member 25 comprises a cylindrical steel liner 26 encircled by a cylindrical steel shell 27. The liner and shell are concentric, and the annular space 23 between them contains steel reinforcing members 29 integrally joined' to the shell and liner by welding. Member 25 thus comprises a trussed `circular beam.
A circular bottom wall 30, formed of steel plate, closes the lower end of the liner 26. A pipe coupling 31 is mounted centrally of this bottom wall 30 and projects therethrough. A grout delivery pipe 32 extends centrally through the member 25 and is connected to the coupling 31 at its lower end. A grout distributor assembly 33 is connected to the coupling 31 below the bottom wall 30. This assernbly 33 includes a central hollow member, having a plurality of tubular spokes 34 radiating therefrom.
A short hollow tubular member 35 closed at its lower end also projects below the bottom wall 30 and communicates with the interior of the liner 26, to form a sump.
The d'iameter of the shaft 21 is only slightly larger than the outer diameter of the cylindrical shell 27, while the cavity 22 is considerably larger. The member 25, which may be constmcted in the shop under ideal cond'itions, is transported to the jobsite and then placed upright position over the shaft 21. Conven'tional means are employed for lowering the double-wall member 25 into the shaft which is initially filled with drilling fluid. Since the lower end 30 of the member 25 is closed, the member may be '*iloated into position, displacing the mud fiuid 22 from the hole 21 and enlarged cavity 22. Control of the member 25 during the lowering operation is facilitated by controlling the buoyancy thereof, and this is effected by admitting drilli'ng fiuid into the interior of the liner 26. As the member 25 moves downward into the shaft, drilling fiuid is displaced upward' through the clearance space between the shell 25 and the hole 21 and also through the annular space 28 between the shell 27 and the liner 26.
FIGURE 4 shows the position of the parts at the end of the lowering operation. In this position, the lower end of the member 25 projects into the enlarged cavity 22, and the grout distributor device 33 lies immediately above the cementitious plug 24. Drilling fluid remains in the enlarged cavity 22 and in the shaft 21 outside the member 25 and also remains inside the annular space 28. Excess drilli'ng fluid displaced from the cavity 22 and shaft 21, and not transferred into the interior of the liner 25, is pumped from the hole 10 by conventional means, not shown.
In FIGURE 6 there is shown a cross-section of the completed installation. Metal landing shoes 41 fixed to the lower end of the double-wall member 25 are shown in position and embedded within the cementitious sheath 42. These landing shoes 41 are omitted in FIGURES 4 and for clarity of illustration. The interior of the liner 26 is pumped free of drilling fiuid, and the grout pipes 32 and 37 are withdrawn. A metal plug 43 replaces the coupling 31. A tubular extension 44 projects upward from the liner 26 and is connected thereto by means of a welded joint 45. An enclosure 46 formed by reinforced concrete walls 47 surrounds the upward extension 44, and the member 14 may be joined integrally to form a part of the walls 47. A reinforced concrete cover 48 may be provided and mounted to slide horizontally to expose the central opening 49, when desired.
From the above description, it will be understood that the double-wall member 25, with its reinforcing elements forming a trussed circular beam, forms an exceptionally strong underground housing or silo for a missile. Moreover, the relatively light weight of the double-wall structure permits its fabrication under factory conditions rather than field conditions, and subsequent installation without danger of collapse. My divisional application entitled Method of Constructing an Underground Structure, Serial No. 495,372, filed September 1, 1965, is directed to a method of constructing an underground structure of the type described.
The modified form of my invention, shown in FIG- URES 10, 11, and 12, to which my divisional application entitled Underground Storage Vessel, Serial No. 551,710, fiied May 20, 1966, is directed, relates to a storage vessel 56 for liquid petroleum gas. The vessel comprises a steel and prestressed concrete structure that is capable of storing vapor-phase products under high pressures. A hole 51 is drilled in the earth having a diameter and depth to accommodate the size of the storage vessel. As an example, the diameter may be about 20 feet and the clepth about 250 feet, for a vessel of 10,000-barrel volume. A portion 52 of the hole 51 is reamed to a larger diameter near the upper end of the vessel 50, for example, about 25 to 32 feet below the ground surface 53. This reamed section 52 of the hole 51. provides space for the later construction of a concrete disk or cap 54 that is thus effectively keyed to undisturbed earth materials.
The double-wall casing member 56 is preferably prefabricated in sections and comprises a cylindrical metal liner 57 encircled by a cylindrical metal shell 58. The metal shell 58 is longitudinally corrugated as shown in FIGURE 12. A cage 60 of metal-reinforcing bars is positioned in the annular space between the liner 57 and the corrugated shell 53. The cage 60 includes Vertical bars 61 welded to the liner 57, Vertical bars 62 spaced therefrom in a circumferential series, and horizontal crimped reinforcing bars 63 welded to the Vertical bars 61 and 62 and welded to the liner 57. The Vertical bars 62 are spaced so that they extend into the outer portions of the longitudinal corrugations in the shell 58. Vertical grout pipes 66 are loosely positioned within the reinforcing cage 56.
The double-wall casing member 56 is 'fioated into the hole 51, additional Sections being connected end-to-end as the lowering operation progresses. The rate of lowering the casing member 66 is Controlled by pumping water into the annular space between the liner 57 and shell 53. This annular space is closed at the bottom by means of the annular steel ring 65a. When the entire member 56 has been placed in position adjacent the bottom of the hole 51, a sand layer 67 is placed in the annular space between the corrugated shell 58 and the hole 51.
After placement of the sand layer 67, the annular space between the liner 57 and shell 58 and the interior of the vessel are both filled with water. Cement is then poured through the pipe 71 to form the concrete floor 65 and is allowed to set. Grout is then pumped under pressure through the grout pipes 66 to fill the annular space between the liner 57 and the corrugated shell 58 with cementitious material. The grout pipes 66 are withdrawn upwardly while the pumps continue to force grout through the pipes 66 to fill the annular' space contai'ning the reinforcing cage 60. The pumping pressure is Controlled by limiting the fiow of water displaced from the annular space. The pressure grouting expands the outer shell 58 against the sand layer 67, but the liner 57 is substantially unatfected, because the pump pressure of the grout acts upon the water confined within the vessel. After the grouting operation is complete and the grout pipes 66 are completely withdrawn from the annual space, the curing of the grout takes place while the interior of the vessel is still full of water. The earth exerts a ring-compression force against the vessel for elfectively closing any longitudinal cracks that may develop in the concrete grout. Circumferential cracks are closed by the weight of the vessel and to some degree by elastic rebound of the steel liner and shell and of the reinforcing cage 60. After the water has been removed from the interior of the vessel, the reinforced concrete cap 54 is poured in position within the portion 52 of the hole 51.
It will be observed that after construction of the vessel has been completed by the steps described above, that the corrugated steel shell 58 exerts compressive stresses on the concrete in the annular space between the liner and the shell. No unbalanced forces are exerted on the shell 57 of the vessel during the cementing operation because the closed interior of the vessel is filled with water at that time. The water may be removed from the storage area within the vessel by pumping through a product pipe 70, which projects through the pipe 71 connected to the interior of the vessel at its upper end. T'he liquid petroleum gas may be pumped into the vessel through the annular space between the pipes 70 and 71, thereby forcing the water in the vessel to be discharged through the pipe 70. A submersible pump 72 is attached to the lower end of the pipe 70 for the purpose of disoharging liquid petroleum gas through the interior of the pipe 70. Suitable valve connections, not shown, are provided at the ground surface.
The modified form of the invention shown in FIGURE l3 relates to storage of liquid natural gas in a refrigerated underground pressure vessel. The pressure vessel is of the double-wall construction previously described and includes a metal 'cylindrical liner 81 enclosed by a metal corrugated shell 82. The corrugations of the shell 82 extend circumferentially rather than longitudinally. The annular space 83 between the liner 31 and the shell 82 contains metal reinforcing lbars welded to both the liner 81 and the shell 82. These bars84 may take any suitable or desirable form, and they serve as reinforcing spacers between the liner S1 and the shell 32. The shell 80 is floated into position within the hole 85 in the manner described above, and an insulating type of concrete, preferably containing vermiculite, is placed in position within the hole 85 and outside the corrugated shell 32.
A thermostatically Controlled compressor at the surface together with associated refrigerating means, not shown, cools the annular space between the liner 81 and shell 80 to form a condensing tank of the interior of the vessel. This cold tank draws natural gas from the main 91 through reducer 93 due to lowering of the temperature it is regasified either artificially or by lche ambient temperature of the ground. Alternatively, pressnres in the vessel may be somewhat lower, and a pump may be used to return gas to the main 91.
The following are among the advantages of the apparatus shown in FIGURE 13: Natural gas can be placed in storage during low-use months with relatively small compressing equipment. The operation of the storage is automatic. The vessel is cooled uniformly, thus reducing differential stresses occasioned by the low temperatnres. The refrigerant (methane) also acts as an insulator. elatively small storage facilities can be located along distribution systems to maintain minimal line pressures, much like standapipes on water-supply systems. Natural gas, rather than relatively pure methane, can be stored because the liquid mixture of hydroearbons is returned to the main. The .heat transfer through the reinforcing bars is insignificant because of their small cross-sectional area. No corrosion of the steel liner or Shell occurs because the low Operating temperatures.
Having fully described by invention, it is to be under- Stood that I am not to be limited to the details herein set forth but that my invention is of the full scope of the appended claim.
I claim:
In an underground structure, the combination of: a double-wall member having a cylindrical metal liner encircled by a cylindrical metal shell, said liner and shell defining `'an annular space between them, metal reinforcing elements positioned in said annular space and joined with said liner and said shell to form a continuous trussed beam, cementitious material surrounding said shel-l, means defining a passage into said annular space for directing a refrigerating medium into the space between the liner and the s'hell, and a subsurface reinforced concrete Cap overlying said shell and said liner.
References Cited by the Examiner UNITED STATES PATENTS 460,545 9/1891 Wolf 61-40 480,127 8/ 1892 ORourke 61-81 1,221,068 4/1917 McBean 61-40 1,618,973 3/1927 Briel 61-41 1,847,814 3/1932 Byrne 61-41 1,930,285 10/1933 Robinson 138-148 2,184,380 12/1939 Diebel 220-13 3,097,084 7/ 1963 Putman 62-45 3,151,416 10/1964 Eakin et al 61-.5 X
FOREIGN PATENTS 528,564 5/1954 Belgium. 1,078,027 11/1954 France.
257,682 3/1913 Germany.
564,310 11/1932 Germany. 1,012,274 7/1957 Germany. 1,120,402 12/ 1961 Germany.
169,290 9/ 1921 Great Britain.
664,136 1/ 1952 Great Britain.
74,132 2/ 1954 Netherlands.
CHARLES E. O'CONNELL, Primary Examner.
IACOB SHAPIRO, Examiner.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US405432A US3295327A (en) | 1964-10-21 | 1964-10-21 | Underground structure |
US495372A US3307361A (en) | 1964-10-21 | 1965-09-01 | Method of constructing an underground structure |
US551710A US3352116A (en) | 1964-10-21 | 1966-05-20 | Underground storage vessel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US405432A US3295327A (en) | 1964-10-21 | 1964-10-21 | Underground structure |
Publications (1)
Publication Number | Publication Date |
---|---|
US3295327A true US3295327A (en) | 1967-01-03 |
Family
ID=23603678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US405432A Expired - Lifetime US3295327A (en) | 1964-10-21 | 1964-10-21 | Underground structure |
Country Status (1)
Country | Link |
---|---|
US (1) | US3295327A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3436921A (en) * | 1966-06-15 | 1969-04-08 | Case Foundation Co | Apparatus and method of producing shafts and caissons |
US3823793A (en) * | 1972-10-02 | 1974-07-16 | Asahi Chemical Ind | Semi-sealed silencer structure |
JPS5197011A (en) * | 1975-02-24 | 1976-08-26 | Tankuni oite sokuban oyobi sokuteitsugitebunihatsuseisuru oryokuokeigensurunijusokuhekihoho oyobi kozo | |
US4821915A (en) * | 1987-03-09 | 1989-04-18 | Corespan, Inc. | Twin wall fiberglass tank and method of producing the same |
US4971225A (en) * | 1986-09-19 | 1990-11-20 | Bravo Sergio M | Gasoline collector pit box and submersible unit box |
US4976110A (en) * | 1989-04-03 | 1990-12-11 | Altank Industries Ltd. | Support system for vacuum insulated cylindrical cryogenic vessels |
US5100024A (en) * | 1986-09-19 | 1992-03-31 | Bravo Sergio M | Gasoline collector pit box and submersible unit box |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL74132C (en) * | ||||
DE257682C (en) * | ||||
US460545A (en) * | 1891-09-29 | Method of driving tunnels oe sinking shafts | ||
US480127A (en) * | 1892-08-02 | o rourke | ||
US1221068A (en) * | 1916-03-20 | 1917-04-03 | Duncan D Mcbean | Method of building and placing piers. |
GB169290A (en) * | 1919-06-09 | 1921-09-26 | Dwight Gregory Vedder | Water shut-off in wells such as oil wells |
US1618973A (en) * | 1919-08-29 | 1927-03-01 | Breil Wilhelm | Tubbing |
DE528564C (en) * | 1925-09-05 | 1931-07-01 | Usines De Melle Sa Des | Process for extracting cane sugar from molasses or syrup using acetic acid |
US1847814A (en) * | 1931-04-06 | 1932-03-01 | Jr Thomas Byrne | Caisson construction |
DE564310C (en) * | 1930-11-16 | 1932-11-17 | Heinrich Ruoff | Manhole lining made from corrugated iron segments |
US1930285A (en) * | 1929-05-27 | 1933-10-10 | Roy H Robinson | Built up metal tube, frame and skeletonized metal member of high strength weight, and method of forming same |
US2184380A (en) * | 1936-12-28 | 1939-12-26 | Ernest C Deibel | Thermal exchange barrel |
GB664136A (en) * | 1948-12-17 | 1952-01-02 | Nicolaas Willem Conijn | A method for constructing a shaft lining |
FR1078027A (en) * | 1952-06-05 | 1954-11-15 | Werf Gusto V H A F Smulders Fa | Method for installing a lining or casing of wells, and casing for the implementation of this method |
DE1012274B (en) * | 1956-10-02 | 1957-07-18 | Eisen & Stahlind Ag | Detachable support ring for manhole linings |
DE1120402B (en) * | 1956-06-15 | 1961-12-28 | Froelich & Kluepfel Maschinenf | Double tubbing shaft extension |
US3097084A (en) * | 1961-10-09 | 1963-07-09 | Superior Air Products Co | Liquefied gas container |
US3151416A (en) * | 1961-05-15 | 1964-10-06 | Inst Gas Technology | Method of constructing a liquefied gas container |
-
1964
- 1964-10-21 US US405432A patent/US3295327A/en not_active Expired - Lifetime
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE257682C (en) * | ||||
US460545A (en) * | 1891-09-29 | Method of driving tunnels oe sinking shafts | ||
US480127A (en) * | 1892-08-02 | o rourke | ||
NL74132C (en) * | ||||
US1221068A (en) * | 1916-03-20 | 1917-04-03 | Duncan D Mcbean | Method of building and placing piers. |
GB169290A (en) * | 1919-06-09 | 1921-09-26 | Dwight Gregory Vedder | Water shut-off in wells such as oil wells |
US1618973A (en) * | 1919-08-29 | 1927-03-01 | Breil Wilhelm | Tubbing |
DE528564C (en) * | 1925-09-05 | 1931-07-01 | Usines De Melle Sa Des | Process for extracting cane sugar from molasses or syrup using acetic acid |
US1930285A (en) * | 1929-05-27 | 1933-10-10 | Roy H Robinson | Built up metal tube, frame and skeletonized metal member of high strength weight, and method of forming same |
DE564310C (en) * | 1930-11-16 | 1932-11-17 | Heinrich Ruoff | Manhole lining made from corrugated iron segments |
US1847814A (en) * | 1931-04-06 | 1932-03-01 | Jr Thomas Byrne | Caisson construction |
US2184380A (en) * | 1936-12-28 | 1939-12-26 | Ernest C Deibel | Thermal exchange barrel |
GB664136A (en) * | 1948-12-17 | 1952-01-02 | Nicolaas Willem Conijn | A method for constructing a shaft lining |
FR1078027A (en) * | 1952-06-05 | 1954-11-15 | Werf Gusto V H A F Smulders Fa | Method for installing a lining or casing of wells, and casing for the implementation of this method |
DE1120402B (en) * | 1956-06-15 | 1961-12-28 | Froelich & Kluepfel Maschinenf | Double tubbing shaft extension |
DE1012274B (en) * | 1956-10-02 | 1957-07-18 | Eisen & Stahlind Ag | Detachable support ring for manhole linings |
US3151416A (en) * | 1961-05-15 | 1964-10-06 | Inst Gas Technology | Method of constructing a liquefied gas container |
US3097084A (en) * | 1961-10-09 | 1963-07-09 | Superior Air Products Co | Liquefied gas container |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3436921A (en) * | 1966-06-15 | 1969-04-08 | Case Foundation Co | Apparatus and method of producing shafts and caissons |
US3823793A (en) * | 1972-10-02 | 1974-07-16 | Asahi Chemical Ind | Semi-sealed silencer structure |
JPS5197011A (en) * | 1975-02-24 | 1976-08-26 | Tankuni oite sokuban oyobi sokuteitsugitebunihatsuseisuru oryokuokeigensurunijusokuhekihoho oyobi kozo | |
US4971225A (en) * | 1986-09-19 | 1990-11-20 | Bravo Sergio M | Gasoline collector pit box and submersible unit box |
US5100024A (en) * | 1986-09-19 | 1992-03-31 | Bravo Sergio M | Gasoline collector pit box and submersible unit box |
US4821915A (en) * | 1987-03-09 | 1989-04-18 | Corespan, Inc. | Twin wall fiberglass tank and method of producing the same |
US4976110A (en) * | 1989-04-03 | 1990-12-11 | Altank Industries Ltd. | Support system for vacuum insulated cylindrical cryogenic vessels |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3613792A (en) | Oil well and method for production of oil through permafrost zone | |
US5207530A (en) | Underground compressed natural gas storage and service system | |
US3522709A (en) | Marine platform structure | |
US10995906B1 (en) | Underground hydrogen storage vessel | |
US3307361A (en) | Method of constructing an underground structure | |
CN108357849B (en) | Underground water-sealed cave depot system and underground water-sealed cave depot oil storage method | |
US3295327A (en) | Underground structure | |
US3352116A (en) | Underground storage vessel | |
US3488967A (en) | Combination deep water storage tank and drilling and production platform | |
US3701262A (en) | Means for the underground storage of liquified gas | |
US3766985A (en) | Production of oil from well cased in permafrost | |
US5131790A (en) | Method and apparatus for installation of an outer-cased piling | |
US4136493A (en) | Supporting structure for containers used in storing liquefied gas | |
US5259702A (en) | Method for installation of an outer-cased piling | |
US4717285A (en) | Cistern for liquid or gas, constructed of reinforced concrete | |
US5746540A (en) | Method of isolating a nuclear reactor or other large structures | |
RU2157872C2 (en) | Mechanical design of cooled fill footing of structures and method for temperature control of permafrost soils | |
CA1293383C (en) | Method and apparatus for piled foundation improvement with freezing using down-hole refrigeration units | |
US4112690A (en) | Method and construction of underground tank well | |
US3971227A (en) | Installation of expanded base piles | |
US3309883A (en) | Underground cryogenic storage of liquefied gas | |
US3838575A (en) | Method of grouting offshore structure | |
CA1067397A (en) | Method and means for lining deep shafts | |
US4191492A (en) | Method of installing a liner in a large diameter borehole | |
US3106824A (en) | Method of underground fluid storage |