US3289452A - Method and device for bonding a contact wire to a semiconductor member - Google Patents
Method and device for bonding a contact wire to a semiconductor member Download PDFInfo
- Publication number
- US3289452A US3289452A US372912A US37291264A US3289452A US 3289452 A US3289452 A US 3289452A US 372912 A US372912 A US 372912A US 37291264 A US37291264 A US 37291264A US 3289452 A US3289452 A US 3289452A
- Authority
- US
- United States
- Prior art keywords
- wire
- blade
- nozzle
- blades
- cutting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title abstract description 12
- 238000005520 cutting process Methods 0.000 claims abstract description 56
- 238000009966 trimming Methods 0.000 claims description 12
- 238000005452 bending Methods 0.000 abstract description 9
- 239000011521 glass Substances 0.000 abstract description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 abstract description 2
- 239000010931 gold Substances 0.000 abstract description 2
- 229910052737 gold Inorganic materials 0.000 abstract description 2
- 238000003466 welding Methods 0.000 abstract description 2
- 238000010008 shearing Methods 0.000 abstract 2
- 230000003014 reinforcing effect Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229910000639 Spring steel Inorganic materials 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 230000009194 climbing Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/74—Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
- H01L24/78—Apparatus for connecting with wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/4501—Shape
- H01L2224/45012—Cross-sectional shape
- H01L2224/45015—Cross-sectional shape being circular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48135—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/48137—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/4823—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a pin of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/4847—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
- H01L2224/48472—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/485—Material
- H01L2224/48505—Material at the bonding interface
- H01L2224/48599—Principal constituent of the connecting portion of the wire connector being Gold (Au)
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/74—Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
- H01L2224/78—Apparatus for connecting with wire connectors
- H01L2224/7825—Means for applying energy, e.g. heating means
- H01L2224/783—Means for applying energy, e.g. heating means by means of pressure
- H01L2224/78301—Capillary
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/852—Applying energy for connecting
- H01L2224/85201—Compression bonding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/852—Applying energy for connecting
- H01L2224/85201—Compression bonding
- H01L2224/85203—Thermocompression bonding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L24/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01019—Potassium [K]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01027—Cobalt [Co]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01043—Technetium [Tc]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01061—Promethium [Pm]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01074—Tungsten [W]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S228/00—Metal fusion bonding
- Y10S228/904—Wire bonding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/49155—Manufacturing circuit on or in base
- Y10T29/49162—Manufacturing circuit on or in base by using wire as conductive path
Definitions
- My invention relates to a method and means of bonding a contact wire to a semiconductor member by thermocompression requiring a simultaneous application of pressure and heat, the temperature being below the melting point of the metal and semiconductor substance that are to be thus bonded to each other.
- the invention relates to thermocompression method and apparatus of the type in which the wire to be attached to the semiconductor bodies is supplied through a guiding nozzle toward the semiconductor surface.
- the wire end protruding from the nozzle opening is pressed onto the semiconductor surface by forcing the suitably shaped lower nozzle edge against the surface and simultaneously subjecting the semiconductor and wire end to the necessary temperature.
- the wire end is first bent laterally so as to lie between the nozzle and the surface against which it is being pressed.
- the wire is trimmed by means of a shear-type cutting device, and the wire end issuing from the nozzle is then bent or crimped generally to the shape of a hook in preparation for the next thermocompressive bonding operation.
- the bending of the wire end can be effected by twisting the closed shear-like tool after cutting the wire and before releasing the wire end adjacent to the nozzle, so as to turn a portion of this end upwardly.
- the wire end thus bent and extending away from the axial direction of the wire is rather long so that it cannot be directly employed for attachment to small semiconductor areas, for example those having a length of less than 150 microns.
- the length of the laterally bent end of the wire can be considerably reduced by adjusting the shear blades in such a manner that the overlapping motion of the blades that cause severing of the wire simultaneously effect the desired crimping of the wire end.
- the length of the wire end extending between the nozzle opening to the cutting plane is equal to the wire diameter plus the thickness of the scissors blade facing the nozzle.
- the length of the wire end portion is about 70 to 120 microns for a wire diameter of about microns and a shear blade thickness of 50 to 100 microns.
- thermocompression methods and devices generally of the abovementioned kind, so as to effect, simultaneously with the thermo-compressive bonding of a wire to a semiconductor body, the formation of a laterally bent and sufficiently short end at the severed supply wire which directly permits this end to be thermocompressively bonded to a semiconductor member having relatively small contact area.
- the bonding of a contact wire to a semiconductor area is effected generally in accordance with the aforementioned principles of the known method, namely by supplying the wire through a guiding nozzle, attaching the protruding wire end to the semiconductor member by thermocompression with the aid of a nozzle, and thereafter trimming the attached wire to a given length by means of a pair of shear blades.
- at least one of the shear blades is elastically yielding relative to the other in a direction perpendicular to the cutting plane and hence parallel to the axis of the wire or nozzle.
- the blades are set relative to each other so that they abut against each other during a cutting stroke but are given an angular cross section at the cutting front so that, due to the elasticity mentioned, the blade located at the side closer to the nozzle will ride up on and then glide over the other blade thereby bending the wire end protruding from the nozzle as the wire is being cut.
- the cutting plane is located at a distance from the nozzle that is shorter than the sum of the wire diameter plus the thickness of the elastically yieldable shear blade adjacent to the nozzle.
- the shear blades of the cutting device are made of elastic material such as spring or tool steel of sufficiently thin gauge as to be capable of yielding in a direction away from the other blade to ride up on and cuttingly glide along the other blade in the manner explained hereinabove.
- the front cutting face of the upper blade i.e., adjacent to the nozzle, is provided with an angular cross section, the angle being at least substantially rectangular and preferably obtuse, having its apex pointing in the cutting direction toward the wire.
- the upper i.e. nozzle-adjacent, shear blade of the cutting tool is provided with a reinforcing member which increases the mechanical strength and rigidity of the blade in an area spaced from the cutting edge.
- the reinforcing member is preferably given a stepped shape so that it has a top portion receding from the blade-contacting bottom portion of the reinforcing member and adapted to the shape of the nozzle. This facilitates loeating the cutting plane at the desired short distance from the nozzle end and also permits using the reinforcing member as a calibrating or adjusting device for properly setting the blade with respect to the nozzle, this being particularly of advantage when using the thermocompression device for mass production.
- FIG. 1 shows schematically and in perspective a device for attaching contact wires to semiconductor components.
- FIGS. 2, 3 and 4 show partly in section and schematical- 1y three different stages of a cutting and bending operation as performed in a thermocompression device heretofore available;
- FIGS. 5, 6 and 7 show schematically and partly in section three different stages of a cutting and simultaneous bending operation performed in accordance with the method and with the aid of the means according to the invention.
- FIG. 1 serves mainly for explaining the cutting operation in conjunction with the other figures.
- a semi-conductor device in this case a mesa transistor 1
- a heated support to assume the temperature required for thermocompressioon.
- a suitable heated support is shown in application Serial No. 335,323, filed January 2, 1964, of which I am coinventer.
- the transistor 1 is to be joined with contact wire at the areas 2, 3 and 4.
- the wire is supplied through a nozzle 5 of glass or other suitable material having an axial capillary 25 through which it is guided.
- the wire -6 consists of gold and has a diameter of about 20 microns.
- a contact 7 on the area 4 is produced by pressing the end of wire 6 against the area 4 with the aid of the nozzle 5 which for this purpose is lowered under an area pressure between approximate limits of 5 and kg. per m-m. onto the transistor 1 that is simultaneously heated to a preferable temperature of about 200 to about 400 C. Thereafter the wire 6 is pulled out of the nozzle 5 and passed to contact area 22 where the wire is attached at 2.7 in the same manner. After the bonding is completed at 4 and 27, the nozzle 5 is moved sufficiently far away from the transistor 1, and the bonded wire 6 is trimmed by means of a cutter consisting substantially of a pair of shear blades 8 and 9 which simultaneously causes the end of the wire to be bent laterally in preparation for the next thermocompressive bonding operation. The thickness of the shear blades is 50 to 100 microns.
- the wire portion projecting from the nozzle opening is bent as the wire is being severed from a wire portion that may or may not be attached to a semiconductor body.
- the bending is the result of the gliding movement which the top blade 8 performs relative to the bottom blade in the cutting direction, i.e. transverse to the axis of the wire or nozzle.
- FIG. 2 shows the cutting device at the beginning of the severing operation.
- the wire is trimmed and the wire end projecting from the nozzle becomes bent as indicated in FIG. 3.
- U1- timately the bent portion forms a hook 11, as shown in FIG. 4.
- the smallest possible length of the laterally bent wire end from the cut tip 12 to the access opening of the capillary 25, corresponding to the distance s1 in FIG. 4, is at best equal to the sum of the wire diameter a plus the thickness r of the blade 8.
- FIGS. 5, 6 and 7 show a cutting and bending device according to the invention in three sequential stages corresponding to those described above with reference to FIGS. 2, 3 and 4 respectively.
- at least one of the blades, namely the upper blade 8, is yieldable away from the lower blade and preferably consists of suitably elastic blade material.
- the cutting front face 13, 15 of the upper blade 8, which is closer to the nozzle 5 than the lower blade 9, is given an angular cross section so that the cutting front of blade 8 slopes downwardly at 15 from the top surface of the blade and upwardly at 13 from the bottom surface of the blade 8, thus forming at the apex of the angle a cutting edge that points in the cutting direction toward the wire (FIG. 5).
- the cutting edge of the blade 8 is located at or slightly above the height of the top surface of the counter blade 9, the lower portion 13 of the front face on blade 8 receding from the cutting edge.
- the angle between the two slopes 13 and 15 can be substantially rectangular but is preferably obtuse.
- the illustrated embodiment is provided with a stiifening or reinforcing structure 14 which is firmly joined 'by any suitable means, such as welding, brazing or the like, with the blade 8 on the top surface thereof but which is suitably spaced from the cutting front of the blade in order not to interfere with the resilience or elasticity of the blade that is required in the vicinity of the cutting front.
- the reinforcing structure 14 has a stepped appearance that includes a bottom shoulder portion projecting toward the nozzle axis.
- the shape of the reinforcing member conforms to that of the nozzle 5 to permit placing the blades as close as possible to the nozzle 5 and, if desired, using the reinforcing member 14 for the purpose of calibrating or adjusting the blades relative to the nozzle, as will be apparent from FIG. 7.
- the wire 6 is out between the respective cutting edges of the two blades.
- the stage obtaining directly after the completion of the cut is shown in FIG. 6.
- the end of the wire 6 protruding from the nozzle 5 has now become slightly bent by the advance of the slope 15, and by virtue of the receding slope 13 the elastic blade 8 has commenced climbing up on the blade 9, thus increasing the bending pressure against the end of the wire 6.
- the length of the wire end extending from the nozzle 5 does not depend upon the thickness of the upper shear blade 8 but is determined by the distance of its cutting edge from the nozzle end 10. The length of the wire end, therefore, is smaller than the sum of the wire diameter and the upper blade thickness.
- the length of the severed and bent wire end can be reduced to values only slightly larger than the diameter d of the Wire 6.
- FIG. 7 shows the ultimate position of the cutting device employed in the invention.
- the elastic blade 8 now rides up on the blade 9 and has completed its gliding movement in overlapping relation to the top surface of blade 9. This gliding motion has caused the end of wire 6 to be bent to the shape of a hook 11.
- the length of the wire end now protruding from the nozzle is approximately 40 microns, for example.
- thermocompression comprises supplying a contact wire through a guide nozzle, trimming the wire to a given length and simultaneously bending its end laterally by cutting the wire between shear :blades normally set to abut against each other but elastically yieldable perpendicularly to the cutting plane into an overlapping relation, and simultaneously keeping the length of the wire between the cutting location and the nozzle shorter than the sum of the wire diameter plus the thickness of the nozzle-adjacent shear blade, whereby the laterally bent end of the wire is of a predetermined short length readily bondable to a semiconductor member of relatively small bonding area.
- guide nozzle means for supplying a contact wire, and trimming means including a pair of shear blades spaced from said nozzle means and having a cutting plane located transversely to the axis of the wire, said blades being normally set to abut against each other but being elastically yieldable (I perpendicularly to said cutting plane into an overlapping relation for trimming the wire to a given length of which the wire portion between the cutting plane and said nozzle means is shorter than the sum of the wire diameter and the thickness of one of said blades and for simultaneously imparting to the extreme end portion of the wire a lateral bend of a predetermined short length readily attachable to a semiconductor member of relatively small attaching area.
- guide nozzle means for supplying a contact wire, and trimming means including a pair of shear blades spaced from said nozzle means and having a cutting plane located transversely to the axis of the wire, said blades being normally set to abut against each other, and one of said blades having a cutting edge forming the apex of an angle pointing in the direction of cutting toward the axis of the wire, said one blade being elastically yieldable substantially perpendicularly to said Cutting plane when said blades are brought into abutment with each other, said apex of said one blade guiding the same into an overlapping position up and over the other of said blades for trimming the Wire to a given length of which the wire portion between the cutting plane and said nozzle mean-s is shorter than the sum of the wire diameter and the thickness of one of said blades and for simultaneously imparting to the extreme end portion of the wire a lateral bend of a predetermined short length readily attach
- a device for bonding a contact wire to a semiconductor member by thermocompression guide nozzle means for supplying a contact wire in a substantially vertically downward direction
- trimming means including a pair of shear blades located below and spaced from said nozzle means and having a cutting plane located substantially horizontally to the axis of the wire and of said nozzle means, one of said blades having a bottom face lower than the top face of the other of said blades in a normally set position thereof in which said blades tend to abut against each other, and said one blade having a cutting edge forming the apex of a solid angle pointing in the direction of cutting toward the axis of the wire, said one blade being elastically yieldable substantially vertically when said blades are brought into abutment with each other, said apex of said one blade guiding the same up and over the other of said blades into a mutually overlapping position with said other blade for trimming the wire to a predetermined length of which the wire portion between the cutting plane and said nozzle means is shorter
- guide nozzle means for supplying a contact wire, and trimming means including a pair of shear blades spaced from said nozzle means and having a cutting plane located transversely to the axis of the wire, said blades being normally set to abut against each other, one of said blades having a cutting side comprising a pair of mutually inclined faces forming the sides of an angle, the apex of said angle being the cutting edge of said one blade and being directed toward the axis of the wire, said one blade being elastically yieldable substantially perpendicularly to said cutting plane when said blades are brought into abutment with each other so that said apex of said one blade guides said one blade into an overlapping position up and over the other of said blades for trimming the wire to a given length in which the wire portion between said cutting plane and said nozzle means is shorter than the sum of the wire diameter and the thickness of said one blade and for simultaneously imparting to the extreme end portion of the wire
- said one blade has a top face, including a blade stiffening member secured to said top face and located at a distance from the cutting edge of said one blade.
- said blade stiffening member having a stepped outline conforming to the outline of said nozzle means.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Shearing Machines (AREA)
- Wire Processing (AREA)
- Wire Bonding (AREA)
- Processing Of Stones Or Stones Resemblance Materials (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DES0086328 | 1963-07-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3289452A true US3289452A (en) | 1966-12-06 |
Family
ID=7512930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US372912A Expired - Lifetime US3289452A (en) | 1963-07-23 | 1964-06-05 | Method and device for bonding a contact wire to a semiconductor member |
Country Status (6)
Country | Link |
---|---|
US (1) | US3289452A (enrdf_load_stackoverflow) |
CH (1) | CH407338A (enrdf_load_stackoverflow) |
DE (1) | DE1439262B2 (enrdf_load_stackoverflow) |
GB (1) | GB1010016A (enrdf_load_stackoverflow) |
NL (1) | NL6408024A (enrdf_load_stackoverflow) |
SE (1) | SE301012B (enrdf_load_stackoverflow) |
Cited By (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3431387A (en) * | 1965-05-28 | 1969-03-04 | Western Electric Co | Article assembling apparatus |
US3459355A (en) * | 1967-10-11 | 1969-08-05 | Gen Motors Corp | Ultrasonic welder for thin wires |
US3623649A (en) * | 1969-06-09 | 1971-11-30 | Gen Motors Corp | Wedge bonding tool for the attachment of semiconductor leads |
US3641660A (en) * | 1969-06-30 | 1972-02-15 | Texas Instruments Inc | The method of ball bonding with an automatic semiconductor bonding machine |
US4045867A (en) * | 1974-09-19 | 1977-09-06 | Telefonaktiebolaget L M Ericsson | Method for encapsulating electrical components |
US4067039A (en) * | 1975-03-17 | 1978-01-03 | Motorola, Inc. | Ultrasonic bonding head |
US4351468A (en) * | 1979-09-28 | 1982-09-28 | Compagnie Internationale Pour L'informatique Cii-Honeywell Bull | Apparatus for wiring connections on a substrate |
US4858819A (en) * | 1988-03-29 | 1989-08-22 | Hughes Aircraft Company | Orthogonal bonding method and equipment |
US6832917B1 (en) | 2004-01-16 | 2004-12-21 | Intercon Systems, Inc. | Interposer assembly |
US20110017806A1 (en) * | 2009-07-21 | 2011-01-27 | Jerry Gomez Cayabyab | Forming gas kit design for copper bonding |
US7918378B1 (en) * | 2010-08-06 | 2011-04-05 | National Semiconductor Corporation | Wire bonding deflector for a wire bonder |
US20130224914A1 (en) * | 2012-02-24 | 2013-08-29 | Invensas Corporation | Method for package-on-package assembly with wire bonds to encapsulation surface |
US20140138426A1 (en) * | 2011-05-17 | 2014-05-22 | Shinkawa Ltd. | Wire bonding apparatus and bonding method |
US8836136B2 (en) | 2011-10-17 | 2014-09-16 | Invensas Corporation | Package-on-package assembly with wire bond vias |
US8835228B2 (en) | 2012-05-22 | 2014-09-16 | Invensas Corporation | Substrate-less stackable package with wire-bond interconnect |
US8878353B2 (en) | 2012-12-20 | 2014-11-04 | Invensas Corporation | Structure for microelectronic packaging with bond elements to encapsulation surface |
US8883563B1 (en) | 2013-07-15 | 2014-11-11 | Invensas Corporation | Fabrication of microelectronic assemblies having stack terminals coupled by connectors extending through encapsulation |
US8907466B2 (en) | 2010-07-19 | 2014-12-09 | Tessera, Inc. | Stackable molded microelectronic packages |
US8927337B2 (en) | 2004-11-03 | 2015-01-06 | Tessera, Inc. | Stacked packaging improvements |
US8957527B2 (en) | 2010-11-15 | 2015-02-17 | Tessera, Inc. | Microelectronic package with terminals on dielectric mass |
EP2837458A1 (de) * | 2013-08-14 | 2015-02-18 | Sick Ag | Laserstrahllötsystem mit einem Lotdrahtvorschubsystem und mit einem Lackdrahtvorschubsystem |
US8975738B2 (en) | 2012-11-12 | 2015-03-10 | Invensas Corporation | Structure for microelectronic packaging with terminals on dielectric mass |
US9023691B2 (en) | 2013-07-15 | 2015-05-05 | Invensas Corporation | Microelectronic assemblies with stack terminals coupled by connectors extending through encapsulation |
US9034696B2 (en) | 2013-07-15 | 2015-05-19 | Invensas Corporation | Microelectronic assemblies having reinforcing collars on connectors extending through encapsulation |
US9082753B2 (en) | 2013-11-12 | 2015-07-14 | Invensas Corporation | Severing bond wire by kinking and twisting |
US9087815B2 (en) | 2013-11-12 | 2015-07-21 | Invensas Corporation | Off substrate kinking of bond wire |
US9093435B2 (en) | 2011-05-03 | 2015-07-28 | Tessera, Inc. | Package-on-package assembly with wire bonds to encapsulation surface |
US9159708B2 (en) | 2010-07-19 | 2015-10-13 | Tessera, Inc. | Stackable molded microelectronic packages with area array unit connectors |
US9214454B2 (en) | 2014-03-31 | 2015-12-15 | Invensas Corporation | Batch process fabrication of package-on-package microelectronic assemblies |
US9218988B2 (en) | 2005-12-23 | 2015-12-22 | Tessera, Inc. | Microelectronic packages and methods therefor |
US9224717B2 (en) | 2011-05-03 | 2015-12-29 | Tessera, Inc. | Package-on-package assembly with wire bonds to encapsulation surface |
US9324681B2 (en) | 2010-12-13 | 2016-04-26 | Tessera, Inc. | Pin attachment |
US9349706B2 (en) | 2012-02-24 | 2016-05-24 | Invensas Corporation | Method for package-on-package assembly with wire bonds to encapsulation surface |
US9391008B2 (en) | 2012-07-31 | 2016-07-12 | Invensas Corporation | Reconstituted wafer-level package DRAM |
US9412714B2 (en) | 2014-05-30 | 2016-08-09 | Invensas Corporation | Wire bond support structure and microelectronic package including wire bonds therefrom |
US9502390B2 (en) | 2012-08-03 | 2016-11-22 | Invensas Corporation | BVA interposer |
US20160365330A1 (en) * | 2014-02-21 | 2016-12-15 | Shinkawa Ltd. | Method for producing semiconductor device, and wire-bonding apparatus |
US9530749B2 (en) | 2015-04-28 | 2016-12-27 | Invensas Corporation | Coupling of side surface contacts to a circuit platform |
US9583411B2 (en) | 2014-01-17 | 2017-02-28 | Invensas Corporation | Fine pitch BVA using reconstituted wafer with area array accessible for testing |
US9601454B2 (en) | 2013-02-01 | 2017-03-21 | Invensas Corporation | Method of forming a component having wire bonds and a stiffening layer |
US9646917B2 (en) | 2014-05-29 | 2017-05-09 | Invensas Corporation | Low CTE component with wire bond interconnects |
US9659848B1 (en) | 2015-11-18 | 2017-05-23 | Invensas Corporation | Stiffened wires for offset BVA |
US9685365B2 (en) | 2013-08-08 | 2017-06-20 | Invensas Corporation | Method of forming a wire bond having a free end |
US9728527B2 (en) | 2013-11-22 | 2017-08-08 | Invensas Corporation | Multiple bond via arrays of different wire heights on a same substrate |
US9735084B2 (en) | 2014-12-11 | 2017-08-15 | Invensas Corporation | Bond via array for thermal conductivity |
US9761554B2 (en) | 2015-05-07 | 2017-09-12 | Invensas Corporation | Ball bonding metal wire bond wires to metal pads |
US9812402B2 (en) | 2015-10-12 | 2017-11-07 | Invensas Corporation | Wire bond wires for interference shielding |
US9842745B2 (en) | 2012-02-17 | 2017-12-12 | Invensas Corporation | Heat spreading substrate with embedded interconnects |
US9852969B2 (en) | 2013-11-22 | 2017-12-26 | Invensas Corporation | Die stacks with one or more bond via arrays of wire bond wires and with one or more arrays of bump interconnects |
US9888579B2 (en) | 2015-03-05 | 2018-02-06 | Invensas Corporation | Pressing of wire bond wire tips to provide bent-over tips |
US9911718B2 (en) | 2015-11-17 | 2018-03-06 | Invensas Corporation | ‘RDL-First’ packaged microelectronic device for a package-on-package device |
US9935075B2 (en) | 2016-07-29 | 2018-04-03 | Invensas Corporation | Wire bonding method and apparatus for electromagnetic interference shielding |
US9984992B2 (en) | 2015-12-30 | 2018-05-29 | Invensas Corporation | Embedded wire bond wires for vertical integration with separate surface mount and wire bond mounting surfaces |
US10008477B2 (en) | 2013-09-16 | 2018-06-26 | Invensas Corporation | Microelectronic element with bond elements to encapsulation surface |
US10008469B2 (en) | 2015-04-30 | 2018-06-26 | Invensas Corporation | Wafer-level packaging using wire bond wires in place of a redistribution layer |
USD821468S1 (en) * | 2015-02-03 | 2018-06-26 | Coorstek, Inc. | Ceramic bonding tool with textured tip |
US10026717B2 (en) | 2013-11-22 | 2018-07-17 | Invensas Corporation | Multiple bond via arrays of different wire heights on a same substrate |
USD824969S1 (en) | 2015-02-03 | 2018-08-07 | Coorstek, Inc. | Ceramic bonding tool with textured tip |
USD824970S1 (en) | 2015-02-03 | 2018-08-07 | Coorstek, Inc. | Ceramic bonding tool with textured tip |
US10181457B2 (en) | 2015-10-26 | 2019-01-15 | Invensas Corporation | Microelectronic package for wafer-level chip scale packaging with fan-out |
US10299368B2 (en) | 2016-12-21 | 2019-05-21 | Invensas Corporation | Surface integrated waveguides and circuit structures therefor |
US10332854B2 (en) | 2015-10-23 | 2019-06-25 | Invensas Corporation | Anchoring structure of fine pitch bva |
US10381326B2 (en) | 2014-05-28 | 2019-08-13 | Invensas Corporation | Structure and method for integrated circuits packaging with increased density |
US10460958B2 (en) | 2013-08-07 | 2019-10-29 | Invensas Corporation | Method of manufacturing embedded packaging with preformed vias |
US10490528B2 (en) | 2015-10-12 | 2019-11-26 | Invensas Corporation | Embedded wire bond wires |
USD868123S1 (en) | 2016-12-20 | 2019-11-26 | Coorstek, Inc. | Wire bonding wedge tool |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5458158A (en) * | 1993-03-30 | 1995-10-17 | Toyo Communication Equipment Co., Ltd. | Lead cutting apparatus and an anticorrosive coat structure of lead |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US314845A (en) * | 1885-03-31 | Die for forming ax-poll clips | ||
DE559390C (de) * | 1931-04-01 | 1932-09-19 | Meto G M B H | Vorrichtung zum Verwinden und Abschneiden der Drahtenden von Drahtumschnuerungen fuer Pakete u. dgl. |
US3128648A (en) * | 1961-08-30 | 1964-04-14 | Western Electric Co | Apparatus for joining metal leads to semiconductive devices |
US3186446A (en) * | 1961-05-09 | 1965-06-01 | Sylvania Electric Prod | Apparatus for attaching filamentary material |
-
1963
- 1963-07-23 DE DE19631439262 patent/DE1439262B2/de active Pending
-
1964
- 1964-03-02 CH CH262364A patent/CH407338A/de unknown
- 1964-06-05 US US372912A patent/US3289452A/en not_active Expired - Lifetime
- 1964-07-14 NL NL6408024A patent/NL6408024A/xx unknown
- 1964-07-15 GB GB29287/64A patent/GB1010016A/en not_active Expired
- 1964-07-22 SE SE8937/64A patent/SE301012B/xx unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US314845A (en) * | 1885-03-31 | Die for forming ax-poll clips | ||
DE559390C (de) * | 1931-04-01 | 1932-09-19 | Meto G M B H | Vorrichtung zum Verwinden und Abschneiden der Drahtenden von Drahtumschnuerungen fuer Pakete u. dgl. |
US3186446A (en) * | 1961-05-09 | 1965-06-01 | Sylvania Electric Prod | Apparatus for attaching filamentary material |
US3128648A (en) * | 1961-08-30 | 1964-04-14 | Western Electric Co | Apparatus for joining metal leads to semiconductive devices |
Cited By (118)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3431387A (en) * | 1965-05-28 | 1969-03-04 | Western Electric Co | Article assembling apparatus |
US3459355A (en) * | 1967-10-11 | 1969-08-05 | Gen Motors Corp | Ultrasonic welder for thin wires |
US3623649A (en) * | 1969-06-09 | 1971-11-30 | Gen Motors Corp | Wedge bonding tool for the attachment of semiconductor leads |
US3641660A (en) * | 1969-06-30 | 1972-02-15 | Texas Instruments Inc | The method of ball bonding with an automatic semiconductor bonding machine |
US4045867A (en) * | 1974-09-19 | 1977-09-06 | Telefonaktiebolaget L M Ericsson | Method for encapsulating electrical components |
US4067039A (en) * | 1975-03-17 | 1978-01-03 | Motorola, Inc. | Ultrasonic bonding head |
US4351468A (en) * | 1979-09-28 | 1982-09-28 | Compagnie Internationale Pour L'informatique Cii-Honeywell Bull | Apparatus for wiring connections on a substrate |
US4858819A (en) * | 1988-03-29 | 1989-08-22 | Hughes Aircraft Company | Orthogonal bonding method and equipment |
US6832917B1 (en) | 2004-01-16 | 2004-12-21 | Intercon Systems, Inc. | Interposer assembly |
US9570416B2 (en) | 2004-11-03 | 2017-02-14 | Tessera, Inc. | Stacked packaging improvements |
US9153562B2 (en) | 2004-11-03 | 2015-10-06 | Tessera, Inc. | Stacked packaging improvements |
US8927337B2 (en) | 2004-11-03 | 2015-01-06 | Tessera, Inc. | Stacked packaging improvements |
US9218988B2 (en) | 2005-12-23 | 2015-12-22 | Tessera, Inc. | Microelectronic packages and methods therefor |
US9984901B2 (en) | 2005-12-23 | 2018-05-29 | Tessera, Inc. | Method for making a microelectronic assembly having conductive elements |
US20110017806A1 (en) * | 2009-07-21 | 2011-01-27 | Jerry Gomez Cayabyab | Forming gas kit design for copper bonding |
US9553076B2 (en) | 2010-07-19 | 2017-01-24 | Tessera, Inc. | Stackable molded microelectronic packages with area array unit connectors |
US9570382B2 (en) | 2010-07-19 | 2017-02-14 | Tessera, Inc. | Stackable molded microelectronic packages |
US10128216B2 (en) | 2010-07-19 | 2018-11-13 | Tessera, Inc. | Stackable molded microelectronic packages |
US9159708B2 (en) | 2010-07-19 | 2015-10-13 | Tessera, Inc. | Stackable molded microelectronic packages with area array unit connectors |
US9123664B2 (en) | 2010-07-19 | 2015-09-01 | Tessera, Inc. | Stackable molded microelectronic packages |
US8907466B2 (en) | 2010-07-19 | 2014-12-09 | Tessera, Inc. | Stackable molded microelectronic packages |
US8267303B2 (en) * | 2010-08-06 | 2012-09-18 | National Semiconductor Corporation | Wire bonding apparatus with a textured capillary surface enabling high-speed wedge bonding of wire bonds |
US7918378B1 (en) * | 2010-08-06 | 2011-04-05 | National Semiconductor Corporation | Wire bonding deflector for a wire bonder |
US8957527B2 (en) | 2010-11-15 | 2015-02-17 | Tessera, Inc. | Microelectronic package with terminals on dielectric mass |
US9324681B2 (en) | 2010-12-13 | 2016-04-26 | Tessera, Inc. | Pin attachment |
US9224717B2 (en) | 2011-05-03 | 2015-12-29 | Tessera, Inc. | Package-on-package assembly with wire bonds to encapsulation surface |
US9691731B2 (en) | 2011-05-03 | 2017-06-27 | Tessera, Inc. | Package-on-package assembly with wire bonds to encapsulation surface |
US11424211B2 (en) | 2011-05-03 | 2022-08-23 | Tessera Llc | Package-on-package assembly with wire bonds to encapsulation surface |
US9093435B2 (en) | 2011-05-03 | 2015-07-28 | Tessera, Inc. | Package-on-package assembly with wire bonds to encapsulation surface |
US10062661B2 (en) | 2011-05-03 | 2018-08-28 | Tessera, Inc. | Package-on-package assembly with wire bonds to encapsulation surface |
US10593643B2 (en) | 2011-05-03 | 2020-03-17 | Tessera, Inc. | Package-on-package assembly with wire bonds to encapsulation surface |
US20140138426A1 (en) * | 2011-05-17 | 2014-05-22 | Shinkawa Ltd. | Wire bonding apparatus and bonding method |
US20160163673A1 (en) * | 2011-05-17 | 2016-06-09 | Shinkawa Ltd. | Wire bonding apparatus and bonding method |
US9337166B2 (en) * | 2011-05-17 | 2016-05-10 | Shinkawa Ltd. | Wire bonding apparatus and bonding method |
US11189595B2 (en) | 2011-10-17 | 2021-11-30 | Invensas Corporation | Package-on-package assembly with wire bond vias |
US10756049B2 (en) | 2011-10-17 | 2020-08-25 | Invensas Corporation | Package-on-package assembly with wire bond vias |
US8836136B2 (en) | 2011-10-17 | 2014-09-16 | Invensas Corporation | Package-on-package assembly with wire bond vias |
US9252122B2 (en) | 2011-10-17 | 2016-02-02 | Invensas Corporation | Package-on-package assembly with wire bond vias |
US9761558B2 (en) | 2011-10-17 | 2017-09-12 | Invensas Corporation | Package-on-package assembly with wire bond vias |
US9105483B2 (en) | 2011-10-17 | 2015-08-11 | Invensas Corporation | Package-on-package assembly with wire bond vias |
US11735563B2 (en) | 2011-10-17 | 2023-08-22 | Invensas Llc | Package-on-package assembly with wire bond vias |
US9041227B2 (en) | 2011-10-17 | 2015-05-26 | Invensas Corporation | Package-on-package assembly with wire bond vias |
US9842745B2 (en) | 2012-02-17 | 2017-12-12 | Invensas Corporation | Heat spreading substrate with embedded interconnects |
US8772152B2 (en) * | 2012-02-24 | 2014-07-08 | Invensas Corporation | Method for package-on-package assembly with wire bonds to encapsulation surface |
US9349706B2 (en) | 2012-02-24 | 2016-05-24 | Invensas Corporation | Method for package-on-package assembly with wire bonds to encapsulation surface |
US20130224914A1 (en) * | 2012-02-24 | 2013-08-29 | Invensas Corporation | Method for package-on-package assembly with wire bonds to encapsulation surface |
US9691679B2 (en) | 2012-02-24 | 2017-06-27 | Invensas Corporation | Method for package-on-package assembly with wire bonds to encapsulation surface |
US8835228B2 (en) | 2012-05-22 | 2014-09-16 | Invensas Corporation | Substrate-less stackable package with wire-bond interconnect |
US10510659B2 (en) | 2012-05-22 | 2019-12-17 | Invensas Corporation | Substrate-less stackable package with wire-bond interconnect |
US9953914B2 (en) | 2012-05-22 | 2018-04-24 | Invensas Corporation | Substrate-less stackable package with wire-bond interconnect |
US10170412B2 (en) | 2012-05-22 | 2019-01-01 | Invensas Corporation | Substrate-less stackable package with wire-bond interconnect |
US9391008B2 (en) | 2012-07-31 | 2016-07-12 | Invensas Corporation | Reconstituted wafer-level package DRAM |
US9917073B2 (en) | 2012-07-31 | 2018-03-13 | Invensas Corporation | Reconstituted wafer-level package dram with conductive interconnects formed in encapsulant at periphery of the package |
US10297582B2 (en) | 2012-08-03 | 2019-05-21 | Invensas Corporation | BVA interposer |
US9502390B2 (en) | 2012-08-03 | 2016-11-22 | Invensas Corporation | BVA interposer |
US8975738B2 (en) | 2012-11-12 | 2015-03-10 | Invensas Corporation | Structure for microelectronic packaging with terminals on dielectric mass |
US9615456B2 (en) | 2012-12-20 | 2017-04-04 | Invensas Corporation | Microelectronic assembly for microelectronic packaging with bond elements to encapsulation surface |
US8878353B2 (en) | 2012-12-20 | 2014-11-04 | Invensas Corporation | Structure for microelectronic packaging with bond elements to encapsulation surface |
US9095074B2 (en) | 2012-12-20 | 2015-07-28 | Invensas Corporation | Structure for microelectronic packaging with bond elements to encapsulation surface |
US9601454B2 (en) | 2013-02-01 | 2017-03-21 | Invensas Corporation | Method of forming a component having wire bonds and a stiffening layer |
US9034696B2 (en) | 2013-07-15 | 2015-05-19 | Invensas Corporation | Microelectronic assemblies having reinforcing collars on connectors extending through encapsulation |
US8883563B1 (en) | 2013-07-15 | 2014-11-11 | Invensas Corporation | Fabrication of microelectronic assemblies having stack terminals coupled by connectors extending through encapsulation |
US9023691B2 (en) | 2013-07-15 | 2015-05-05 | Invensas Corporation | Microelectronic assemblies with stack terminals coupled by connectors extending through encapsulation |
US9633979B2 (en) | 2013-07-15 | 2017-04-25 | Invensas Corporation | Microelectronic assemblies having stack terminals coupled by connectors extending through encapsulation |
US10460958B2 (en) | 2013-08-07 | 2019-10-29 | Invensas Corporation | Method of manufacturing embedded packaging with preformed vias |
US9685365B2 (en) | 2013-08-08 | 2017-06-20 | Invensas Corporation | Method of forming a wire bond having a free end |
EP2837458A1 (de) * | 2013-08-14 | 2015-02-18 | Sick Ag | Laserstrahllötsystem mit einem Lotdrahtvorschubsystem und mit einem Lackdrahtvorschubsystem |
US10008477B2 (en) | 2013-09-16 | 2018-06-26 | Invensas Corporation | Microelectronic element with bond elements to encapsulation surface |
US9082753B2 (en) | 2013-11-12 | 2015-07-14 | Invensas Corporation | Severing bond wire by kinking and twisting |
US9893033B2 (en) | 2013-11-12 | 2018-02-13 | Invensas Corporation | Off substrate kinking of bond wire |
US9087815B2 (en) | 2013-11-12 | 2015-07-21 | Invensas Corporation | Off substrate kinking of bond wire |
US9728527B2 (en) | 2013-11-22 | 2017-08-08 | Invensas Corporation | Multiple bond via arrays of different wire heights on a same substrate |
USRE49987E1 (en) | 2013-11-22 | 2024-05-28 | Invensas Llc | Multiple plated via arrays of different wire heights on a same substrate |
US9852969B2 (en) | 2013-11-22 | 2017-12-26 | Invensas Corporation | Die stacks with one or more bond via arrays of wire bond wires and with one or more arrays of bump interconnects |
US10629567B2 (en) | 2013-11-22 | 2020-04-21 | Invensas Corporation | Multiple plated via arrays of different wire heights on same substrate |
US10290613B2 (en) | 2013-11-22 | 2019-05-14 | Invensas Corporation | Multiple bond via arrays of different wire heights on a same substrate |
US10026717B2 (en) | 2013-11-22 | 2018-07-17 | Invensas Corporation | Multiple bond via arrays of different wire heights on a same substrate |
US9583411B2 (en) | 2014-01-17 | 2017-02-28 | Invensas Corporation | Fine pitch BVA using reconstituted wafer with area array accessible for testing |
US11990382B2 (en) | 2014-01-17 | 2024-05-21 | Adeia Semiconductor Technologies Llc | Fine pitch BVA using reconstituted wafer with area array accessible for testing |
US10529636B2 (en) | 2014-01-17 | 2020-01-07 | Invensas Corporation | Fine pitch BVA using reconstituted wafer with area array accessible for testing |
US11404338B2 (en) | 2014-01-17 | 2022-08-02 | Invensas Corporation | Fine pitch bva using reconstituted wafer with area array accessible for testing |
US9837330B2 (en) | 2014-01-17 | 2017-12-05 | Invensas Corporation | Fine pitch BVA using reconstituted wafer with area array accessible for testing |
US20160365330A1 (en) * | 2014-02-21 | 2016-12-15 | Shinkawa Ltd. | Method for producing semiconductor device, and wire-bonding apparatus |
US9922952B2 (en) * | 2014-02-21 | 2018-03-20 | Shinkawa Ltd. | Method for producing semiconductor device, and wire-bonding apparatus |
US9356006B2 (en) | 2014-03-31 | 2016-05-31 | Invensas Corporation | Batch process fabrication of package-on-package microelectronic assemblies |
US9214454B2 (en) | 2014-03-31 | 2015-12-15 | Invensas Corporation | Batch process fabrication of package-on-package microelectronic assemblies |
US9812433B2 (en) | 2014-03-31 | 2017-11-07 | Invensas Corporation | Batch process fabrication of package-on-package microelectronic assemblies |
US10381326B2 (en) | 2014-05-28 | 2019-08-13 | Invensas Corporation | Structure and method for integrated circuits packaging with increased density |
US9646917B2 (en) | 2014-05-29 | 2017-05-09 | Invensas Corporation | Low CTE component with wire bond interconnects |
US10032647B2 (en) | 2014-05-29 | 2018-07-24 | Invensas Corporation | Low CTE component with wire bond interconnects |
US10475726B2 (en) | 2014-05-29 | 2019-11-12 | Invensas Corporation | Low CTE component with wire bond interconnects |
US9947641B2 (en) | 2014-05-30 | 2018-04-17 | Invensas Corporation | Wire bond support structure and microelectronic package including wire bonds therefrom |
US9412714B2 (en) | 2014-05-30 | 2016-08-09 | Invensas Corporation | Wire bond support structure and microelectronic package including wire bonds therefrom |
US9735084B2 (en) | 2014-12-11 | 2017-08-15 | Invensas Corporation | Bond via array for thermal conductivity |
USD821468S1 (en) * | 2015-02-03 | 2018-06-26 | Coorstek, Inc. | Ceramic bonding tool with textured tip |
USD824970S1 (en) | 2015-02-03 | 2018-08-07 | Coorstek, Inc. | Ceramic bonding tool with textured tip |
USD824969S1 (en) | 2015-02-03 | 2018-08-07 | Coorstek, Inc. | Ceramic bonding tool with textured tip |
US9888579B2 (en) | 2015-03-05 | 2018-02-06 | Invensas Corporation | Pressing of wire bond wire tips to provide bent-over tips |
US10806036B2 (en) | 2015-03-05 | 2020-10-13 | Invensas Corporation | Pressing of wire bond wire tips to provide bent-over tips |
US9530749B2 (en) | 2015-04-28 | 2016-12-27 | Invensas Corporation | Coupling of side surface contacts to a circuit platform |
US10008469B2 (en) | 2015-04-30 | 2018-06-26 | Invensas Corporation | Wafer-level packaging using wire bond wires in place of a redistribution layer |
US9761554B2 (en) | 2015-05-07 | 2017-09-12 | Invensas Corporation | Ball bonding metal wire bond wires to metal pads |
US10490528B2 (en) | 2015-10-12 | 2019-11-26 | Invensas Corporation | Embedded wire bond wires |
US11462483B2 (en) | 2015-10-12 | 2022-10-04 | Invensas Llc | Wire bond wires for interference shielding |
US9812402B2 (en) | 2015-10-12 | 2017-11-07 | Invensas Corporation | Wire bond wires for interference shielding |
US10559537B2 (en) | 2015-10-12 | 2020-02-11 | Invensas Corporation | Wire bond wires for interference shielding |
US10115678B2 (en) | 2015-10-12 | 2018-10-30 | Invensas Corporation | Wire bond wires for interference shielding |
US10332854B2 (en) | 2015-10-23 | 2019-06-25 | Invensas Corporation | Anchoring structure of fine pitch bva |
US10181457B2 (en) | 2015-10-26 | 2019-01-15 | Invensas Corporation | Microelectronic package for wafer-level chip scale packaging with fan-out |
US9911718B2 (en) | 2015-11-17 | 2018-03-06 | Invensas Corporation | ‘RDL-First’ packaged microelectronic device for a package-on-package device |
US10043779B2 (en) | 2015-11-17 | 2018-08-07 | Invensas Corporation | Packaged microelectronic device for a package-on-package device |
US9659848B1 (en) | 2015-11-18 | 2017-05-23 | Invensas Corporation | Stiffened wires for offset BVA |
US10325877B2 (en) | 2015-12-30 | 2019-06-18 | Invensas Corporation | Embedded wire bond wires for vertical integration with separate surface mount and wire bond mounting surfaces |
US9984992B2 (en) | 2015-12-30 | 2018-05-29 | Invensas Corporation | Embedded wire bond wires for vertical integration with separate surface mount and wire bond mounting surfaces |
US10658302B2 (en) | 2016-07-29 | 2020-05-19 | Invensas Corporation | Wire bonding method and apparatus for electromagnetic interference shielding |
US9935075B2 (en) | 2016-07-29 | 2018-04-03 | Invensas Corporation | Wire bonding method and apparatus for electromagnetic interference shielding |
USD868123S1 (en) | 2016-12-20 | 2019-11-26 | Coorstek, Inc. | Wire bonding wedge tool |
US10299368B2 (en) | 2016-12-21 | 2019-05-21 | Invensas Corporation | Surface integrated waveguides and circuit structures therefor |
Also Published As
Publication number | Publication date |
---|---|
GB1010016A (en) | 1965-11-17 |
DE1439262A1 (de) | 1969-01-16 |
SE301012B (enrdf_load_stackoverflow) | 1968-05-20 |
NL6408024A (enrdf_load_stackoverflow) | 1965-01-25 |
DE1439262B2 (de) | 1972-03-30 |
CH407338A (de) | 1966-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3289452A (en) | Method and device for bonding a contact wire to a semiconductor member | |
US3128648A (en) | Apparatus for joining metal leads to semiconductive devices | |
US4415115A (en) | Bonding means and method | |
US6732902B2 (en) | Lead penetrating clamping system | |
US5647528A (en) | Bondhead lead clamp apparatus and method | |
US3648354A (en) | Tailless bonder for filamentary wire leads | |
US3313464A (en) | Thermocompression bonding apparatus | |
US3650232A (en) | Method and apparatus for manufacturing lead frames | |
US3347442A (en) | Stepped bonding wedge | |
US3059321A (en) | Method of making diode elements | |
US5042124A (en) | Machine for punching out butterfly clips for fastening to a frame of a spring core | |
US3244344A (en) | Cutting and forming mechanism for bonders | |
US3218702A (en) | Method and apparatus for bonding wires to metal surfaces | |
EP0463685B1 (en) | Method of manufacturing a semiconductor device and device for carrying out said method | |
JP2591328B2 (ja) | Icリード成形方法 | |
JP2537389B2 (ja) | ワイヤボンディング方法及びその装置 | |
JPS6047015B2 (ja) | 板材の曲げ加工切断方法 | |
CN208697643U (zh) | 复合刀模 | |
JPH0671017B2 (ja) | 二端子式半導体部品の製造方法 | |
JPH0590320A (ja) | ボール式ワイヤーボンデイング方法 | |
CN107377821A (zh) | 一种电子元件引脚成型器 | |
JPH0567643A (ja) | ワイヤボンデイング方法 | |
JPH0427700B2 (enrdf_load_stackoverflow) | ||
JPS63257237A (ja) | ワイヤボンデイング方法 |