US3289449A - Method and apparatus for cooling strip - Google Patents

Method and apparatus for cooling strip Download PDF

Info

Publication number
US3289449A
US3289449A US368935A US36893564A US3289449A US 3289449 A US3289449 A US 3289449A US 368935 A US368935 A US 368935A US 36893564 A US36893564 A US 36893564A US 3289449 A US3289449 A US 3289449A
Authority
US
United States
Prior art keywords
strip
strips
sprays
mill
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US368935A
Inventor
O'brien Jeremiah Wagner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Engineering and Foundry Co
Original Assignee
United Engineering and Foundry Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Engineering and Foundry Co filed Critical United Engineering and Foundry Co
Application granted granted Critical
Publication of US3289449A publication Critical patent/US3289449A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/32Tongs or gripping means specially adapted for reeling operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/34Feeding or guiding devices not specially adapted to a particular type of apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/34Feeding or guiding devices not specially adapted to a particular type of apparatus
    • B21C47/3433Feeding or guiding devices not specially adapted to a particular type of apparatus for guiding the leading end of the material, e.g. from or to a coiler
    • B21C47/3441Diverting the leading end, e.g. from main flow to a coiling device
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling

Definitions

  • This invention relates to a method and an apparatus useful in the operation of a hot strip rolling mill and, more particularly, to a cooling system for controlling the temperature of the strip as it issues from the last stand of the finishing train but prior to its being coiled.
  • the proper finishing temperature of the strip emerging from the last stand of the mill is above 1550 F.
  • This finishing temperature is generally employed over the aforesaid range of stripthicknesses in the operation of most modern mills at normal maximum rolling speeds.
  • present day mills are provided with runout tables located after the last rolling mill stand which is made long enough and equipped with enough quenching spray stations to cool a strip betwen the range of 200500 F. below the finishing rolling temperature.
  • the strip is usually cooled as it passes along the runout table and prior to its being coiled by a plurality of water spray stations or banks located above and below the strip, it being customary for obvious reasons to supply a greater proportion of the water from above the strip than from below.
  • the present mechanism for thus cooling of strip usually includes a spraying system which has a fixed transversal field of water coverage commensurate with the maximum width of strip that the mill is capable of rolling.
  • a spraying system which has a fixed transversal field of water coverage commensurate with the maximum width of strip that the mill is capable of rolling.
  • the present invention is addressed to a temperature control method and apparatus for use with a rolling mill that will alleviate each of the aforesaid disadvantages.
  • One object of the present invention is addressed to a method and apparatus for controlling the fluid output of the coolant delivery members in a manner that full benefit is received from the cooling media, notwithstanding the fact that a wide range of varying width and thickness work pieces are to be rolled.
  • Another object of this invention is to provide a coolant system for employment with a hot runout table of a hot strip mill, the sprays of which will be regulated pursuant to the width or speed of the mill so that when the maximum width strip is being rolled at a first speed, the field of spray will extend to the opposite sides of the strip and perpendicular to the center line of the strip and when the minimum width strip is being rolled at a second speed, the sprays will be positioned in an oblique relationship with respect to the center line of the strip, whereby the surface of the strip will be subject to a different amount of water than when the sprays are positioned for the maximum width strip. For strip possessing width between the maximum or minimum, the sprays will be adjusted to suit the particular width.
  • Another object of the present invention is to provide a method of and apparatus for regulating the position of the spray fields of the spray system commensurate with the change in speed of the mill.
  • the fields of sprays may be longer than the particular width strip being rolled so that the fields of sprays overhang the edges of the strip when it is being rolled at a slow speed, and when the speed is increased, the fields of the sprays will be positioned to expose the strip to greater unit coverage of the fields.
  • the spray system is changed accordingly, to gradually expose the strip to more unit coverage of the fields of sprays.
  • Another method of operating the cooling system where the speed of the mill during the rolling of the strip is to be increased would be to make the fields of sprays to equal to the width of the maximum strip and then to compensate for the increase of the speed by adding additional sprays as the speed increases.
  • additional sprays can be added for strip of widths less than the maximum.
  • a still further object of the invention has reference to providing means whereby the position of the fields of the sprays may be automatically adjusted by means which is responsive to the speed of the strip or the width of the strip.
  • a strip cooling system comprising means for positioning the fields of the sprays thereof, whereby these fields will be kept within the edges of the strip of various width strips to thus gain the maximum benefit from and alleviate any waste of the coolant.
  • FIGURE 1 is a schematic elevational view showing the last stand of the finishing train of a hot strip mill, its runout table, together with a strip cooling system and coiler;
  • FIGURE 2 is a plan view of a portion of the hot runout table shown in FIGURE 1 illustrating a spray system built in accordance with the present invention
  • FIGURE 3 is a partial sectional view of the apparatus shown in FIGURE 2.
  • FIGURE 4 is a diagrammatical view illustrating two varying width strips and the positions of the fields of the sprays for these strips.
  • FIGURE 1 there is illustrated schematically the last stand ll) of a hot strip finishing train in which the final reduction of the strip is taken, the strip S passing from the stand It), as indicated by the arrow, to a hot runout table 11 which includes banks of fluid or Water sprays l2 and strip side guards 13.
  • a down-coiler 14 is arranged for receiving the strip issuing over the table, which has the usual pinch roll assembly 15 arranged above it.
  • the stand 10 includes a motor 16 having a speed regulator 17 and entry and delivery side guides 13.
  • traversing means 19 including a motor 20.
  • the side guards 13 are also provided with traversing means 21 including a motor 22. All of these elements, except for the strip spray system are well known and do not believe to warrant a detailed description.
  • FIGURES 2 and 3 illustrate a portion of the runout table and one of the longitudinal banks of the spray system built in accordance with the present invention.
  • the runout table 11 includes a plurality of spaced-apart rollers 23 each having individual motors 24. Above the rollers 23, as shown in FIGURE 3, there is positioned a number of spaced-apart arcuately shaped pipes 25, which are secured to a common horizontally extending fluid supply pipe 26, the fluid supply pipe being rotatably received in a bearing stand 27, the base of which is secured to the foundation as shown in FIGURE 3.
  • a swivel joint 28 to which is connected an input pipe 29, the swivel joint 23 permitting the supply pipe 26 to rotate relative to the input pipe 29.
  • each of the arcuate shaped pipes 25 there is a horizontal pipe 30 which interconnects the top ends of the pipes and receives the fluid passing through them.
  • a horizontal pipe 30 which interconnects the top ends of the pipes and receives the fluid passing through them.
  • a number of small diameter pipes 31 the lower ends of which are secured to rotatable joints 32.
  • nozzles 33 which in the preferred embodiment are designed to give fields of sprays which are characterized by being relatively narrow in one direction and relatively wide in the other, or what may be referred to as a fiat spray. The contour of these fields of sprays is examplified in FIGURE 4.
  • a link 34 which is connected to a cross bar running substantially parallel to the pipe 3i and which through the interconnecting relationship rotates the nozzles 33 in unison.
  • the links 34 and cross bar 35 are best shown in FIGURE 2.
  • an arm 36 is secured, as shown in FIGURE 3 and to this arm an actuating rod 37 is connected, the rod 37 running in a direction parallel to the pipes 25 when viewed in FIGURE 2.
  • the actuating rod 3'7 is secured to the gear of a worm-wheel jack 38, the jack being operated by an electric motor 39, shown only in FIGURES 2 and 3.
  • the entire spray assembly is adapted to be pivoted about the axis of the supply pipe 26 relative to the bearing stand 27 for which reason a piston cylinder assembly 40 is provided, the piston of which is secured to a cross beam 41 which, in turn, is secured to each of the pipes 25, the cylinder being only seen in FIGURE 3.
  • FIGURE 4 where there is diagrammatically shown two ditierent width strips, designated A and B, which for the purposes of discussion will be understood to represent the maximum and minimum width strips, respectively produced by the stand 10.
  • a and B ditierent width strips
  • the fields of sprays represented by the reference character 42 are arranged so that they fall within the opposite edges of the strip A, thereby equal cooling of the surface thereof will be assured.
  • the fields of sprays 42 will be so arranged so that their extreme ends will fall within the opposite edges of the strip B, whereby full advantage of the cooling sprays will be again realized.
  • the stand 10 when the stand 10 is rolling strip of the width A, its speed may be considerably lower than when it is rolling the narrower strip B. Consequently, when the mill is rolling the maximum width strip A, the fields of the sprays will be positioned so that the unit area of spray coverage will be at a minimum, but yet in view of the longer length of time involved in the strip passing under the sprays, sufiicient cooling is assured and that without any waste of water.
  • the minimum width strip B is being rolled, the fields of sprays are positioned to expose the strip to a maximum amount of water so that while the strip may be traveling under the sprays at the maximum speed, this is compensated for by the increase spray coverage and again, eifective cooling is assured without any waste of water.
  • the motor 39 that regulates the angular position of the nozzles 33 can be electrically connected to the traversing means 19 of the mill side guides 18 and/or to the traversing means 21 for the side guards 13 whereby the fields of sprays 42 can be automatically adjusted when the mill side guides 18 or the runout table strip guards 13 are adjusted for a new width of strip, this being done by the operation of the motor 29 of the strip guide 18 or the motor 22 of the side guards 13.
  • the cooling effect could be increased by simply rotating the fields 42 to control the amount of fluid discharged onto the strip.
  • the fields of the sprays 42 can be positioned so that the fields overhang the edges of the strip.
  • the lengths of the spray fields can be made equal to the width of the maximum strip, in which case the speed increase is compensated for by opening the valves such as the valve shown in FIGURE 2 of additional spray banks.
  • the fields of sprays can be rotated so as to progressively increase more and more of the strip surfaces to the water delivered by the spray system.
  • the motor 39 of the spray system can be electrically correlated to the speed of the strip, say for example, by use of the speed control unit 17 associated with the motor 16 of the stand 10. In this way, as the mill speed increases, the motor 39 would operate to arrange the fields of sprays 42 in the proper position.
  • FIGURES 2 and 3 have illustrated but one form of a spray system and a mechanism for moving the sprays in unison so as to keep the fields of sprays 462 at all times parallel to each other, and various other means can be employed for carrying out the features of the present invention.
  • the present method and apparatus may be employed in conjunction with the entry table of the finish ing train of a hot strip mill or the delivery table of the last roughing stand thereof.
  • the coolant may be supplied by long pipes, a trough or a laminar spray system.
  • said strips capable of possessing different characteristics, such as, varying widths, thicknesses, and speeds of travel, and
  • An apparatus for cooling heated metallic workpieces such as strips, said strips having varying characteristics that efiect their thermal conditions as they issue over a predetermined path, comprising:
  • said means for adjusting the member being connected to two or more of the members thereby the members are adjusted in unison
  • strip width determining means controlling the means for adjusting the discharge member to adjust said member pursuant to a change in the width of the strip.
  • said means for adjusting the member being connected to two or more of the members thereby the members are adjusted in unison
  • a strip cooling station of a hot strip mill said station located between the last rolling mill and the means for receiving the strip from the mill comprising:
  • a support means having a base on one side of the said table and having a portion adapted to overhang a strip supported by said table,
  • a coolant header carried by the overhung portion of said support means and extending in a direction generally parallel to the direction of travel of said strip
  • said members constructed to form elongated fields of coolant on the adjacent surface of a passing strip and generally transverse to its direction of travel

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Rolling (AREA)

Description

Dec. 6, 1966 J. w. OBRIEN 3,289,449
METHOD AND APPARATUS FOR COOLING STRIP Filed May 20, 1964 2 Sheets-Sheet l INVENTOR. JEREMIAH W. O'BRIEN HI ATTORNEY Dec. 6, 1966 J- W. OBRIEN METHOD AND APPARATUS FOR COOLING STRIP Filed May 20, 1964 2 Sheets-Sheet B INVENTOR. JEREMIAH W. OBRIEN HIS ATTORNEY United States Patent 3,289,449 METHGD AND APPARATUS FQR CUQLING STRIP Jeremiah Wagner tillrien, Pittsburgh, Pa, assignor to United Engineering and Foundry Company, Pittsburgh, Pa., a corporation of Pennsylvania Filed May 20, 1964, Ser. No. 368.935 Claims priority, application Great Britain, June 4, 1963, 22,14ll/ 63 4 Claims. Cl. 72-20l) This invention relates to a method and an apparatus useful in the operation of a hot strip rolling mill and, more particularly, to a cooling system for controlling the temperature of the strip as it issues from the last stand of the finishing train but prior to its being coiled.
In the manufacturing of hot metallic strip it is quite important, for metallurgical purposes, that the temperature of the strip be controlled prior to its being reduced to its final thickness in the hot strip mill and subsequent to its leaving the mill, but prior to its being coiled.
With reference to the control of the temperature of the strip after it leaves the mill, for example in rolling low carbon steels to a range of .050 to .25 inch, generally the proper finishing temperature of the strip emerging from the last stand of the mill is above 1550 F. This finishing temperature is generally employed over the aforesaid range of stripthicknesses in the operation of most modern mills at normal maximum rolling speeds. In order to reduce the temperature of the strip prior to its being coiled, present day mills are provided with runout tables located after the last rolling mill stand which is made long enough and equipped with enough quenching spray stations to cool a strip betwen the range of 200500 F. below the finishing rolling temperature. In the rolling of low carbon steels it is generally the normal practice to coil the strip at a temperature within the range of 1200 to 1300 F. While in given cases one or all of this range may vary, it prevails for a large part of the products rolled by a modern hot strip mill.
The strip is usually cooled as it passes along the runout table and prior to its being coiled by a plurality of water spray stations or banks located above and below the strip, it being customary for obvious reasons to supply a greater proportion of the water from above the strip than from below. The present mechanism for thus cooling of strip usually includes a spraying system which has a fixed transversal field of water coverage commensurate with the maximum width of strip that the mill is capable of rolling. As a result, when strip narrower than the maximum width is rolled, there is a considerable waste of water, which condition becomes worse as the strip width narrows. It must be pointed out that the cost of water is considerable, so that it is quite important to use it judiciously. In addition to the waste involved, the system must be designed to deliver the necessary volume to effectively cool the narrow strip when rolling at the maximum speed of the mill, which adds substantially to the cost of the system.
With reference to the aforesaid statement that normally wider strip is rolled at a lower speed than narrow strip, it may be well to give the reason for this practice. The explanation lies in the desire to reduce the capital expenditure of the mill. Accordingly, the mill arrangement is not designed or powered to roll the maximum width strip at the maximum speed. As a result, the wide product is rolled at a speed less than the maximum speed of the mill and commensurate with the particular power demands for the reduction desired.
In addition to this disadvantage, in the more modern mills, the cooling of a strip on the runout table has presented some erious problems. For example, in a recent installation of a hot strip mill having a maximum speed EidhAl-d Patented Dec. 6, 1966 of the order of 3,000 f.p.m., the water spray system necessary to obtain the desired cooling was designed to deliver approximately 20,000 gal. per minute to the sprays arranged above the runout table and approximately 4,000 gal. per minute to the sprays arranged below the runout table. It goes without saying that a system for supplying such a volume of water is quite expensive in a number of ways.
Since the new mills now being erected will have a maximum speed of 3800 f.p.m., an even greater quantity of water is necessary to ellect proper strip cooling. In addition to the costly water supply system necessary for these high speed mills, it must be pointed out that in employing the present day spray system, it is necessary to provide a substantially longer spray section and, consequently, a much longer runout table, both of which factors greatly increase the capital expense incident to the manufacturing and installing of the cooling system.
The present invention is addressed to a temperature control method and apparatus for use with a rolling mill that will alleviate each of the aforesaid disadvantages. One object of the present invention is addressed to a method and apparatus for controlling the fluid output of the coolant delivery members in a manner that full benefit is received from the cooling media, notwithstanding the fact that a wide range of varying width and thickness work pieces are to be rolled.
Another object of this invention is to provide a coolant system for employment with a hot runout table of a hot strip mill, the sprays of which will be regulated pursuant to the width or speed of the mill so that when the maximum width strip is being rolled at a first speed, the field of spray will extend to the opposite sides of the strip and perpendicular to the center line of the strip and when the minimum width strip is being rolled at a second speed, the sprays will be positioned in an oblique relationship with respect to the center line of the strip, whereby the surface of the strip will be subject to a different amount of water than when the sprays are positioned for the maximum width strip. For strip possessing width between the maximum or minimum, the sprays will be adjusted to suit the particular width.
Another object of the present invention is to provide a method of and apparatus for regulating the position of the spray fields of the spray system commensurate with the change in speed of the mill. For example, the fields of sprays may be longer than the particular width strip being rolled so that the fields of sprays overhang the edges of the strip when it is being rolled at a slow speed, and when the speed is increased, the fields of the sprays will be positioned to expose the strip to greater unit coverage of the fields. Thus, as the speed gradually increases, the spray system is changed accordingly, to gradually expose the strip to more unit coverage of the fields of sprays.
Another method of operating the cooling system where the speed of the mill during the rolling of the strip is to be increased, would be to make the fields of sprays to equal to the width of the maximum strip and then to compensate for the increase of the speed by adding additional sprays as the speed increases. In this case, for strip of widths less than the maximum the position of the fields of sprays can be changed to compensate for the increases in speed or in combination therewith, additional sprays can be added.
A still further object of the invention has reference to providing means whereby the position of the fields of the sprays may be automatically adjusted by means which is responsive to the speed of the strip or the width of the strip.
In one form of the present invention, there is provided in conjunction with the hot runout table of the hot strip mill, a strip cooling system comprising means for positioning the fields of the sprays thereof, whereby these fields will be kept within the edges of the strip of various width strips to thus gain the maximum benefit from and alleviate any waste of the coolant.
These objectives and advantages as well as others, will be more fully understood when the following specification is read in light of the accompanying drawings of which:
FIGURE 1 is a schematic elevational view showing the last stand of the finishing train of a hot strip mill, its runout table, together with a strip cooling system and coiler;
FIGURE 2 is a plan view of a portion of the hot runout table shown in FIGURE 1 illustrating a spray system built in accordance with the present invention;
FIGURE 3 is a partial sectional view of the apparatus shown in FIGURE 2; and
FIGURE 4 is a diagrammatical view illustrating two varying width strips and the positions of the fields of the sprays for these strips.
With reference to FIGURE 1 there is illustrated schematically the last stand ll) of a hot strip finishing train in which the final reduction of the strip is taken, the strip S passing from the stand It), as indicated by the arrow, to a hot runout table 11 which includes banks of fluid or Water sprays l2 and strip side guards 13. At the extreme right-hand side of the table 11, as one views FIGURE 1, a down-coiler 14 is arranged for receiving the strip issuing over the table, which has the usual pinch roll assembly 15 arranged above it. The stand 10 includes a motor 16 having a speed regulator 17 and entry and delivery side guides 13. For the guides 18, at the left of the stand 10, there is provided traversing means 19 including a motor 20. The side guards 13 are also provided with traversing means 21 including a motor 22. All of these elements, except for the strip spray system are well known and do not believe to warrant a detailed description.
As previously noted, FIGURES 2 and 3 illustrate a portion of the runout table and one of the longitudinal banks of the spray system built in accordance with the present invention. As shown, the runout table 11 includes a plurality of spaced-apart rollers 23 each having individual motors 24. Above the rollers 23, as shown in FIGURE 3, there is positioned a number of spaced-apart arcuately shaped pipes 25, which are secured to a common horizontally extending fluid supply pipe 26, the fluid supply pipe being rotatably received in a bearing stand 27, the base of which is secured to the foundation as shown in FIGURE 3. As shown in FIGURE 2, at one end of the supply pipe 26, there is provided a swivel joint 28 to which is connected an input pipe 29, the swivel joint 23 permitting the supply pipe 26 to rotate relative to the input pipe 29.
To the other end of each of the arcuate shaped pipes 25, there is a horizontal pipe 30 which interconnects the top ends of the pipes and receives the fluid passing through them. As shown in FIGURE 3, at the underside portion of the pipe at relatively short equal distance, spaced-apart positions, there is provided a number of small diameter pipes 31, the lower ends of which are secured to rotatable joints 32. To the lower ends of the rotatable joints 32, there is provided nozzles 33, which in the preferred embodiment are designed to give fields of sprays which are characterized by being relatively narrow in one direction and relatively wide in the other, or what may be referred to as a fiat spray. The contour of these fields of sprays is examplified in FIGURE 4.
For each spray assembly, just below the rotatable joints 32 there is provided a link 34 which is connected to a cross bar running substantially parallel to the pipe 3i and which through the interconnecting relationship rotates the nozzles 33 in unison. The links 34 and cross bar 35 are best shown in FIGURE 2. To one of the links 34, an arm 36 is secured, as shown in FIGURE 3 and to this arm an actuating rod 37 is connected, the rod 37 running in a direction parallel to the pipes 25 when viewed in FIGURE 2. The actuating rod 3'7 is secured to the gear of a worm-wheel jack 38, the jack being operated by an electric motor 39, shown only in FIGURES 2 and 3. As illustrated in phantom in FIG- URE 3, the entire spray assembly is adapted to be pivoted about the axis of the supply pipe 26 relative to the bearing stand 27 for which reason a piston cylinder assembly 40 is provided, the piston of which is secured to a cross beam 41 which, in turn, is secured to each of the pipes 25, the cylinder being only seen in FIGURE 3.
In briefly explaining the operation of the aforesaid apparatus, reference is made to FIGURE 4 where there is diagrammatically shown two ditierent width strips, designated A and B, which for the purposes of discussion will be understood to represent the maximum and minimum width strips, respectively produced by the stand 10. In cooling the strip A, it will be noted that the fields of sprays represented by the reference character 42 are arranged so that they fall within the opposite edges of the strip A, thereby equal cooling of the surface thereof will be assured. When the mill is rolling a strip of the width illustrated by strip B, the fields of sprays 42 will be so arranged so that their extreme ends will fall within the opposite edges of the strip B, whereby full advantage of the cooling sprays will be again realized.
As previously mentioned, when the stand 10 is rolling strip of the width A, its speed may be considerably lower than when it is rolling the narrower strip B. Consequently, when the mill is rolling the maximum width strip A, the fields of the sprays will be positioned so that the unit area of spray coverage will be at a minimum, but yet in view of the longer length of time involved in the strip passing under the sprays, sufiicient cooling is assured and that without any waste of water. When the minimum width strip B is being rolled, the fields of sprays are positioned to expose the strip to a maximum amount of water so that while the strip may be traveling under the sprays at the maximum speed, this is compensated for by the increase spray coverage and again, eifective cooling is assured without any waste of water.
As previously mentioned, and as shown on FIGURE 1, the motor 39 that regulates the angular position of the nozzles 33 can be electrically connected to the traversing means 19 of the mill side guides 18 and/or to the traversing means 21 for the side guards 13 whereby the fields of sprays 42 can be automatically adjusted when the mill side guides 18 or the runout table strip guards 13 are adjusted for a new width of strip, this being done by the operation of the motor 29 of the strip guide 18 or the motor 22 of the side guards 13.
In this regard and with reference again to FIGURE 4, in referring to the strip S, should it be desirable to adjust the fields of the sprays 42 in accordance with the change in speed of the mill, it will be noted that the cooling effect could be increased by simply rotating the fields 42 to control the amount of fluid discharged onto the strip. In this manner in the rolling procedure where the speed of the fininshing train is gradually increased to reduce the end-to-end temperature difference of the strip in accordance with recently inaugurated practice, the fields of the sprays 42 can be positioned so that the fields overhang the edges of the strip. Ailternately, as previously mentioned, the lengths of the spray fields can be made equal to the width of the maximum strip, in which case the speed increase is compensated for by opening the valves such as the valve shown in FIGURE 2 of additional spray banks. In the first case, when the leading end of the strip passes under the nozzles 33 and as its speed is gradually increased, the fields of sprays can be rotated so as to progressively increase more and more of the strip surfaces to the water delivered by the spray system. In this connection, as indicated in FIGURE 1, the motor 39 of the spray system can be electrically correlated to the speed of the strip, say for example, by use of the speed control unit 17 associated with the motor 16 of the stand 10. In this way, as the mill speed increases, the motor 39 would operate to arrange the fields of sprays 42 in the proper position.
It will be appreciated that FIGURES 2 and 3 have illustrated but one form of a spray system and a mechanism for moving the sprays in unison so as to keep the fields of sprays 462 at all times parallel to each other, and various other means can be employed for carrying out the features of the present invention. In certain mill arrangement, the present method and apparatus may be employed in conjunction with the entry table of the finish ing train of a hot strip mill or the delivery table of the last roughing stand thereof.
While no particular comment has been made of it, it will be appreciated that the usual bottom spray systems will be also employed. Also, it will be appreciated that in place of the nozzles 33, the coolant may be supplied by long pipes, a trough or a laminar spray system.
In accordance with the provisions of the patent statutes, I have explained the principle and operation of my invention and have illustrated and described what I consider to represent the best embodiment thereof. However, I desire to have it understood that within the scope of the appended claims, the invention maybe practiced otherwise than as specifically illustrated and described.
I claim:
1. In a method of cooling within a desired range of temperatures heated metallic workpieces, such as strips, by passing the strips through a field of coolant incident to their being rolled.
said strips capable of possessing different characteristics, such as, varying widths, thicknesses, and speeds of travel, and
wherein the field of coolant is longer than the width of the maximum strip, comprising the steps of:
arranging the field of coolant so that the field extends over the opposite sides of the strips when the strips are traveling at a first speed,
changing the position of the field of coolant to increase the area of the field as the speed of the strip increases relative to said first speed so that the strip is subject to a substantial uniform temperature about its entire length.
2. An apparatus for cooling heated metallic workpieces, such as strips, said strips having varying characteristics that efiect their thermal conditions as they issue over a predetermined path, comprising:
a plurality of coolant discharge members arrange over the path of the strip,
means for supporting said coolant discharge members in a relationship to produce a field of coolant across the strips,
means for adjusting the members in a manner so that the field of coolant may be displaced relative to the strips to compensate for a change in the cooling rate of the strips caused by a change in the characteristics thereof,
said means for adjusting the member being connected to two or more of the members thereby the members are adjusted in unison, and
strip width determining means controlling the means for adjusting the discharge member to adjust said member pursuant to a change in the width of the strip.
3. An apparatus for cooling heated metallic workpieces, such as strips, said strips having varying characteristics that effect their thermal conditions as they issue over a predetermined path, comprising:
a plurality of coolant discharge members arranged over the path of the strip,
means for supporting said coolant discharge members in a relationship to produce a field of coolant across the strips,
means for adjusting the members in a manner so that the field of coolant may be displaced relative to the strips to conmpensate for a change in the cooling rate of the strips caused by a change in the characteristics thereof,
said means for adjusting the member being connected to two or more of the members thereby the members are adjusted in unison, and
means for adjusting the speed of the mill controlling the means for adjusting the discharge member to adjust said member pursuant to a change in the speed of the mill.
4. In a strip cooling station of a hot strip mill, said station located between the last rolling mill and the means for receiving the strip from the mill comprising:
a table over which the strip passes from the mill,
a support means having a base on one side of the said table and having a portion adapted to overhang a strip supported by said table,
a coolant header carried by the overhung portion of said support means and extending in a direction generally parallel to the direction of travel of said strip,
a plurality of space orifice members rotatably carried by said header,
said members constructed to form elongated fields of coolant on the adjacent surface of a passing strip and generally transverse to its direction of travel,
means for delivering coolant medium to said. header for discharge from said orifice members onto a strip,
means for interconnecting said members so as to effect rotation of the members in unison, thereby to change the position of said fields relative to the surface of said strip.
References Cited by the Examiner UNITED STATES PATENTS 2,696,823 12/ 1954 Scott 134-422 2,851,042 9/1958 Spence 266-6 3,151,197 9/1964 Schultz 266-6 CHARLES W. LANHAM, Primary Examiner. H. D. HOINKES, Assistant Examiner,

Claims (1)

  1. 2. AN APPARATUS FOR COOLING HEATED METALLIC WORKPIECES, SUCH AS STRIPS, SAID STRIPS HAVING VARYING CHARACTERISTICS THAT EFFECT THEIR THERMAL CONDITIONS AS THEY ISSUE OVER A PREDETERMINED PATH, COMPRISING: A PLURALITY OF COOLANT DISCHARGE MEMBERS ARRANGE OVER THE PATH OF THE STRIP, MEANS FOR SUPPORTING SAID COOLANT DISCHARGE MEMBERS IN A RELATIONSHIP TO PRODUCE A FIELD OF COOLANT ACROSS THE STRIPS, MEANS FOR ADJUSTING THE MEMBERS IN A MANNER SO THAT THE FIELD OF COOLANT MAY BE DISPLACED RELATIVE TO THE STRIPS TO COMPENSATE FOR A CHANGE IN THE COOLING RATE OF THE STRIPS CAUSED BY A CHANGE IN THE CHARACTERISTICS THEREOF, SAID MEANS FOR ADJUSTING THE MEMBER BEING CONNECTED TO TWO OR MORE OF THE MEMBERS THEREBY THE MEMBERS ARE ADJUSTED IN UNISON, AND STRIP WIDTH DETERMINING MEANS CONTROLLING THE MEANS FOR ADJUSTING THE DISCHARGE MEMBER TO ADJUST SAID MEMBER PURSUANT TO A CHANGE IN THE WIDTH OF THE STRIP.
US368935A 1963-06-04 1964-05-20 Method and apparatus for cooling strip Expired - Lifetime US3289449A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB22140/63A GB1057311A (en) 1963-06-04 1963-06-04 Method of and apparatus for cooling strip

Publications (1)

Publication Number Publication Date
US3289449A true US3289449A (en) 1966-12-06

Family

ID=10174541

Family Applications (1)

Application Number Title Priority Date Filing Date
US368935A Expired - Lifetime US3289449A (en) 1963-06-04 1964-05-20 Method and apparatus for cooling strip

Country Status (6)

Country Link
US (1) US3289449A (en)
BE (1) BE648850A (en)
DE (1) DE1290112B (en)
ES (1) ES300571A1 (en)
FR (1) FR1397068A (en)
GB (1) GB1057311A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3528268A (en) * 1968-02-12 1970-09-15 United States Steel Corp Pass-line displacement roll for cooling strip in cold-rolling mill
US3533261A (en) * 1967-06-15 1970-10-13 Frans Hollander Method and a device for cooling hot-rolled metal strip on a run-out table after being rolled
US3604234A (en) * 1969-05-16 1971-09-14 Gen Electric Temperature control system for mill runout table
US3656330A (en) * 1969-02-28 1972-04-18 Exxon Research Engineering Co System for distributing liquid over a surface
US3738629A (en) * 1971-03-04 1973-06-12 Dorn Co V Bar quench fixture
US3811305A (en) * 1972-10-10 1974-05-21 Bethlehem Steel Corp Movable descaler spray header
US3905216A (en) * 1973-12-11 1975-09-16 Gen Electric Strip temperature control system
US4256168A (en) * 1976-08-14 1981-03-17 Demag, Aktiengesellschaft Cooling spray nozzle adjusting arrangement particularly for steel strand casting plants
US4269052A (en) * 1978-06-09 1981-05-26 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Mechanical descaling device
US4418559A (en) * 1981-12-08 1983-12-06 Gulf & Western Manufacturing Co. Roll coolant distribution header
US4497180A (en) * 1984-03-29 1985-02-05 National Steel Corporation Method and apparatus useful in cooling hot strip
US4607590A (en) * 1982-09-07 1986-08-26 Pender Don P Apparatus for directing fluid stream against substrate sheet
US4788993A (en) * 1986-06-23 1988-12-06 Sherman Industries, Incorporated Vehicle reciprocating spray washing apparatus
US6394370B1 (en) 2000-09-21 2002-05-28 Mark Vii Equipment, Inc. Reciprocating wand vehicle wash apparatus
US20020162576A1 (en) * 2001-05-04 2002-11-07 Fratello Daniel A. Vehicle wash apparatus with an adjustable boom
US20040149316A1 (en) * 2001-05-04 2004-08-05 Mark Vii Equipment, Llc Vehicle wash apparatus with an adjustable boom
US20050028846A1 (en) * 2001-05-04 2005-02-10 Fratello Daniel A. Fluid emitting nozzles for use with vehicle wash apparatus
US20070289616A1 (en) * 2006-06-19 2007-12-20 Mark Vii Equipment Inc. Car wash apparatus with pivotable arms
US20080029135A1 (en) * 2006-06-19 2008-02-07 Mccadden Dennis R Car wash apparatus with pivotable arms

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2223096B1 (en) * 1973-03-26 1976-09-10 Usinor
JPS5496458A (en) * 1978-01-18 1979-07-30 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for descaling of steel strip
DE3146657A1 (en) * 1981-11-25 1983-06-01 SMS Schloemann-Siemag AG, 4000 Düsseldorf DEVICE FOR COOLING FLAT ROLLING MATERIAL
FR2524001B1 (en) * 1982-03-25 1987-02-20 Pechiney Aluminium COOLING PROCESS MINIMIZING DEFORMATION OF METALLURGICAL PRODUCTS
JP3307771B2 (en) * 1993-08-23 2002-07-24 ハンス‐ユルゲン、ガイドール Means for descaling hot rolled steel sheets
AT406834B (en) * 1997-12-18 2000-09-25 Voest Alpine Ind Anlagen COOLING DEVICE FOR COOLING A HOT MOVING METAL STRIP
CN106311776B (en) * 2016-08-22 2017-12-19 南京钢铁股份有限公司 A kind of middle base tilts injection stream cooling and board-shape control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2696823A (en) * 1952-03-31 1954-12-14 Scott Howard Movable water spray system for rolling mill run-out tables
US2851042A (en) * 1955-10-11 1958-09-09 British Thomson Houston Co Ltd Cooling equipment
US3151197A (en) * 1962-12-05 1964-09-29 United States Steel Corp Apparatus for quenching rolled products

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2095430A (en) * 1935-03-07 1937-10-12 United Eng Foundry Co Method and apparatus for rolling metallic strip
GB932296A (en) * 1958-12-12 1963-07-24 Davy & United Eng Co Ltd Improvements in or relating to spray banks for rolling mills

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2696823A (en) * 1952-03-31 1954-12-14 Scott Howard Movable water spray system for rolling mill run-out tables
US2851042A (en) * 1955-10-11 1958-09-09 British Thomson Houston Co Ltd Cooling equipment
US3151197A (en) * 1962-12-05 1964-09-29 United States Steel Corp Apparatus for quenching rolled products

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3533261A (en) * 1967-06-15 1970-10-13 Frans Hollander Method and a device for cooling hot-rolled metal strip on a run-out table after being rolled
US3528268A (en) * 1968-02-12 1970-09-15 United States Steel Corp Pass-line displacement roll for cooling strip in cold-rolling mill
US3656330A (en) * 1969-02-28 1972-04-18 Exxon Research Engineering Co System for distributing liquid over a surface
US3604234A (en) * 1969-05-16 1971-09-14 Gen Electric Temperature control system for mill runout table
US3738629A (en) * 1971-03-04 1973-06-12 Dorn Co V Bar quench fixture
US3811305A (en) * 1972-10-10 1974-05-21 Bethlehem Steel Corp Movable descaler spray header
US3905216A (en) * 1973-12-11 1975-09-16 Gen Electric Strip temperature control system
US4256168A (en) * 1976-08-14 1981-03-17 Demag, Aktiengesellschaft Cooling spray nozzle adjusting arrangement particularly for steel strand casting plants
US4269052A (en) * 1978-06-09 1981-05-26 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Mechanical descaling device
US4418559A (en) * 1981-12-08 1983-12-06 Gulf & Western Manufacturing Co. Roll coolant distribution header
US4607590A (en) * 1982-09-07 1986-08-26 Pender Don P Apparatus for directing fluid stream against substrate sheet
US4497180A (en) * 1984-03-29 1985-02-05 National Steel Corporation Method and apparatus useful in cooling hot strip
US4788993A (en) * 1986-06-23 1988-12-06 Sherman Industries, Incorporated Vehicle reciprocating spray washing apparatus
US6394370B1 (en) 2000-09-21 2002-05-28 Mark Vii Equipment, Inc. Reciprocating wand vehicle wash apparatus
US20020162576A1 (en) * 2001-05-04 2002-11-07 Fratello Daniel A. Vehicle wash apparatus with an adjustable boom
US20040149316A1 (en) * 2001-05-04 2004-08-05 Mark Vii Equipment, Llc Vehicle wash apparatus with an adjustable boom
US6807973B2 (en) 2001-05-04 2004-10-26 Mark Vii Equipment Llc Vehicle wash apparatus with an adjustable boom
US20050028846A1 (en) * 2001-05-04 2005-02-10 Fratello Daniel A. Fluid emitting nozzles for use with vehicle wash apparatus
US6863739B2 (en) 2001-05-04 2005-03-08 Mark Vii Equipment Llc Vehicle wash apparatus with an adjustable boom
US7056390B2 (en) 2001-05-04 2006-06-06 Mark Vii Equipment Llc Vehicle wash apparatus with an adjustable boom
US20070283984A1 (en) * 2001-05-04 2007-12-13 Fratello Daniel A Fluid emitting nozzles for use with vehicle wash apparatus
US7467637B2 (en) 2001-05-04 2008-12-23 Mark Vii Equipment Inc. Fluid emitting nozzles for use with vehicle wash apparatus
US20070289616A1 (en) * 2006-06-19 2007-12-20 Mark Vii Equipment Inc. Car wash apparatus with pivotable arms
US20070295374A1 (en) * 2006-06-19 2007-12-27 Mccadden Dennis R Car wash apparatus with pivotable arms
US20080029135A1 (en) * 2006-06-19 2008-02-07 Mccadden Dennis R Car wash apparatus with pivotable arms

Also Published As

Publication number Publication date
BE648850A (en)
FR1397068A (en) 1965-04-23
GB1057311A (en) 1967-02-01
DE1290112B (en) 1969-03-06
ES300571A1 (en) 1964-12-01

Similar Documents

Publication Publication Date Title
US3289449A (en) Method and apparatus for cooling strip
US4392367A (en) Process and apparatus for the rolling of strip metal
US4047985A (en) Method and apparatus for symmetrically cooling heated workpieces
US20100132426A1 (en) Device for influencing the temperature distribution over a width
US3344648A (en) Method and apparatus for controlling the temperature of hot strip
US11072834B2 (en) Continuous-flow cooling apparatus and method of cooling strip therewith
EP0662358A1 (en) Method and apparatus for intermediate thickness slab caster and inline hot strip and plate line
US6332492B1 (en) Method to control the axial position of slabs emerging from continuous casting and relative device
US2797476A (en) Process and apparatus for treating metallic strips
CN102027148A (en) System and method for guiding a galvanising product wiping device
US4488710A (en) Apparatus for optimizing the cooling of a generally circular cross-sectional longitudinal shaped workpiece
US2211981A (en) Apparatus for cooling and guiding strip
CN100357043C (en) Method and installation for hot-rolling strips using a steckel rolling frame
US5345805A (en) Rolling mill for wire or bar steel with a continuous light section steel or wire train
US3765660A (en) Beam quenching apparatus and method
US2078005A (en) Mill plant for rolling hot metal
US3403541A (en) Method and apparatus for cooling workpieces
US3110204A (en) Continuous rolling mill
US2095430A (en) Method and apparatus for rolling metallic strip
US2029751A (en) Metal rolling mill
US2323974A (en) Process of and apparatus for conditioning metal bodies
US2139483A (en) Method of rolling flat material
JP3252718B2 (en) H-section cooling system
AU2005315789A1 (en) Method and device for continuous casting of metals
US3253446A (en) Reverse angle planetary mill